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Introduction 
A “Wave to Wire” (W2W) model is a numerical tool that can calculate the power output from a specified 

Wave Energy Converter (WEC), under specified ocean wave conditions.  The tool can be used to assess 

and optimize the performance of a Wave Energy Converter (WEC) design and provide knowledge of the 

WEC behavior – such as motions and forces – in its operating wave conditions.  

Typically, the simulation concerns a full-scale WEC design validated against small-scale experimental 

studies in wave tanks. “Wave to Wire Modelling” can be carried out using commercial software 

packages, but recently free alternatives have also become available. 

A W2W model can typically offer the following options:  

 Time series of the power output  

 Details concerning the efficiency of the Power Take Off (PTO) system 

 Implementation of different (optimal) control strategies 

 Time series of structure motions and mooring line forces 

 Fatigue loads on structural components which are exposed to high cyclic loading  

 Dynamical prediction of the response of a wave energy converter in moderate sea states. 

The W2W modeling is traditionally concerned with the operating wave conditions in which the WEC 

produces power, but can also be extended to include non-linear and viscous effects for assessing 

motions and loads in extreme and survival conditions. 

The design and survival issues related to the WEC design are also part of the SDWED project, with the 

focus on structural integrity, motions, end stop loads, mooring forces and investigating possible failure 

modes. 

Objectives 
The purpose of this report is to provide an overview of some of the many aspects that feed into W2W 

models and also to give a summary of some of the tools available. 
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Summary and conclusions 
The development of W2W models in combination with physical model experiments helps validate both 

the experiments and the numerical model. There are many wave energy converters under development 

of different geometry, using different operating principles, PTO’s and mooring systems – and thus a 

W2W tool has to be very flexible, or composed of blocks with focus on system parts such as Power Take 

Off design, mooring design, structural design, or array interaction effects.  

Software tools to assist in modelling WECs are commercially available, but such software is rather 

expensive and cannot be modified by the user for specific needs. Case studies in the SDWED project on 

different WEC systems, have demonstrated how “low-cost” numerical modelling and testing can be 

completed depending on device configuration and purpose.  

Other new initiatives promise open-source codes to become available sometime in the future. For 

example, the U.S. Department of Energy has initiated the so-called “Water Power Program”, the 

purpose of which is to develop open-source software to simulate the generated electric power of 

different wave energy converter designs. This could lead to a simple common tool that would allow the 

developer to focus on the geometrical and structural definition of the Wave Energy Converter and the 

software would provide results concerning the performance.  

This report will provide descriptions of the elements feeding into a W2W model, as illustrated below: 

1. WEC design data 

2. Hydrodynamic pre-processor 

3. Wave and Current Parameters  

4. PTO & Control 

5. WEC mooring parameters 

 

Figure 1 Sketch of a typical W2W model structure 
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The W2W numerical program 
A W2W model integrates the WEC, the forces from the ocean waves, the forces from the PTO and the 

forces from the mooring system, as schematically presented in Figure 2. To calculate the hydrodynamics 

associated with the radiation and diffraction of the waves, software such as WAMIT is required (WAMIT, 

2012). 

 

Figure 2 Schematic structure of the W2W model 

The numerical W2W model solves the governing differential equations. If these governing equations are 

linear, they can be solved in the frequency domain (which is fast) and if the equations are nonlinear, the 

solution can be found in the time domain, which in most cases will be slower but will also provide more 

details. 

A global state-space realization can be used, which combines the linear hydrodynamics part with the 

non-linear parts (the dynamics of the PTO equipment and the mooring system) in order to set up a 

complete system of Ordinary Differential Equations (ODEs) which describe the entire dynamics of the 

device. The ODE system is solved by applying a solver using e.g. the Runge-Kutta time-stepping 

procedure.  

For a given input sea condition (which can be zero for the hydrostatics calculations), output data, such 

as generated electricity, loads and displacements, can be produced. 

Table 1: Examples of complete wave2wire codes, their capabilities and features are very different. 
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WEC geometry and design data 
The WEC reference design in terms of geometry, dimensions and weights can typically be defined by key 

data such as: 

  Length 

 Beam 

 Draught 

 Volume 

 Mass 

 Center of Buoyancy 

 Center of Gravity 

 Moments of inertia 

 Rated Power 

The geometry is further defined using a CAD drawing. The CAD drawing in i.e. Multisurf, SolidWork or 

similar, can communicate with the hydrodynamic solver i.e. Wamit or ANSYS – and with the PTO 

component and mooring component of the W2W model. 

 

 

Figure 3 Example of a WEC geometry described in SOLID WORKS 

 

Figure 4 Dexa converter illustrated in ANSYS  
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Hydrodynamics 
The most often referred software that can calculate the hydrodynamic parameters like added-mass, 

damping coefficients, exciting forces, fluid pressure, fluid velocity and RAOs is WAMIT (WAMIT, 2012). 

WAMIT implements the linear and second-order potential theory to analyze floating or submerged 

bodies in ocean waves. The BIEM method (Boundary Integral Equation Method) is used to solve for the 

velocity potential and fluid pressures on the submerged surfaces of the bodies and simultaneously 

accounts for the diffraction and radiation effects. There are however other alternatives and some of 

these are shown in table 2. 

Table 2: Examples of hydrodynamic 1st order codes studied within the SDWED project. 

 

Nemoh is a free alternative to the commercial program WAMIT. It is capable of computing first order 

wave loads on offshore structures (added mass, radiation damping, diffraction forces). It was developed 

at Ecole Centrale de Nantes. Since January 2014, it has been released under the terms of the Apache 2 

licence. Executables and the source code are available for free download at http://lheea.ec-

nantes.fr/doku.php/emo/nemoh/start 

  

Figure 5 Example of 1
st

 order radiation coefficients for a hemisphere in shallow water h/a = 2 (h is water depth, a is radius). 
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Waves and Current parameters  

Regular waves 
Typical input is the: 

 Wave Height: H [m] 

 Wave Period: T [sec] 

Knowledge about the device performance in regular waves is useful mainly because it allows for partial 

validation of the frequency-domain and time-domain models in relation to model experiments. 

Irregular Sea States 
In irregular waves the typical input parameters are: 

 Spectrum type (see Appendix 1) 

 Significant Wave Height: Hs [m] 

 Wave Period: Tz or Te [sec] 

As for regular waves, the evaluation of the loads acting on the device under an irregular sea state also 

requires the computation of the complex amplitudes of the excitation force (or moment) for unitary 

incident wave amplitudes. Besides, it is also necessary to specify if the wave elevation time series 

records of the irregular sea states come from sea measurements or from a stochastic approach. 

Typically a scatter diagram presents the frequency per year that each specific sea state occurs, summed 

up for all directions as shown below: 

 
Figure 6 Scatter diagram for North Atlantic (K. Nielsen & T. Pontes , 2010)  
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Power Take Off and Control 
The part of the wave energy converter that transforms the absorbed power from the waves into 

electricity to be delivered to the grid is called the Power Take Off (PTO) system. 

A classification of typical PTO systems for wave energy systems includes: 

 Direct mechanical/electrical driven systems 

 Hydraulic systems 

 Air/Water turbine systems 

The PTO must deliver electricity that complies with the quality requested by the grid operator. It is at 

this stage in time not clear which type of PTO system will be the most economical, will be able to 

convert the wave power to electricity and will survive the ocean environment conditions with a 

minimum of maintenance.  

The numerical model of the PTO can include valves, the fluid, and any other constituent dynamical parts. 

The compressibility of the hydraulic fluid can be important, also heating and cooling. For numerical 

modelling, oil and water hydraulic fluid is considered to be incompressible, whereas the air volume of 

the OWC systems or gas-accumulators needs to be considered compressible. 

There will always be an approximation to the real solution, which results in a compromise between 

computational effort and solution refinement. 

In this way the W2W model can help examine the conversion efficiency of the PTO in the wave 

situations specified, as shown in the scatter table below. 

 

Figure 7 Example of Calculated PTO efficiencies for a hydraulic PTO system (Yukio Kamizuru, Christian Fissmann & Hubertus 
Murrenhoff, 2013) 
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Moorings 
The moorings keep the floating WEC structure on station (within a certain tolerance) under normal and 

storm loads, they reduce/remove loads on the electrical connection, they ensure alignment of the wave 

energy converter and they avoid impact with other structures (ships, etc.). The mooring system needs to 

be designed to survive extreme loads in storm conditions, which can lead to loads several times higher 

than operational loads. The mooring system, which is designed with low cost, high reliability, low 

environmental impact and requiring little inspection and maintenance, plays a very important role for 

the success of wave energy devices. 

Typically the mooring geometry must be specified in terms of: 

 Number of anchors (n) 

 Anchor points locations (xn,yn,zn) 

 Stiffness (typical nonlinear) 

 Weights 

 Pretension 

A mooring line can be built using different materials, including floaters and active mooring control in 

order to achieve the best compromise between cost, reliability and influence on the WEC dynamics. The 

anchors will not be treated in this context but the loads calculated by the numerical model can help 

select the appropriate anchor type and dimensions. 

Power Output 
The prime output produced by the W2W model is illustrated below in terms of a performance matrix 

that shows the average power output in each cell of the scatter diagram. By combining the performance 

matrix with the site scatter diagram (Figure 8) the Mean Annual Energy Production can be calculated by 

summing up the contribution from all cells. 

 

Figure 9 Example of a calculated Power Matrix for a flap type system  (Yukio Kamizuru, Christian Fissmann & Hubertus 
Murrenhoff, 2013)  
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Tool Overview  
A complete overview of the W2W modelling tools available, and particularly developed as part of the 

SDWED project, can be found on the SDWED webpage under the menu bar “Software”, as shown below. 

http://www.sdwed.civil.aau.dk/ 

 

 

Figure 10 the SDWED webpage 21-05-2014 

 

 

  

Look under menu-item 

“Software” 

http://www.sdwed.civil.aau.dk/
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Appendix 1 Waves 

Pierson-Moskowitz Spectrum 
The Pierson-Moskowitz spectrum is based on the assumption that if the wind blew steadily for a long 

period and over a large area, the waves would come into equilibrium with the wind, which, basically, is 

the concept of a fully developed sea. Commonly, a long time period is around 10 thousands wave 

periods, and a large area is roughly 5 thousands wave lengths (see Pierson and Moskowitz11). Thus, the 

Pierson-Moskowitz spectrum, of a fully developed sea, is described by the expression 

 

Figure 11 Pierson-Moskowitz fully developed spectrums measured at different wind speeds 
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U19.4  is the wind speed at an height of 19.4m above the sea surface (19.4m was the height of the 

anemometers on the weather ships used by Pierson and Moskowitz11 in 1964). Generally, for an air flow 

over the sea U19.5=1.026*U10 (assuming a drag coefficient of 5.3×10-3), where U10 is the wind speed at a 

height of 10m above the sea surface.  
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Jonswap Spectrum 
The JONSWAP spectrum formulation has been formulated to fit spectrums that are not fully developed 

i.e. measured at similar duration and wind speed, at different distances from shore, in the wind’s 

direction (fetch).  

 

Figure 12 Wave spectra of a developing sea for different fetches measured at JONSWAP. After Hasselmann et al. (1973) 

The original expression proposed to describe the JONSWAP spectrum contained some inconsistencies. 

Later, a new expression, proposed by Hasselmann et al.12, attempted to regularize this problem. In 

accordance with the latter one, the JONSWAP spectrum is described by: 
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The constants included in the above spectrum were determined empirically based on the measurements 

as  
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The constant α corresponds to the Phillips constant of the PM spectrum, but dependent on the fetch F 

and the wind speed U10. The peak frequency ωp is also defined related to wind speed U10 and fetch F. 
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The constant   is the relation between the maximum spectral density of the Pierson-Moskowitz and 

JONSWAP spectrums.   

 
The parameter   refers to the semi-length on the left side, a , and right side, b , of the spectral 

peak.  

This shows that the stored energy of the waves increases with the fetch F and the resultant significant 

wave height, calculated from the JONSWAP spectrum, becomes: 

            
     (

 

 
)
   

 

The JONSWAP spectrum has a more pronounced peak compared to the Pierson-Moskowitz spectrum, 

which is consistent with the imposed constant . The latter turns out to be particularly important 

because it leads to enhanced non-linear interactions and a spectrum that changes in time, as stated by 

the theory of Hasselmann12. 

Directional Spectrum 
Multi-directional random waves can be expressed by a directional spectrum, which may be decomposed 

into a unidirectional frequency spectrum multiplied by a the directional spreading function or directional 

distribution. 

A spreading function which is often used is given by the following expression: 
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The integral over all directions is unity: 
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A large value of the spreading parameter s gives the least spreading. The relationship between the 

spreading parameter s and the constant A is given by: 
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Appendix 2 PTO State of the art 
In this section is provided a literature review, of the main types of PTO, with a brief explanation of how 

the PTO works. 

Direct Mechanical Drive System 
This Direct Mechanical Driven System directly links the electrical generator to the moving parts of the 

WEC using mechanical connectors. Mechanical connectors can be mooring lines, chain, a gearbox, a 

pulley, a belt or tooth racks etc . The electricity can be generated using a linear or rotating generator. 

The velocity fluctuations need to be compensated using storage and frequency converter systems. 

Storage systems can be battery or electrochemical cells, ultra capacitor and flywheels. All of them have 

pro and con. 

The Uppsala Point Absorber uses a linear electrical generator driven by the relative velocity between the 

float body and a reference reaction fixed on the seabed (Ivanova, Agren, Bernhoff, & Leijon, 2005), 

(Ribeiro & Martins, 2010) and (Eriksson, Isberg, & Leijon, 2005).  

Hydraulic System 
In this class of PTO a hydraulic fluid is used to drive a hydraulic motor that drives a rotating electrical 

generator. The fluid, which can be either oil or water, is pressurized by hydraulic pistons and delivered 

either to a hydraulic motor or water turbine driving an electricity generator. This hydraulic PTO can 

collect hydraulic fluid from several input sources, is able to handle high loads with long periods, is quite 

a robust and based on well-known components and system. Hydraulic PTO can use storage systems such 

as gas pressurized accumulators. The hydraulic piston is often a double acting cylinder and a valve loop, 

i.e. check valves, 4-way directional valves, etc. is used to rectify the flow through the hydraulic motor. 

This last can be a variable or fixed volume motor or a high-head impulse water turbine, i.e. Pelton type, 

directly coupled with a rotating generator. Associated with this type of PTO is the need to find solutions 

for the “end-stop problem”- a solution that ensures that the actuator stays safe within defined limits. 

The hydraulic PTO system is used in different application as point absorbers (Wavestar, CPT, AquaBUOY, 

OPT, Wavebob), attenuator (Pelamis, Dexadevice), terminator (Oyster).  

There is much literature concerning the hydraulic PTO published in the last years, (Lasa, Antolin, Angulo, 

Estensoro, Santos, & Ricci , 2012), (Schlemmer, Fuchsumer, Boemer, Costello, & Villegas, 2011), (Josset, 

Babarit, & Clement, 2007), (Falcao, 2007) and (Hals, Taghipour, & Moan, 2007). The fluid compressibility 

is included in all of them, directly or in an artificial way, except for the work carried out by Falcao. A 

different approach is presented by Costello (Costello, Tingwood, & Weber , 2011), and Kamizuru 

(Kamizuru, Lermann, & Murrenhoff, 2010), where a direct driven hydraulic motor is used removing the 

accumulator and controlling the output only in the generator side and finally as referenced in the main 

text the work by (Yukio Kamizuru, Christian Fissmann & Hubertus Murrenhoff, 2013). 

Air Turbine System 
Wells air turbines are, beside the hydraulic PTO, the most studied case in literature. Even if the average 

efficiency of this type of turbine is low, the elimination of moving parts used to rectify the alternate air 
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flow is attractive. Indeed reducing moving part in an offshore system working in high energy location, 

can increase the working time and reduce the O&M costs.  

The most common turbines used are: 

 Wells turbine 

 Denis-Auld turbine 

 Impulse turbine  

The turbine is coupled with a high speed rotating generator, which should be able to work at variable 

speed. In this type of PTO the common way to smooth the power output is basically a combination of 

flywheel and frequency converter. 

Examples of work on Wells turbines are (Cashman, O´Sullivan, Egan, & Hayes, 2009), while (Gareev, 

2011) studied a Danniss-Auld turbine. Furthermore in the last year more focus has been reserved into 

the plant configuration (Alberdi, Amundarain, Garrido, Garrido, Casquero, & De al Sen, 2011) and hybrid 

system, i.e. offshore wave energy and wind turbine (Aubault, Alves, Sarment, Roddier, & Peiffer, 2011). 

Arlitt (Arlitt, Tease, Starzmann, & Lees, 2007) present a work where CFD and dynamical model are 

coupled, in order to best describe the fluid dynamic around the air turbine. This approach studies the 

high angle off attach which can lead to stall and energy losses. 

Water Turbine Systems 
This type of PTO transforms the energy stored in a fluid with high potential energy into mechanical 

energy, using a water turbine. The literature directly focusing into the wave energy field is relatively 

small. The power output of the device is then related to the available head and flux. Examples of this 

type of analysis are (Nielsen K. , On the experimental investigation of a Wave Power Converter, 1985), 

(Nielsen K. , 1986) (Liu, Hyun, & Jin, 2008), (Iahnke, Gomes, Isoldi, & Rocha, 2010) and (Nam, Shin, & 

Hong, 2008). 

Using seawater hydraulic pumps can produce high pressure heads that can be utilized by Pelton 

turbines. This has been investigated in the Oyster project as well as the CETO project.  

Low head Kaplan or Propeller type water turbines are normally relatively expensive and associated with 

overtopping type of WECs, i.e. Wave Dragon or SSG where the water is collected into an elevated basin 

with a head ranging from half a meter to a few meters. The basin water level is a function of sea state 

and each turbine is coupled with a rotating variable speed generator.. 

Control 
Into the summation of the forces there will be an extra term related with PTO reaction, or feedback, 

force, while this force will be assess solving the PTO dynamic when the velocity and position of the 

mechanical interface is given by the prime mover velocity and position.  
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Appendix 3 Mooring classes description 
Basically three classes of mooring configuration are available: 

 Spread Mooring 

 Single Point Mooring (SPM) 

 Dynamic Positioning 

Spread Mooring 
In this class of mooring configuration several mooring lines are attached to the floating body, normally 

with a symmetric configuration. Three different subclasses are available, which differ in lines type. This 

kind of configuration is suitable for non-directional WECs, since the heading angle is fixed with small 

degree of freedom.   

 Catenary Mooring: Mooring line is described in terms of catenary equation, with a U shape. The 

restoring force is given by the cable/chain weight and the anchor point receives only horizontal 

loads, due to the line shape. The dynamic of the mooring line can highly affect the WEC 

dynamic, since an extra weight is acting on it. Since the line reach the anchor point horizontally, 

a high wear of the material can be possible, due to the friction with the seabed. 

 

 Multi-Catenary Mooring: In this configuration sinkers and floaters are used to create an S-shape 

or wave shape mooring line, giving a higher degree of freedom and control in the mooring 

design. The line can be composed by multiple sections of different materials, which will be 

briefly discussed later. The restoring force is given by the spring term related to the floaters the 

sinkers and the weight of the mooring line itself. In this configuration the influence onto the 

dynamic of the floater can be tuned and furthermore, choosing between one of the following 

lay-out, Lazy S, Steep S, Lazy Wave, Steep Wave or Pliant Wave, some control on the angle of 

attach with the seabed is possible, leading to a reduction of the friction wear of the lines. 

 

 Taut Spread Mooring (Tether mooring): The mooring lines are orthogonal (tension leg platform 

TLP) or with an angle with respect to the seabed. This means, horizontal and vertical loads on 

the anchor points. The restoring force is given by the lines elasticity as well as the floater 

buoyancy.  

Single Point Mooring (SPM) 
The main different between the first class and this second one is the capability of weathervane around a 

pivoting point. This allows a load reduction on the structure which can be an economical key parameter. 

The pivoting point can be either internal or external and provided, or not, with bearing system. Different 

subclasses are available due to the configuration of the pivoting point. 

 Turret Mooring: An internal or external turret, which is catenary moored, acts as a pivoting 

point. The system is provided with rotational bearing.    
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 Catenary and Multi-Catenary Mooring: Same concept as spread mooring type, but with only one 

connection point. It can be rarely a solution due to the high excursion allowed, which is not 

feasible in farm of WEDs.   

 Catenary Anchor Leg Mooring (CALM): The floater is moored to a catenary moored buoy, which 

act as spring due to the buoyancy variation. The restoring force on the buoy comes from the 

weight of the catenary lines. 

 Single Anchor Leg Mooring (SALM): Same as above, but with only one mooring line between 

seabed and buoy. This is normally a taut line, which gives the restoring force to the buoy 

together with it buoyancy. 

 Fixed Tower Mooring: The pivoting point given by a rotational bearing mounted on top of a 

tower fixed to the seabed. This can be a feasible option in case of wind-wave energy farm. 

Dynamic Positioning 
In this class of mooring, the system actively behaves to keep the floater in position. Due to the high cost 

this class of system will hardly be a feasible solution. 

 Active Mooring: A centenary mooring is used and on board a controller change the length of 

each mooring line in order to tune the floater to the request condition. 

 Propulsion: The positioning of the floater is completely guaranteed by a propulsion system.  

State of the Art Numerical Implementation of Moorings  
Several examples are available on literature, which couple mooring systems with WEDs or generic 

floating systems, either in frequency or time domain. The DNV standard (DNV, Position Mooring, 

OFFSHORE STANDARD, DNV-OS-E301, 2010) gives general guidelines for the design and the 

mathematical model of a mooring system, defining the different forces acting on the line. Even if is a 

general point of view this can be good solution if an easy numerical model need to be built, especially if 

a low computational effort is request in order to simulate long time series for an annual average 

estimation. 

On the other hands, the work carried out by Johanning (Johanning, Smith, & Wolfram, 2007), shows the 

importance of the damping behavior of the mooring lines due to viscous effects, which in turn define 

the need of a non-linear time domain model to approximate in a proper way the moored WED.  

An example of application of a finite element method coupled either with Morrison’s equation or 

Diffraction/Radiation problem is reported in (Sagrilo, Siqueira, Ellwanger, Lima, Ferreira, & Mourelle, 

2002). The system under investigation is a CALM mooring configuration where the buoy load is obtained 

using either small body approximation or the diffraction/radiation problem, while the tanker load is 

obtained using the last one. The mooring dynamic is then assess decomposing the 6 lines in 150 truss 

non-linear elements solved using the Newmark method. The same approach using linear or slightly non-

linear problem for the buoy dynamic response coupled with a finite element method able to analyze the 

mooring dynamic has been presented by (Chen, Zhang, & Ma, 2001). 

A different and more interesting approach has been used by Fitzgerald (Fitzgerald & Bergdahl, 2008), 

where the non-linear solution has been linearized to create a frequency map of the mooring response. 
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The map is then applied to the linear unmoored response of the WED, in order to gives a fully linear 

system. The basic concept of the work is to tune the mooring dynamic coefficient in order to best fit the 

non-linear behavior. This approach can be seen as a compromise between accuracy and computational 

time, since after the tuning process obtained using a finite element method, which as a high 

computational cost; the process can be analyzed in frequency domain, where the computational time is 

negligible compared with the previous one. 

A quasi-static analysis of a multi-catenary mooring based on iterative non-linear solution of the catenary 

equation is proposed by Yassir (Yassir, Kurian, Indra, & Nabilah, 2010), when different clump weight and 

pretention are applied. Nevertheless, this procedure can be used until the mooring line remain in a slack 

configuration, or in other words where the non-linear effect due to viscous damping are considered 

linear, (Johanning, Smith, & Wolfram, 2007) and (Kreuzer & Wilke, 2003). Furthermore, this last gives a 

good explanation of the difference between the quasi-static and dynamic approach and examples 

showing when these two methods converge and when not. The same paper report also the 

computational cost for the multi-body approach when the number of element change in the system; it is 

clear that a reported ratio of computational time over real time of 0.1, using the smallest number of 

element, it is not usable if an annual mean value is the aim of the work.  

Same quasi-static approach has been used by Vicente (Vicente, Falcao, & Justino, Slack-chain mooring 

configuration analysis of a floating wave energy converter, 2011) where the dynamic of a point absorber 

with an idea reaction plate and PTO is assess for different slack mooring (catenary or multi-catenary 

SPM) configurations. The importance of this work is the direct application of the method for a wave 

energy purpose. The proposed method does not take into account any non-linear viscous effect and 

therefore can underestimate the real effect of the mooring system onto the dynamical response of the 

WED.  

Another interesting work carried out from Vicente (Vicente P. C., Falcao, Gato, & Justino, 2009) is 

devoted to the analysis of an array of WED. Also in this case the model does not take into account 

viscous effect but shows a possible reduction of the average power up to 15% when mooring are 

considered into the array.   
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Appendix 4 Structural analyses – fatigue 
Structural modeling and analysis of wave energy converters includes a modal analysis of its structure. If 

the load frequency component coincides with the natural frequency of the structure, dynamic 

amplification can become important and has to be considered in the analysis. In (Tuitman, 2010) it was 

shown that the hydrodynamic loads may increase significantly by considering the flexibility of a vessel 

for which the natural period coincides with the period of the waves. Possible software packages which 

can be used for structural modal and analysis are:  ANSYS (Ansys., 2010), ADINA (ADINA, 2012), ABAQUS 

(ABAQUS, 2012), GeniE (DNV, Sesam GeniE User Manual, 2012), Riflex (Riflex, 2008).  

The influence of the Power Take Off system and its control strategy on the structural response may be 

assumed to have a negative effect regarding fatigue of certain components within the structure. In 

order to account for forces from a power take off system in a modal analysis it may be recommended  to 

look at the two situations,  first the situation where the power take off system is locked (the feedback 

force is infinitely large) and next where the feedback force is zero, (i.e. a free float situation). The two 

first natural frequencies from such an analysis will reflect an upper and lower value of the dynamical 

characteristic of the coupled system i.e. the structural model including power take off forces.  

fn: First natural-frequency of the structural system. 

fp: Peak period of a representative sea spectrum.  

 fn > fp  

For such cases the structure can be considered stiff i.e. hydro elastic effects can be neglected and hence, 

the structural and hydrodynamic model can be treated separately. The hydrodynamic loads are 

calculated, depending on the geometry of the structure, whether it is large or small compared to the 

characteristic wavelength. The stress analysis can be performed based on a quasi-static load approach, 

(ICCS, 2012) and (Wu, 1996). For linear response analysis, fatigue loads may be calculated in the 

frequency domain by considering a wide band rain flow correction factor.  

Wave loads may be calculated by WAMIT (WAMIT, 2012), AQWA (AQWA, 2010) or similar. Some 

software packages provide an interface utility program to transfer the loads from a Boundary Element 

Model to a FE Model, namely AQWA (AQWA-WAVE, 2011). However the last task is still subject of 

ongoing research, (Malenica, 2009) and (Sireta, 2010). A feedback force from a power take off or 

mooring line system can be considered in the analysis once the hydrodynamic loads are calculated.  

 fn = fp  

For structures where the natural frequencies of the dry modes are in the range of the wave frequencies, 

elastic effects become important. A generalized hydrodynamic mode analysis including the first few 

structural modes has to be carried out, (Newman J. , 1994). Software packages which can deal with 

hydrodynamic load analysis based on a diffraction/radiation problem and able to account for 

deformable structures, are relatively rare. One may often chose to combine different software packages, 

provided that a functional interface does exist.  
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Appendix 5 WaveDyn 
The Energy Technology Institute ETI in the UK announced October 2009 their investment of £8m in the 

project “Performance Assessment of Wave and Tidal Array Systems” (PerAWaT) to be completed at the 

end of 2013. The Project Partners 

 Garrad Hassan 

 EDF Energy 

 E-ON 

 The University of Edinburgh 

 University of Oxford 

 Queen's University Belfast 

 The University of Manchester 

The PerAWaT project is producing tools capable of accurately estimating the energy yield of major wave 

and tidal stream energy converters. Numerical models of devices are being validated using extensive 

scale model tank testing and full scale data from in-service devices where appropriate.  

The project structure and verification and validation of models is described on the presentation1 from 

which the figure 2. 

 

Figure 13 Approach undertaken by PerAWaT  in the development of numerical tools. 

                                                           

1
 http://www.renewable-uk.com/events/wave-tidal-conference/pdfs/1_Rawlinson_Smith.pdf 

 

http://www.renewable-uk.com/events/wave-tidal-conference/pdfs/1_Rawlinson_Smith.pdf
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GL Garrad Hassan has produced a software tool WaveDyn with outputs from PerAWAT project That was 

launched in October 2012 (while writing this review) and information on WaveDyn can be obtained at 

the GL Hassan website2 and brochure3. According to the information on website WaveDyn provides a 

suitable platform for the accurate design of the widest possible range of wave energy converters, 

including point absorbers, attenuators, terminators and oscillating wave surge converters. 

 

Figure 14 State of the W2W model year 2012 

WaveDyn supports calculations of combined structural, hydrodynamic and applied loads - such as those 

induced by power conversion mechanisms (power take-off or PTO) and mooring systems. It is clearly 

structured with a Windows based graphical user interface. WaveDyn core features include: 

 A time-domain simulation environment of combined structural, hydrodynamic and applied loads 

(e.g. PTO and mooring), with a variable time step integrator for optimization run-times. 

 The ability to input a wide range of wave conditions, from measured sea states to 

parameterized spectral shapes (including directional spectra). 

 A multi-body structural dynamics solver, which allows the user to build multi-body structures of 

different types and forms that match the physical layout of the real machine. 

 Accurate and detailed applied forces modules, which allow all the key loads to be fully coupled 

with the structural model (hydrodynamics, PTO, moorings). 

 Nonlinear formulation, including real system templates able to apply motion, force and moment 

constraints, and incorporate internal PTO states. 

 A Windows-graphical user interface with all core pre and post-processing features, and an 

online help facility.  

                                                           

2
 http://www.gl-garradhassan.com/en/software/25900.php 

3
 http://eti.co.uk/downloads/related_documents/WaveDyn_Brochure.pdf 

http://www.gl-garradhassan.com/en/software/25900.php
http://eti.co.uk/downloads/related_documents/WaveDyn_Brochure.pdf
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