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ABSTRACT

As a result of today’s rapid socioeconomic growth and environmental concerns, higher service reliability,
better power quality, increased energy efficiency and energy independency, exploring alternative energy
resources, especially the renewable ones, has become the fields of interest for many modern societies. In
this regard, MG (Micro-Grid) which is comprised of various alternative energy sources can serve as
a basic tool to reach the desired objectives while distributing electricity more effectively, economically
and securely. In this paper an expert multi-objective AMPSO (Adaptive Modified Particle Swarm Opti-
mization algorithm) is presented for optimal operation of a typical MG with RESs (renewable energy
sources) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the
power mismatch or to store the surplus of energy when it's needed. The problem is formulated as
a nonlinear constraint multi-objective optimization problem to minimize the total operating cost and the
net emission simultaneously. To improve the optimization process, a hybrid PSO algorithm based on
a CLS (Chaotic Local Search) mechanism and a FSA (Fuzzy Self Adaptive) structure is utilized. The
proposed algorithm is tested on a typical MG and its superior performance is compared to those from
other evolutionary algorithms such as GA (Genetic Algorithm) and PSO (Particle Swarm Optimization).

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the application of alternative energy sources
such as wind, biomass, solar, hydro and etc. has become more
widespread mainly due to needs for better reliability, higher power
quality, more flexibility, less cost and smaller environmental foot-
prints. On the other hand, DGs (Distributed Generations) such as PV
(photovoltaics), micro-turbines, fuel cells and storage devices are
expected to play an important role in future electricity supply and
low carbon economy [1,2]. However, high penetration of DGs into
the grid environment will bring new challenges for the safe and
efficient power system operation. These challenges can be partially
addressed by MG (Micro-Grid) which is defined as an aggregation
of DGs, electrical loads and generation interconnected among
themselves and with distribution network as well [2—5]. In this
regard, the methodologies applied to manage and control the
operation of MGs are going through continuous changing in order

* Corresponding author. Tel.: +98 711 2337852; fax: +98 711 6473575.
E-mail addresses: am.anvari@ieee.org (A.A. Moghaddam), seifi@shirazu.ac.ir
(A. Seifi), taher_nik@yahoo.com, niknam@sutech.ac.ir (T. Niknam).

0360-5442/$ — see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.energy.2011.09.017

to make these networks optimized and active systems, therefore
there is a strong need for more precise scheduling of energy sources
in MGs considering different objectives.

So far, numerous scientific works have been developed by
researchers dealt with the optimal operation scheduling under
different loading conditions and objectives. At first, conventional
economic scheduling has been proposed as a solution for the
optimization problem through finding an optimal set of generators
to satisfy load demand and operational constraints in an econom-
ical manner [6—8]. Due to the environmental concerns and
pollutants emission from traditional fossil fuel units, single-
objective optimization could no longer be satisfactory in the
mentioned problem. To involve emission as a separate goal, multi-
objective optimization techniques have been developed in articles
in order to choose a definite number of units for supplying the load
under a certain condition taking into account minimum levels of
cost and emission for grid operation [9—13]. Recently, evolutionary
algorithms such as GA (Genetic Algorithm), PSO (Particle Swarm
Optimization) and so on have been increasingly proposed for
solving the optimization problem because of their inherent
nonlinear mapping, simplicity and powerful search capabilities
[13—18]. Hybrid approaches such as Fuzzy-based evolutionary
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Nomenclature

X vector of the optimization variables

n total number of optimization variables

T total number of hours

Ng total number of generation units

Ns total number of storage units

Ny total number of load levels

u;(t) status of unit i at hour ¢t

Pgi(t) active power output of ith generator at time t

Psi(t) active power output of jth storage at time t

Pcria(t) active power bought/sold from/to the utility at time ¢t
Bei(t) bid of the ith DG source at hour ¢t

Bgj(t) bid of the jth storage options at hour t

Bgria(t) bid of utility at hour t

Sci start-up/shut-down costs for ith DG unit

Ssj start-up/shut-down costs for jth storage device

Egi(t) emissions in kg MW h~! for ith DG unit at hour ¢
Eqj(t) emissions in kg MW h~! for jth storage device at hour ¢
Ecrq(t) emissions in kg MW h~! for utility at hour t

G:

)
COy,. (t) carbon dioxide pollutants of ith DG unit at hour ¢
S0,,. (t) sulfur dioxide pollutants of ith DG unit at hour ¢
NOXDGIV (t) nitrogen oxide pollutants of ith DG unit at hour ¢t
COzsm;gej (t) carbon dioxide pollutants of jth storage device at
hour ¢
SO2g1rsge; (1) sulfur dioxide pollutants of jth storage device at hour
t

NOxSmgej (t) nitrogen oxide pollutants of jth storage device at
hour t

CO,,,, (t) carbon dioxide pollutants of utility at hour ¢

SOy, (t) sulfur dioxide pollutants of utility at hour t

NOxy,, (t) nitrogen oxide pollutants of utility at hour ¢

Py the amount of kth load level

Pcmin(t) minimum active power production of ith DG at hour t

Psmin(t) minimum active power production of jth storage at
hour ¢

Pgrid,min(t) minimum active power production of the utility at
hour t

Pc max(t) maximum active power production of ith DG at hour ¢

Psmax(t) maximum active power production of jth storage at
hour t

Pgria,max(f) maximum active power production of the utility at
hour ¢

Wesse  battery energy storage at time t

Pcharge(Pdischarge) Permitted rate of charge (discharge) through
a definite period of time

Tcharge(Ndischarge) Charge (discharge) efficiency of the battery

Wessmin(Wessmax) lower (upper) bounds on battery energy
storage

Pcharge,max(Pdischarge,max) Maximum rate of charge (discharge)
during each time interval

) inertia weight

C, G weighting factors of the stochastic acceleration terms
(Learning factors)

rand (-) random function in the range of [0,1]

Ppest i best previous experience of the ith particle that is

recorded
Ghest best particle among the entire population
F vector of objective functions
fiX) ith objective function
gi(X) equality constraints of ith objective function
hi(X) inequality constraints of ith objective function
vk updated velocity vector of ith particle
Xz‘.+ 1 updated position of ith particle
c¥, the jth chaotic variable
Nchoas  Number of individuals for CLS
XS initial population for CLS
Nswarm number of the swarms
Aw weight correction value
NBF Normalized Best Fitness
BFmin minimum fitness value
BFnax  maximum fitness value

List of abbreviations
AMPSO Adaptive Modified Particle Swarm Optimization
FSAPSO Fuzzy Self Adaptive PSO

CPSO Chaotic Particle Swarm Optimization
DG Distributed Generation

DER Distributed Energy Resource

RES Renewable Energy Source

MG Micro-grid

MGCC (ucc) Micro-grid Central Controller
CLS Chaotic Local Search

WT Wind Turbine

PV Photovoltaic

PAFC Phosphoric Acid Fuel Cell
NiMH-Battery Nickel-Metal-Hydride Battery
MT Micro-Turbine

algorithms have been also used in scientific literatures many times
[19—22]. Similarly, taking a comprehensive look at power dispatch
techniques considering ON/OFF states of generation units shows
that different optimization methods have been proposed to solve
the mentioned problem [23—30]. Among these methods, Senjyu
etal.[23] has used a priority list approach for handling the dispatch
problem. Although such method saves the time, it gives schedules
with relatively higher operation cost. Similarly, BB (Branch-and-
Bound) method [24,25] may have some deficiencies handling large-
scale problems. LR (Lagrangian Relaxation) method [27-30]
focuses on finding an appropriate co-ordination technique for
generating feasible primal solutions, while minimizing the duality
gap. On the other hand, meta-heuristic methods (e.g., TS (Tabu
Search), EP (Evolutionary Programming), SA (simulated annealing),
and so on) are iterative techniques that are frequently used in
optimal power dispatch problems [31—35]. Such methods can
search both local optimal solutions and the global one depending
on the problem domain and time limit.

Due to the population-based search capability as well as
simplicity, convergence speed, and robustness, PSO-based optimi-
zation algorithms, are widely used for handling multi-objective
optimization problems, although the performance of a conven-
tional PSO algorithm greatly depends on its parameter and it may
face the danger of being trapped in local optima [36—41]. To handle
these issues suitably and improve the performance of a conven-
tional PSO algorithm, an expert AMPSO (Adaptive Modified Particle
Swarm Optimization) algorithm is proposed in this paper and
implemented to solve the multi-operation management problem
inside a typical MG for a time period of 24 h considering economy
and emission as competitive objectives. It’s noteworthy that from
an optimal operation planning point of view, a grid operation can
be optimized globally or locally. When a global optimization is
adopted, conventional OPF (Optimal Power Flow) methods are
widely used because they consider different aspects of a grid
topology together with all controllable variables such as trans-
formers taps, capacitors, feeder reconfigurations and etc. Besides,
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such methods are usually run for the time horizon of 1 h consid-
ering various objectives such as minimum fuel cost, emission,
transmission loss, switching and time simultaneously. Since in this
paper the optimal operation of a MG is selected as the benchmark
which is a local optimization problem and lacks several features of
global one mentioned earlier, the conventional OPF is no longer
used. Moreover, because the objectives are not the same, instead of
a single solution, a pareto front of optimal solutions will be ob-
tained for the mentioned problem which are stored in a finite-sized
repository. A Fuzzy clustering approach is also used to control the
size of repository up to a limit range. To overcome the local optima
problem from one side and to improve the approach performance
from the other side a hybrid approach including a FSA (Fuzzy Self
Adaptive) mechanism and a CLS (Chaotic Local Search) method is
adopted. A prominent feature of the proposed approach is that it
provides a true and well-distributed set of non-dominated pareto-
optimal solutions with fast convergence and low computational
time. The feasibility of the proposed method is also tested in a MG
with five DG units.

The rest of the paper is organized as follows: Section 2 formu-
lates the multi-objective optimization problem together with its
related equality and inequality constraints. A brief description of
the test MG is presented in Section 3. Fundamentals of multi-
objective optimization are covered in Section 4. A fuzzy-based
clustering approach to control the size of repository is presented
in Section 5. The proposed AMPSO algorithm is discussed in Section
6. Section 7 deals with the implementation of the proposed AMPSO
algorithm to the multi-operation management of the test system.
Finally, in Section 8, the great performance of the proposed method
and its feasibility is demonstrated and compared to those of other
evolutionary-based optimization approaches.

2. Problem formulation

The multi-operation management problem in a typical MG is
defined as a problem to allocate optimal power generation set
points as well as suitable ON or OFF states to DG units in a sense
that the operating cost of the MG and the net pollutants emission
inside the grid are minimized simultaneously while satisfying
several equality and inequality constraints. The mathematical
model of such problem can be expressed as follows.

2.1. Objective functions

2.1.1. Objective 1: Operating Cost Minimization

The total operating cost of the MG in €ct (Euro cent) includes
the fuel costs of DGs, start-up/shut-down costs and the costs of
power exchange between the MG and the utility. The cost objective
function aims at finding OPFs from energy sources to load centers
for a definite period of time in an economical manner. Such
objective function can be formulated as below:

N,
Min fi(X ZCOStt Z{Z (6)Pgi(t)Bgi(t) + Silui(t)
=1 i=1

N,

—u(t—1)|] Z

j=1

t)Pgj()Bgj(t) + Sgj|u;(t) — u;

(t=1)]] +Pcrid(t)BGrid(f)} (M

where Bg;(t) and Bsj(t) are the bids of the DGs and storage devices at
hour ¢, Sg; and S; represent the start-up or shut-down costs for ith
DG and jth storage respectively, Pgrig(t) is the active power which is

bought (sold) from (to) the utility at time t and Bgyig(t) is the bid of
utility at time t. X is the state variables vector which includes active
power of units and their related states and is described as follows:

X = [ngughxznr
Pg = [P, Ps] (2)
n = Ng+N5+]

where, n is number of state variables, Ny and N; are the total
number of generation and storage units respectively, Py is the
power vector including active powers of all DGs and Uy is the state
vector denoting the ON or OFF states of all units during each hour of
the day. These variables can be described as follows:

P = {Pcupcz, ~~,PG.,Ng]
Pei = [Pi(1),Pei(2), - Pei(t), -, Pai(T)}; 1=1,2,...Ng+1 5,
Ps: [P517P527'~'7PS‘,N5]

Pgj = [Pgj(1),Pgi(2), ..., Pgi(t), ..., P(T)]; j=1,2,...,Ns

where T represents total number of hours, Pg;(t) and Pgj(t) are the
real power outputs of ith generator and jth storage at time t
respectively.

Ug = [ulvu27 [EXT}

un] = {Ui}1.ne{0,1};

(4)
U = [uk(l)vuk(2)7 ey uk(t)7 uk(T)};

k=12, ....n
where u(t) is the status of unit k at hour t.

2.1.2. Objective 2: Pollutants emission minimization

In the next step, the environmental footprints from atmospheric
pollutants are considered as the second objective. In this regard,
three of the most important pollutants are involved in the objective
function: CO, (carbon dioxide), SO, (sulfur dioxide) and NOy
(nitrogen oxides). The mathematical formulation of the second
objective can be described as follow:

Min f, (X)

Ng
= ZT: Emission’ = ET:{ Z[ui(f)Pci(f)EGi(t)]
1

t=1 t= i=1
+ Z u] Sj(t)ES] )} +PGrid(t)EGrid(t)} (5)

where all the above parameters are defined as before, Egi(t), E(t)
and Egig(t) are described as the amount of pollutants emission in
kg MW h~! for each generator, storage device and utility at hour t
respectively. These emission variables are as follow:

Egi(t) = COy, + SOz, (t) + NOxy, (£) (6)

where C02,JG (1), SOZDG (t) and NOy,, (t) are the amounts of COy, SO
and NOy emission from ith DG sources at hour ¢ respectively.

Esj(t) = Cozstoragej (t) + Sozsloragej (t) + NOXStorage]- (t) (7)

where COy,,.. (t), SO2415g (1) and NOyq,,, (t) are the amounts of
CO,, SO, and NO, emission frorn]th storage unit during tth hours of
the day respectively.

Ecrig(t) = COy (£) + SOy, (£) + NOx,, (£) (8)
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where CO,,(£),S0,, (t) and NOy, (t) are the amounts of COp,
SO, and NO, emission from utility or macro-grid at hour t
respectively.

2.2. Constraints

2.2.1. Power balance

The total power generation from DGs in the MG must cover the
total demand inside the grid. Since a small 3-feeder radial L.V
system is proposed in the work, there is no urgent need to consider
transmission losses which are low numerically. Hence,

N

Ng
> Pai(t) Z j(£) + Pgria (f) = ZPLk (9)

i=1 =

where Py is the amount of kth load level and Ny is the total number
of load levels.

2.2.2. Real power generation capacity
For a stable operation, the active power output of each DG is
limited by lower and upper bounds as follows:

PGi‘min(t) < PGi(t) < PGi,max(t)
stﬁmin(t) < st(t) < st‘max(t) (10)
Pgrid‘,min(t) < PGrid(t) < Pgrid,max(t)

where Pgmin(t), Psmin(t) and Pgrigmin(t) are the minimum active
powers of ith DG, jth storage and the utility at the time t. In a similar
manner, Pgmax(t), Psmax(t) and Pgrid,max(t) are the maximum power
generations of corresponding units at hour t.

2.2.3. Battery limits

Since there are some limitations on charge and discharge rate of
storage devices during each time interval, the following equation
and constraints can be expressed for a typical battery:

Wess,t = Wess.t—l + nchargepchargeAt - PdischargeAt (1 1)

Ndischarge

{ Wess.min < Wess,t < Wess max (12)

Pcharge.t < Pcharge,max§ Pdischarge,t < Pdischarge,max

where Wessr and Wegsr — 1 are the amount of energy storage inside
the battery at hour t and t — 1 respectively, Pcharge(Pdischarge) is the
permitted rate of charge(discharge) during a definite period of time
(AL), Necharge(Ndischarge) is the efficiency of the battery during char-
ge(discharge) process. Wessmin and Wess max are the lower and
upper limits on amount of energy storage inside the battery and
Pcharge,max(Pdischarge,max) is the maximum rate of battery charge(di-
scharge) during each time interval At.

3. MG modeling

MG, in its whole vision, is an exemplar of a macro-grid in which
local energy potentials are mutually connected with each other as
well as with the L.V utility and make a small-scaled power grid. In
such a network, DGs are exploited extensively both in forms of
renewable (e.g., wind and solar) and non-conventional (MT (micro-
turbine), fuel cell, diesel generator) resources because these
emerging prime movers have lower emission and the potential to
have lower cost negating traditional economies of scale [42]. In
addition to DGs, storage options are also used widely to offset
expensive energy purchases from utility or to store energy during
off-peak hours for an anticipated price spike. In a typical MG, DERs
generally have different owners handle the autonomous operation

of the grid with the help of Local Controllers (u. or MGLC) which are
joined with each DER and uc or MGCC (Micro-Grid Central
Controller). Moreover, the CCU (Central Control Unit), which is
a part of the MGCC, does the optimization process to achieve
a robust and optimal plan of action for the smart operation of the
MG. The raw input data to this unit includes the amount of load
inside the grid and the powers generated by the nonscheduled DGs
typically based on RESs (Renewable Energy Sources) and the output
information involves the optimal set points for DGs in terms of
suitable ON/OFF states and required active and reactive powers for
supplying the load while keeping the node voltages within the
range specified by Norm EN 50160 [43].

In this paper, a typical L.V MG is considered as the test system
for application of suggested methodology. The proposed MG
includes various DG sources such as MT, a low temperature PAFC
(Phosphoric Acid Fuel Cell), PV, WT (Wind Turbine) and a NiMH-
Battery (Nickel-Metal-Hydride battery) as shown in Fig. 1. The
back-up MT/PAFC/NiMH-Battery hybrid power source is situated
at different locations in the MG, to level the mismatch between
renewable power generators and consumption and/or to store the
surplus of power from renewable sources for later use during
non-generation or low power generation time periods. It is
assumed that all DGs produce active power at unity power factor,
neither requesting nor producing reactive power. Besides, all
units in this paper are assumed to be operating in electricity
mode only and no heat is required for the examined period. There
is also an electrical link for power exchange between the MG and
the utility during different hours of a day based on decisions
made by MGCC.

4. Fundamentals of multi-objective optimization

Multi-objective optimization is a concept associated with many
real-world optimization problems which aim at finding optimal
solutions considering different objectives simultaneously. These
multi-criteria optimization problems can not be handled through
finding a single optimal solution, because a particular solution isn’t
the best with regard to all objectives. Therefore, a multi-objective
optimization problem leads to a set of optimal solutions known
as Pareto-optimal. Generally, in a multi-objective optimization
problem there are different objective functions required to be
optimized simultaneously considering a set of equality and
inequality constraints as follows [44,45]:

Minimize F = [fi(X),£(X), ..., fa(X x)"
Subject to : {Hg,(( )) i% li 1122 Nueqq (13)

where, F is a vector including objective functions and X is a vector
containing optimization variables, fi(X) is the ith objective function,
gi(X) and h;(X) are the equality and inequality constraints respec-
tively and n is the number of objective functions. For a multi-
objective optimization problem, any two solutions X and Y can
have one of these two possibilities: one dominates the other or
none dominates the other. In a minimization problem, without loss
of generality, a solution X dominates Y if the following two condi-
tions are satisfied:

o) FOO < f(Y)
), flX) < fo) (14)

Through the entire search space, the non-dominated solutions
are considered as “Pareto-optimal” and form the Pareto-optimal set
or Pareto-optimal front. Likewise, “Pareto-dominance” is a concept
used for determining the eligibility of each particle (or solution) to
be stored in the repository of non-dominated solutions. A feasible

Vje{1,2,
Jke (1,2,
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Fig. 1. A typical L.V micro-grid.

solution can be added to the repository if it satisfies any of the
following conditions [46]:

e The repository is full but the candidate solution is non-
dominated and it is in a less crowded region than at least one
solution,

e The repository is not full and the candidate solution is not
dominated by any solution in the repository,

e The candidate solution dominates all the solutions in the
repository,

e The repository is empty.

5. Fuzzy clustering for control the size of repository

It was mentioned earlier that in a multi-objective optimization
problem, non-dominated solutions are stored in a predefined
repository. Since the repository of non-dominated solutions has
a finite size, a limited number of candidate solutions can be stored
and the rest should be omitted. Up to now, various techniques
based on artificial intelligence have been proposed for controlling
the size of repository [47] and in this paper, a fuzzy-based clus-
tering approach has been applied to do the same task. First, a fuzzy
membership function is used to evaluate each objective function
related to any individual inside the repository as follows:

(1)7 ]j:l())g) S}'l_min
. > ]_rnax
uﬁ(X) = fi;nax _fl(X) ( ) (15)

fimin Sfi(x) Sfimax

H b
fimax _ fimm

where fi" and f™ are the lower and upper bounds of ith objective
function, respectively. In the proposed algorithm, the values of fi™"

and f"* are evaluated by optimizing each objective function
separately. In the next step, the normalized membership value is
calculated for each element inside the repository, as follows:

Dok—1 Wk * Mg (X))
2}11 k1 Wk % g (X))

Nu(j) = (16)

where m is the number of non-dominated solutions, wy is the
weight factor for kth objective function. The normalized

A
X '(r-l)

-

Fig. 2. Fundamental elements for a particle displacement in PSO algorithm.
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membership value is a decisive criterion used for storing the best
non-dominated solutions in the repository i.e., in a fuzzy clustering
approach for control the size of repository, initially the normalized
membership values are calculated and sorted, then, the best indi-
viduals are selected and stored in the repository.

6. PSO algorithm

Among the evolutionary-based optimization algorithms, PSO
has been significantly used in multi-objective problems mainly due
to its population-based search capability as well as simplicity,
convergence speed, and robustness. It was first introduced by
Kennedy and Eberhart [48] and was based on the imitation of
animals’ social behaviors using tools and ideas taken from
computer graphics and social psychology research. Usually, PSO
simulates the behaviors of a flock of bird called “swarm” in which
any single and feasible solution is a bird and is called “particle”. Each
particle has its own fitness value evaluated by the fitness function,
and has a velocity vector which addresses the flying of the particle.
To reach the optimal point, particles must update their next
displacements according to their own velocities, their best perfor-
mances and the best performance of their best informant as shown
in Fig. 2 and formulated as follows:

vED = % v 4 ¢ x rand, () x (Pbesu —xi(")) +G
k
x randy () x (c;best — X! >) (17)
Xi(kﬂ) _ Xi(k) i Vi(kﬂ) (18)
where V; (41 is the updated velocity vector of ith particle based on

the three displacement fundamentals, X ) is the updated posi-
tion of ith particle, rand{(-) and randz( ) denote two random
numbers in the range [0,1] . C; and C; are the learning factors and
refers to inertia or momentum weight factor. Ppest; is the best
previous experience of ith particle that is recorded and Gpest is the
best particle (informant) among the entire population.

6.1. Binary PSO

To extend the real-valued PSO to discrete space where it is
needed, Kennedy and Eberhart calculate probability from the
velocity to determme whether X (+1) \vill be in ON state or OFF o/

1). They squashed V ket )usmg the following logistic functions [49]:

(k+1) 1
Vi) = (19)
( i ) l+exp( k+1))
7 X (k+1)
Xi<l<+1) _ {1, if rand(-) < p(Vi ) 20)
0, otherwise

where rand(-) is a uniform distribution in [0,1].

6.2. The proposed AMPSO approach

It was observed in the previous section that the performance of
a classic PSO algorithm depends greatly on three influential
parameters usually stated as the exploration—exploitation trade-
off: learning factors (C;, C;) and momentum weight factor (w).
Since a standard PSO algorithm along with a given set of param-
eters is not capable of dealing with multi-objective optimization
problems appropriately in all situations, some modifications are
become necessary. In this paper, an adaptive modified PSO

algorithm is proposed in order to improve the performance of
a standard PSO approach and facilitate the multi-objective opti-
mization process.

6.2.1. CLS mechanism

To enrich the search behavior and avoid the premature
phenomenon of PSO in solving multi-operation management
problem, incorporating a chaotic search into PSO to construct
a CPSO (chaotic PSO) is proposed. The chaotic search algorithm is
developed from the chaotic evolution of variables. Two well-known
chaotic maps, logistic map and tent map, are the most common
maps used in chaotic searches [50,51]. A rough description of chaos
is that chaotic systems exhibit a great sensitivity to initial condi-
tions. Due to the unique ergodicity characteristic, inherent
stochastic property and irregularity of chaos, a chaotic can traverse
every state in a certain space by its own regularity and visit every
state once only, which helps avoid being trapped in local optima.
Thus, a chaotic search has a much higher precision than some other
stochastic algorithms.

6.2.1.1. CLS type-1. The first CLS mechanism is an approach which is
based on the logistic map. The feature of the logistic map is that
a small difference in the initial value of the chaotic variable would
result in a considerable difference in its long-time behaviors. The
relative simplicity of the logistic map makes it an excellent point of
entry into a consideration of the concept of chaos. Generally
a logistic map is considered as follow:

Cx; = [ex},ex?, ..., Xl i=0,1,2, ..

1xn’ ) Nchaos

cx’+174><cx’x(1—cx’) ji=1,2,
‘ ‘ (21)
c¥e(0,1], cx)&{0.25,0.5,0.75}

cx’(') = rand(-)

where, cxﬂfindicates the jth chaotic variable, Ncphaos is the number of
individuals for CLS, n is the number of DGs and rand(-) is a random
number between 0 and 1. In this approach, first a particle is selected
randomly from the repository (Xg) and considered as an initial
population for CLS (ng). At the second step the initial population is
scaled into [0,1] as follows:

Xgls = [Xllso lesﬁO’ o x?ls,O]lxn
Cxo = [cx),cx3, ..., cxl] (22)
CX’O _ 'xils,O_Pl£nip,unit L j=1,2 ..n
max,unit ~ ~ min,unit
where P’rnln unit and P]max unit are the lower and upper limits of active

power for jth generation unit. The chaos population for CLS is
generated as follows:

i _ |yl 2 n _
Xcls - [Xclsz’xcls.i7 e Xcls«,i] 1xn i=1,2, Nchoas
chlsz CXJ (P)max unit PImin,unit) Jrlein‘unit’ J= 1727 PR L
(23)

In the next step, the objective functions are calculated for any
member of the population and the non-dominated solutions are
found and sorted into a separate memory subsequently. The way in
which one non-dominated solution is replaced with a particle
selected randomly from the swarm is shown in Fig. 3.
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Consider X, as the initial population

for CLS (X))

Caleulate Cx, from Eq. 22

Calculate Cx; from Eq. 21

:

Calculate X, from Eq. 23

,

Evaluate objective functions for the i individual

Store into the repository

Is particle non-dominated?

Yes

Calculate normalized membership values
for non-dominated solutions (Eq. 16)

Select which one that its normalized
membership value is more than others

Is just one non-dominated solution found?

Replace it with a particle randomly
selected from the population

i

Stop

Fig. 3. Chaotic Local Search (CLS) flowchart.

6.2.1.2. CLS type-2. The CLS type-2 is a procedure similar to the first
one but is based on the tent equation. In this mechanism the
chaotic variables are defined as follows while the other instructions
remain unchanged.

Cx; = [cx},ex2, ... cxll] i=0,1,2, ..., Nehaos

1xn
. 2cx, 0<cx/ <05
c - v =7 j=1,2,...,n 24
i+ {2(1—cx{.), 05<cd<1’ (24
cx’b:rand()

6.2.2. FSA mechanism

In a classic PSO approach the momentum weight factor (w) is
widely used both for controlling the scope of the search and
reducing the importance of maximum velocity while the learning
factors (C; and C3) are used for finding the optimum point through
concentration on promising candidate solutions. In this regard, C;

has a contribution toward self-exploration of a particle while C; has
a contribution toward motion of the particles in global direction
considering the motion of all the particles in the preceding program
iterations.

To overcome all the deficiencies associated with a conven-
tional PSO algorithm, a FSAPSO (Fuzzy Self Adaptive PSO) mech-
anism is developed to adjust the inertia weight and the learning
factors when they are needed. For this purpose, two triangular
membership functions are proposed; one for the learning factors
adjustment and the other for weight inertia tuning, as shown in
Figs. 4 and 5. The input set for learning factors adjustment are the
best fitness (BF) and the number of generations for unchanged
best fitness (NU) while the best fitness (BF) and the inertia weight
(w) are the input set for the second membership function. In the
first membership function linguistic variables for inputs (NBF,
NU) and outputs (C;, C;) are as following: Positive Small (PS),
Positive Medium (PM), Positive Big (PB) and Positive Bigger (PR).
Similarly, for the second membership function linguistic values
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Fig. 4. Membership functions of input/output variables for learning factors.
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Fig. 5. Membership functions of input/output variables for inertia weight correction factor.

can be defined as follows: Small (S), Medium (M) and Large (L) for
the input set (NBF, w) and Negative (NE), Zero (ZE) and Positive
(PE) for the output variable (Aw). Since either a positive or
negative value may be assigned to Aw therefore, a range of
(=1, +1) has been preferred for the inertia weight correction as
stated in Eq. (25).

wk+1 _ wk+ Aw (25)

Furthermore, to make a robust approach, BF and NU values can
be normalized into [0,1] as shown in Eq. (26)

NBF = (BF — BFpip)/(BFmax — BFpmin) (26)

where BFp, is the minimum fitness value and BF,ax is the fitness
value which is greater or equal to the maximum fitness value.
Additionally, values of w, C; and C; are limited as follows:

04<w<1

1<G <2 (27)

1<G <2

To express the conditional statements which represent
a mapping from the input space to output space the Mamdani fuzzy

rule is adopted and the corresponding conditions are tabulated in
Tables 1-3. As examples of conditional statements the following
fuzzy rules can be considered:

If (NBF is PB) & (NU is PM), Then (Cy is PM)

or:

If(NBF is L) & (w is S), Then (Aw is NE)

7. AMPSO implementation

To apply the proposed AMPSO algorithm in multi-operation
management and optimal power dispatch problem a hierarchical
structure and a top-down procedure must be followed as stated
below:

Table 1
Fuzzy rules for learning factor C;.
G NU
PS PM PB PR
NBF PS PR PB PB PM
PM PB PM PM PS
PB PB PM PS PS
PR PM PM PS PS
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Table 2
Fuzzy rules for learning factor C,.
Cy NU
PS PM PB PR
NBF PS PR PB PM PM
PM PB PM PS PS
PB PM PM PS PS
PR PM PS PS PS

Step 1: Input data definition
At the beginning of the program required input data must be
provided precisely. This information includes: MG configu-
ration, operational characteristics of DGs and the utility,
predicted output powers of WT and PV for a day ahead,
hourly bids of DGs and the utility, emission coefficients of
mentioned units, objective functions and the MG daily load
curve.

Step 2: Program initialization
At the second step the program must be initialized by a set of
random populations and their corresponding velocities as
follows:

Population = [X; X - XNswarm]T

Xo = (643 .... 4]

. ' _ . (28)
e ) o -
j=1,2,3,...m; i=1,2, ..., Nowarm; n=2x (Ng+Ns+1)
Velocity = [V; V; szwa,mf
Vi = [v']]x
1 1 n (29)

v; = rand(-) x

i= 172737 ceey Nswarm?

(Vl[nax o U;nin) + vlmin;
n=2x(Ng+Ns+1)

where, n is the number of state variables, vi and xi are the velocity
and position of the ith state variable respectively. rand(-) is
a random number between 0 and 1.

Step 3: do (i=1)
Step 4: Select the ith individual and calculate the values of
corresponding objective functions
For the selected individual, the values of objective functions
are calculated separately using the dispatch algorithm illus-
trated in Fig. 6.
Step 5: Store the ith individual in the repository if it is a non-
dominated solution and apply the fuzzy clustering approach
for controlling the size of repository.
Step 6: Find the local best solution for ith individual (Ppest )
At the beginning of the program, the initial generated pop-
ulations are considered as local best solutions. During any
iteration of the program if one of the following criteria is

Table 3
Fuzzy rules for inertia weight correction factor.
Aw o)
S M L
NBF S ZE NE NE
M PE ZE NE
L PE ZE NE

— | Calculate: AP= ZR:P&_I. -(R+PR)
i=1

@ Yes

No

Stop

Select j” DG wnit randomly
(I<j<n)

h 4

P; new= Pj o1a- AP

Pj,mz‘nspj_.newsgf,max

If-: -F:rneuSerm then Pj.new=};:i,mm
If: Pymax <Pjne  then

Pj,new=Pj,m:zx

Fig. 6. Flowchart of power dispatch algorithm.

satisfied then the local best solutions are updated, otherwise
they remain unchanged:
(i) Ifthe former local best is dominated by the current one,
then the later is selected as the local best solution,
(ii) If none of them dominates each other, the one with the
higher normalized membership function is considered
as the local best.

Step7:i=i+1

Step 8: While (i < Ngwarm) redo steps 4—7

Step 9: Select the global best (Gpest)
In this step, the global best solution is selected randomly
from the candidate solutions. To define Gpest value, first the
normalized membership values must be calculated for all of
the non-dominated solutions inside the repository using
Eq. (16)

Np = [Npq,Npa, ..., Ny, -

o N1 ¢k (30)
where, Nyui is the normalized membership value for the ith non-
dominated solution and k is the size of repository. Afterward, the
cumulative probabilities of the individuals are calculated as
follows:

Ci = [C]7C27 Cm]lxk
¢ = Ny 31
G = Cy + Ni (31)

Ck = Ce—1 + Niy,
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where, Ci is the cumulative probability for the ith individual.
Finally, the best global position inside the search space is selected
randomly using the roulette wheel approach. In this regard,
a random number between 0 and 1 is generated and compared
with the values of calculated cumulative probabilities. The first
cumulative probability term which is greater than the generated
number, is the target value and the associated position is consid-
ered as the best global position.

Step 10: Update the population and find new solutions.
The whole population is updated using the AMPSO algo-
rithm. In this step all of the PSO parameters such as learning
factors and inertia weight are adjusted by the FSA approach
while the search ability is improved by the CLS mechanism.
Step 11: Check the termination criteria.
If the maximum number of iterations executed by the
AMPSO is met or the desired error is reached, the optimi-
zation procedures are stopped, otherwise the population is
replaced with the new generation and the algorithm is
repeated from step 3.

8. Simulation results

In this part of the work the proposed AMPSO algorithm is
implemented to solve the multi-operation management problem
for a typical MG as shown in Fig. 1. Since the two conflicting
objectives (cost and emission) must be taken into account and
minimized simultaneously, a set of optimal solutions known as
Pareto-optimal will be obtained for the mentioned problem.
Regarding a Pareto-optimal set, there is a strong need to find the
extreme points of the trade-off front and this can be easily done by
solving the operation management problem with respect to each
objective function separately. Moreover, to get better insight to the
extreme points, the problem is solved in three different cases
including the main case, where all the units are dispatched
regarding their real constraints, the second case in which both RESs
(WT and PV) act at their maximum output powers (Max-Renw) and
the third case in which the utility can exchange energy with the MG
infinitely (Inf-Eneg.Exch). The main reason for selecting such cases
is originated from the background knowledge of authors from
power market planning and practical considerations in DG
management. For the entire cases, the load demand within the MG
for a typical day comprises one primarily residential area, one
industrial feeder serving a small workshop and one feeder with
light commercial consumers which is equivalent to a total energy
demand of 1695 kwh for the mentioned day as shown in Fig. 7. The
real-time market energy prices for the examined period of time are
considered as Table 4. For allocation of optimal set points to the
units through the entire case studies, all DGs are considered to be
“ON” or in state “1”, thus there will be no start-up or shut-down
cost for the mentioned units. The minimum and maximum power

Load (kW)
5

Resindential

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hour)

Fig. 7. Daily load curve in a typical Micro-Grid.

Table 4
The real-time market prices.

h Price (€ct/kWh)
1 0.23
2 0.19
3 0.14
4 0.12
5 0.12
6 0.20
7 0.23
8 0.38
9 1.50
10 4.00
11 4.00
12 4.00
13 1.50
14 4.00
15 2.00
16 1.95
17 0.60
18 0.41
19 0.35
20 0.43
21 1.17
22 0.54
23 0.30
24 0.26

generation limits of the DGs are given in Table 5. The bid coeffi-
cients in cents of Euro (€ct) per kilo-Watt hour (kWh) as well as
emissions in kilogram per MWh for DGs are given in Table 6. In the
same table, start-up/shut-down costs where applicable are pre-
sented. To simplify our analysis, all units in this paper are assumed
to be operating in electricity mode only and no heat is required for
the examined period. The maximum power outputs obtained from
RESs are also estimated for a day ahead using an expert prediction
model and neural networks which is out of the scope of this paper
and will be presented in future works. Such predicted values are
shown in Fig. 8 and tabulated in Table 7 for WT and PV corre-
spondingly. Beyond what has been said, to verify the accuracy of
the proposed approach and to make it valid, the authors try to
compare the proposed method against an analytical optimization
method proposed by Palanichamy et al. [52,53] (see Appendix A).

Table 5
Installed DG sources.

ID Type Min power (kW) Max power (kW)
1 MT 6 30
2 PAFC 3 30
3 PV 0 25
4 WT 0 15
5 Bat -30 30
6 Utility -30 30
Table 6
Bids & emissions of the DG sources
ID Type Bid Start-up/ CO, SO, NOy
(€ct/kWh)  shut-down (kg/MWh) (kg/MWh) (kg/MWh)
cost (€ct)
1 MT 0.457 0.96 720 0.0036 0.1
2 PAFC 0.294 1.65 460 0.003 0.0075
3 PV 2.584 0 0 0 0
4  WT 1.073 0 0 0 0
5 Batt 0.38 0 10 0.0002 0.001
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Table 9

Comparison of results in the case of emission objective for 20 trials (Main Case).
Type Best solution Worst solution Average Standard

(kg) (kg) (kg) deviation (kg)

GA 435.2363 457.4680 445.3862 14.2299
PSO 435.8227 454.5917 445.1072 13.9708
FSAPSO 435.0830 451.3821 443.4396 11.3525
CPSO-T 4349973 4449398 440.1036 6.9950
CPSO-L 4349354 443.6383 439.2369 6.1538
AMPSO-T 434.8611 435.1126 434.9983 0.1786
AMPSO-L 434.8193 435.0099 4349235 0.0681

Table 7

Forecasting output of WT & PV.

h WT (kW)/installed (kW) PV (kW)/installed (kW)
1 0.119 0

2 0.119 0

3 0.119 0

4 0.119 0

5 0.119 0

6 0.061 0

7 0.119 0

8 0.087 0.008
9 0.119 0.150
10 0.206 0.301
11 0.585 0.418
12 0.694 0.478
13 0.261 0.956
14 0.158 0.842
15 0.119 0315
16 0.087 0.169
17 0.119 0.022
18 0.119 0

19 0.0868 0

20 0.119 0

21 0.0867 0

22 0.0867 0

23 0.061 0

24 0.041 0

8.1. First scenario (Main Case)

In these tables, all the evolutionary optimization methods
including the GA, PSO, FSAPSO, CPSO-T (Chaotic PSO based on Tent
equation), CPSO-L (Chaotic PSO based on Logistic equation),
AMPSO-L (Adaptive Modifies PSO based on Logistic equation) and
AMPSO-T (Adaptive Modified PSO based on Tent equation) are
compared for 20 random trials for both objective functions. For
better understanding of the AMPSO performance, the convergence
characteristics of AMPSO-L against the standard PSO algorithm for
the best solution and in the case of each objective are shown in
Figs. 9 and 10 separately. Likewise, the best optimal power alloca-
tions to the DGs using the proposed algorithm (AMPSO-L) are

AMPSO-L

Cost (Ect)
5 8 8

g

Min Cost

In the first scenario it's assumed that all DGs with related
characteristics produce electricity within the MG and additional
demand or surplus of energy inside the grid is exchanged with the
utility from the point of common coupling (PCC). All the units
including the macro-gird (utility) can operate just within their
power limits while satisfying the needed constraints. Performance
evaluation of several optimization algorithms along with their best
results in the case of each objective is presented in Tables 8 and 9
respectively.

100

X 1500

15541
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1500
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Table 8

Comparison of results in the case of cost objective for 20 trials (Main Case).
Type Best solution Worst solution Average Standard

(€ct) (€ct) (€ct) deviation (€ct)

GA 162.9469 198.5134 179.6502 24.5125
PSO 162.0083 180.2282 171.2103 12.6034
FSAPSO 161.5561 175.5402 168.2442 10.0025
CPSO-T 161.0580 165.3110 162.9845 2.9971
CPSO-L 160.7708 163.5512 162.1614 1.9660
AMPSO-T 159.9244 160.4091 160.2368 0.3427
AMPSO-L 159.3628 159.6813 159.5143 0.0963

Min. Cost

1 n I ]
=0 ] 1000
lteration

Fig. 9. Convergence characteristics of AMPSO-L and PSO in the case of cost objective
(main scenario).
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Table 11
Environmental power dispatch using AMPSO-L (Main Case: Total
emission = 434.8193 kg).
Time Units
() MT (kW) FC (kW) PV (kW) WT (kW) Batt (kW) Utility (kW)
1 6.0024 30 0 1.78554 15 —0.7879
2 6 30 0 1.78554 30 -17.785
3 6.0065 30 0 1.78554 30 -17.792
4 6.0118 30 0 1.78554 30 -16.797
5 6.0024 30 0 1.78554 29.9999 -11.787
6 6 30 0 091324 29.9982 -3.9115
7 6 30 0 1.78554 30 2.21445
8 6 30 0.19374 130166 30 7.50459
9 6 299896  3.75395 1.78554 30 4.47090
10 6 30 7.52793  3.08541 29.9999 3.38667
11 6 30 10.4411 8.77236 30 —7.21354
12 6 30 11.9640 104132 30 -14.3773
13 6 30 23.8929 3.92283 29.9999 —21.8158
14 6 30 21.0493 2.37655 29.9995 —17.4255
15 6 30 7.86474  1.78549 29.9989 0.35078
16 6.0060 30 4.22076 130166 30 8.47153
17 6 30 0.53879  1.78554 30 16.6756
18 6 30 0 1.78554 30 20.2144
19 6 30 0 1.30166 30 22.6983
20 6 30 0 1.78554 30 19.2144
21 6.0034 30 0 1.30166  29.9998 10.6949
22 6.0036 30 0 1.30166 30 3.69469
23 6 30 0 091203 30 -1.91203
24 6 30 0 0.61244 30 -10.6124

Emission (kg)

Min Bmission <

' . J
4
330 500 1000

lteration

Fig. 10. Convergence characteristics of AMPSO-L and PSO in the case of emission
objective (main scenario).

Table 10

Economic power dispatch using AMPSO-L (Main Case: Total cost = 156.3628 €ct).
Time Units
() MT (kW) FC (kW) PV (kW) WT (kW) Batt (kW) Utility (kW)
1 6.0879  28.741 0 0 -10.553 27.7236
2 6 144023 0 0.0005 —0.1090 29.7062
3 6 154825 0 0 -1.4739 29.9915
4 6 12.545 0 0.0002 2.4548 30
5 6.1626  17.495 0 0 2.4661 29.8763
6 6.5555 29.1178 0 0 —2.6667 29.9934
7 6 223893 0 0 12.3333 29.2773
8 6.0292 295403 0 0 23.2481 16.1824
9 29.9836  29.9985 0.0168 1.7855 29.9792 -15.7637
10 30 30 7.4938 3.0815 29.9993 -20.5746
11 29.994 30 9.2913 8.707 30 —29.9923
12 30 30 3.5586 10.399 30 —29.9577
13 29.9803 30 0.0159 3.7738 30 -21.77
14 29.9963 30 9.5516 2.3766 30 —29.9245
15 29.9998 29.9936 0.0871 1.7855 30 —15.866
16 29.9981  29.98 0 1.2714 30 —11.2495
17 29.4817 29.9514 0.0052 0 29.978 -4.4164
18 6 299154 0 0.0199 29.8365 22.2282
19 6.0059 29.8798 0 0.0037 27.4502 26.6604
20 6 29.9901 O 0 29.9981 21.0118
21 30 30 0 1.2033 30 —13.2033
22 299616  29.6838 0 0.0049 29.9257 -18.576
23 6.0031 146298 0 0 29.1347 15.2324
24 6.1143 48857 0 0 15 30

presented in Tables 10 and 11 regarding each objective function
minimization. Comparison of results in the case of best and worst
solutions for both objectives indicates that the proposed AMPSO-L
algorithm not only demonstrates a better performance but also
presents a faster convergence characteristic. Moreover, the statis-
tical indices of average and standard deviation confirm another
advantage of the proposed algorithm in optimization process. It can
be also seen from Figs. 9 and 10 that the cost objective function
value reaches to minimum after 681 iterations with AMPSO-L
method and does not vary thereafter while the PSO algorithm
converges in 870 iterations. Similarly the value of emission objec-
tive function settles to the minimum in 619 iterations with AMPSO-
L method, while the PSO algorithm converges in 891 iterations.
Besides, the numerical results of multi-objective operation ob-
tained by the proposed AMPSO-L algorithm indicate that in the first
hours of the day a large portion of the load is supplied by the FC
within the grid and the utility through the PCC because the bids of
corresponding units are lower in comparison with those of others
during the examined period. Due to growth of demand and bids of
utility during the next hours of the day DGs increase their output
powers according to priority in lower cost and emission corre-
spondingly. It should be also noted that the charging process of the
NiMH-Battery is done at the first hours of the day when the prices
are low but the discharge action is postponed to the midday when

Table 12

Comparison of results in the case of cost objective for 20 trials (Max-Renw).
Type Best solution Worst solution Average Standard

(€ct) (€ct) (€ct) deviation (€ct)

GA 277.7444 304.5889 290.4321 13.4421
PSO 277.3237 303.3791 288.8761 10.1821
FSAPSO 276.7867 291.7562 280.6844 8.3301
CPSO-T 275.0455 286.5409 277.4045 6.2341
CPSO-L 274.7438 281.1187 276.3327 5.9697
AMPSO-T ~ 274.5507 275.0905 274.9821 03210
AMPSO-L 274.4317 274.7318 274.5643 0.0921
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Table 13
Comparison of results in the case of emission objective for 20 trials (Max-Renw).
Type Best solution Worst solution Average Standard
(kg) (kg) (kg) deviation (kg)
GA 435.1308 448.7740 441.2402 5.2689
PSO 435.5555 438.2212 436.5928 1.2666
FSAPSO 435.0037 437.1788 436.0913 1.5380
CPSO-T 434.9814 436.9001 435.9408 1.3567
CPSO-L 434.9064 436.3830 435.6447 1.0441
AMPSO-T 434.8611 435.0102 434.9357 0.1054
AMPSO-L 434.8161 434.9690 434.8920 0.0586
Table 14
Economic power dispatch using AMPSO-L (Max-Renw: Total cost = 274.4317 €ct).
Time Units
(h) MT (kW) FC (kW) PV (kW) WT (kW) Batt (kW) Utility (kW)
1 6 28.8862 0 1.7855 -14.671 30
2 6 21.5035 0 1.7855 -9.2891 30
3 6 264814 O 1.7855  —14.266 30
4 6 29.993 0 1.7855  -16.778 30
5 6 266394 0 1.7855 —8.424 30
6 6 29.9993 0 0.9142 -3.913 30
7 6 234284 0 1.7855 8.7861 30
8 6 30 0.1937 1.3017 23.784 13.7198
9 30 30 3.754 1.7855 30 —19.5395
10 30 30 7.5279 3.0854 30 —20.6133
11 28.7865  29.9999 10.4412 8.7724 30 -30
12 21.6227 30 11.964 10.4133 30 -30
13 14.1839  29.9999 23.8934 3.9228 30 -30
14 185741 30 21.0493 2.3766 30 -30
15 30 30 7.8647 1.7855 30 —23.6503
16 30 30 4.2208 1.3017 30 —15.5224
17 30 30 0.5389 1.7855 30 —~7.3244
18 6 30 0 1.7855 30 20.2145
19 6.0002 30 0 1.3017 29.999 22.6983
20 6 30 0 1.7855 30 19.2145
21 30 30 0 1.3017 30 -13.3017
22 28.6036 30 0 1.3017 30 —18.9052
23 6 30 0 0.9142 15.192 12.8935
24 6 18.2558 0 0.6124 1.1318 30
Table 15
Comparison of results in the case of cost objective for 20 trials (Inf-Eneg.Exch).
Type Best solution Worst solution Average Standard
(€ct) (€ct) (€ct) deviation (€ct)
GA 91.3293 127.7625 105.2070 13.4005
PSO 90.7629 112.8628 99.8493 10.8689
FSAPSO 90.6919 108.7761 99.7340 9.7874
CPSO-T 90.5545 102.1001 96.3273 8.1639
CPSO-L 90.4833 100.8786 95.6809 7.3505
AMPSO-T  89.9917 90.6221 90.3119 0.4457
AMPSO-L 89.9720 90.0431 90.0080 0.0921
Table 16
Comparison of results in the case of emission objective for 20 trials (Inf-Eneg.Exch).
Type Best solution Worst solution Average Standard
(kg) (kg) (kg) deviation (kg)
GA 435.9708 458.6008 447.3231 7.0154
PSO 434.8319 448.7398 440.9284 4.8683
FSAPSO 434.8287 438.2267 436.0913 23211
CPSO-T 434.8263 437.0801 435.9408 1.5534
CPSO-L 434.8204 436.9937 435.6447 1.5309
AMPSO-T 434.8190 435.0100 434.9357 0.1350
AMPSO-L 434.8168 434.9998 434.9038 0.0604

Table 17

Economic power dispatch using AMPSO-L (Inf-Eneg.Exch: Total cost = 89.9720 €ct).
Time Units
() MT (kW) FC (kW) PV (kW) WT (kW) Batt (kW) Utility (kW)
1 6.0061 3.0023 0 0 -15 57.9916
2 6.0021 3.0065 0 0 —29.9672 70.9585
3 6.0069 3.0059 0 0 -30 70.9872
4 6 3.0005 0 0 —29.999 71.9985
5 6 3.008 0 0.0009 -30 76.9911
6 6 3.0404 0 0 —18.7679 72.7275
7 6 3 0 0 —4.1048 65.1048
8 6.0004 29.9869 0 0 10.8885 28.1242
9 29.9994 30 0 1.7855 25.8884 -11.6734
10 30 30 7.5279 3.0853 30 —20.6132
11 29.9998 30 10.4412 8.7723 29.9994 -31.2127
12 29.9997 30 119623 104133 29.9996 —-38.3749
13 29.9998 30 0 3.9228 30 -21.9226
14 30 30 21.0493 2.3766 30 —41.4258
15 30 30 0.0001 1.7836 30 —15.7837
16 30 30 0.0024 1.3017 30 —11.3041
17 29.9877 29.9999 0 0 30 —4.9876
18 6.0157 29.9998 0 0 29.9818 22.0027
19 6.0059 29.9844 0 0 29.9974 24.0123
20 6.0027 29.9998 0 0.0037 29.9999 20.9938
21 30 30 0 1.2777 30 —13.2777
22 30 30 0 0 30 -19
23 6 29.982 0 0 15 14.018
24 6 3 0 0 0.1042 46.8958

the load curve reaches peak values. From another point of view,
although employing RESs such as wind and solar results less
pollution inside the grid, it causes more cost in short-term opera-
tion, therefore exploitation of energy form such resources must be
limited according to economical considerations.

8.2. Second scenario (Max-Renw)

In the second scenario it's assumed that RESs (WT & PV) are
exploited at their available maximum power outputs during each
hour of the day and the rests of DGs including MT, PAFC, NiMH-
Battery and the utility act as in the main case. Again, the entire
optimization schemes are applied to the optimization problem
and corresponding results are recorded. Tables 12 and 13 show
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Fig. 11. Comparison of Emission and Cost Pareto-optimal front of AMPSO-L, AMPSO-T
and PSO algorithms.
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Fig. 13. Comparison of Emission and Cost Pareto-optimal front of all optimization
algorithms.

brief comparisons from the performances of the mentioned
algorithms regarding each objective for 20 trials. Similarly, the
result of economic power dispatch using the proposed approach is
indicated in Table 14. It should be mentioned that the results of
environmental power dispatch don’t vary greatly among the
scenarios mainly due to the fact that all RESs (which have the
lowest emissions) are utilized up to their extremes during the
examined period.

Regarding the second scenario, it's again observed that the
proposed algorithm allocates optimal power set points to the DGs
appropriately while keeping small diversity in finding the optimal
solutions during different trials in the case of each objective. It's
also investigated from Table 14 that the operating cost of the MG
increases greatly in comparison with the main case and demon-
strates a growth of %75.5 in related cost. In other words, although
higher penetration of RESs into the grid environment results lower
emission, it imposes higher cost of operation.

8.3. Third scenario (Inf-Eneg.Exch)

In the last scenario, it’s supposed that the utility behaves as an
unconstraint unit and exchanges energy with the MG without any
limitation while the rests of DGs and their related characteristics
remain unchanged. Similar to the previous scenarios, all the opti-
mization algorithms are implemented to solve the economic
dispatch problem and the simulation results are gathered corre-
spondingly as shown in Tables 15 and 16. The best performance of
AMPSO-L in scheduling of the units for a day ahead and in terms of
cost objective is also shown in Table 17. Once again, it's observed
that the proposed algorithm can solve the optimization problem
successfully while maintains small variations in finding optimal
solutions considering both objectives. Moreover, the numerical
results of Table 17 indicate that allocation of optimal powers to DGs
regarding an unlimited power exchange situation ends in a reduc-
tion of %42.45 in operation cost of the MG in comparison with the
main case. It’s also notable that in the third scenario the utility takes
the lead in supplying the load inside the grid during the first hours
of the day while purchasing energy in bulk amount from the MG
during the peak times. From an economical point of view, WT and
PV start-up when shortage of power generation occurs inside the
grid or there is a need for more energy export to the macro-grid.
Likewise, other DGs such as FC, MT and NiMH-Battery adjust
their generation set points according to load levels during each
hour of the day in an economical manner.

Now to incorporate the availability of DGs in optimization
scheme while considering both objectives, suitable ON (OFF)
states (0/1) are assigned to DGs during the power dispatch
process. In such situation, all the units are allowed to start-up or
shut-down for the flexible operation of the MG while considering
minimum cost and emission as competitive objectives. Again all
the evolutionary methods are implemented to solve the multi-
operation management problem and related results as well as
the distribution of the Pareto-optimal sets over the trade-off
surfaces are gathered truthfully. The fuzzy-based clustering
procedure is also utilized to control the size of repository during
the optimization process. In this regard, the Pareto-fronts for
emission and cost objectives obtained by PSO, AMPSO-L and
AMPSO-T algorithms are shown in Fig. 11. The comparison of
Pareto-fronts obtained by CPSO-T, CPSO-L, FSAPSO and PSO are
also illustrated in Fig. 12 respectively. Comparison of results in
the case of Pareto-fronts for emission and cost objectives ob-
tained by AMPSO-L, CPSO-L, FSAPSO, PSO and GA is also
demonstrated in Fig. 13. In the same figure, the extreme points on
the Pareto front obtained by the proposed algorithm are shown
as examples of two non-dominated solutions with minimum
emission-maximum cost and minimum cost-maximum emission,
respectively. The schedules of multi-operation management
regarding each mentioned situation are tabulated in Tables 18
and 19 separately.

It's observed from Fig. 11 that the non-dominated solutions
achieved by the proposed AMPSO-L algorithms are well-
distributed over the Pareto front although the one from standard
PSO lacks this feature. Similarly, through comparison of results
obtained by CPSO-T, CPSO-L, FSAPSO and PSO it’s concluded that
hybrid PSO approaches (e.g., FSAPSO or CPSO) improve the capa-
bility of a classic PSO in finding non-dominated solutions to a high
extent although there are slight differences between their corre-
sponding performances. It's also important to mention that the
performances obtained by the AMPSO-L methods outweigh the
ones from other algorithms both in terms of non-dominated
solutions and diversity of them along the Pareto front as shown
in Fig. 13.
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Table 18
Multi-operation management using AMPSO-L (Minimum emission/maximum cost: Total cost = 637.9021 €ct, Total emission = 748.731 kg).
Time (h) DG Units
State Output power
MT FC PV WT Batt Utility MT (kW) FC (kW) PV (kW) WT (kW) Batt (kW) Utility (kW)
1 1 0 1 0 0 1 30 0 0 0 0 22
2 0 1 1 1 1 1 0 23.2516 0 1.2901 15 10.4582
3 0 1 1 1 1 0 0 24.4556 0 0.275 25.2694 0
4 1 1 0 1 1 1 12.7687 30 0 1.78554 30 —23.554
5 1 0 0 1 1 1 30 0 0 0.36763 30 —4.3676
6 1 1 1 1 1 1 30 22.8931 0 0.20483 21.3122 -11.410
7 0 1 1 1 1 1 0 30 0 0.43394 28.8520 10.7140
8 0 1 1 1 1 1 0 30 0.19375 1.30166 30 13.5046
9 0 1 0 1 1 1 0 30 0 1.78554 30 14.2145
10 1 1 0 1 1 1 30 30 0 3.08542 30 —13.085
11 0 1 1 1 1 0 0 28.7865 10.4412 8.77237 30 0
12 1 1 0 1 1 1 9.2932 30 0 10.4133 30 —5.7065
13 1 0 1 1 1 1 21.3074 0 5.14984 1.04588 28.0076 16.4893
14 1 1 1 1 1 1 15.9401 30 14.7868 2.37656 30 -21.103
15 1 0 0 0 1 1 16 0 0 0 30 30
16 0 1 1 1 1 1 0 30 4.22077 1.30166 27.0698 17.4078
17 0 1 0 0 1 1 0 30 0 0 30 25
18 1 0 1 1 1 1 30 0 0 1.78554 26.2145 30
19 0 1 1 1 1 1 0 28.6983 0 1.3017 30 30
20 0 1 1 0 1 1 0 27 0 0 30 30
21 1 0 1 1 1 1 30 0 0 1.3017 28.8964 17.8019
22 1 1 0 1 1 0 30 14.8867 0 1.3017 24.8116 0
23 1 1 1 0 1 0 7.8492 27.1508 0 0 30 0
24 0 1 0 0 1 0 0 30 0 0 26 0
Table 19
Multi-operation management using AMPSO-L (Minimum cost/maximum emission: Total cost = 559.4872 €ct, Total emission = 797.1101 kg).
Time (h) DG Units
State Output Power
MT FC PV WT Batt Utility MT (kW) FC (kW) PV (kW) WT (kW) Batt (kW) Utility (kW)
1 1 1 0 1 1 0 30 5.2144 0 1.7855 15 0
2 1 1 1 0 1 1 20.726 3 0 0 22.051 4.2225
3 1 0 0 1 1 0 29.7902 0 0 0.5660 19.6436 0
4 0 1 1 1 1 0 0 19.4532 0 1.7855 29.7612 0
5 1 0 1 0 1 0 26 0 0 0 30 0
6 1 1 0 1 1 0 17.8923 30 0 0.1077 15 0
7 1 1 1 1 1 1 30 3 0 1.7855 16.92362 18.2908
8 0 1 1 1 1 1 0 30 0.1247 1.3017 13.5735 30
9 1 1 0 1 1 0 30 17.2657 0 0.1607 28.5735 0
10 1 1 0 0 1 1 28.7951 30 0 0 21.2048 0
11 1 1 1 0 1 1 30 30 10.4411 0 30 —22.4412
12 1 1 1 0 1 1 30 30 11.9640 0 30 —27.964
13 1 0 0 1 1 1 30 0 0 0.1287 30 11.8712
14 1 1 1 0 1 1 28.3006 30 5.6980 0 30 —21.9987
15 1 1 1 1 1 1 30 19.2424 0.0785 0.9922 25.6868 0
16 1 1 1 0 1 1 20.2427 29.5252 1.0080 0 11.1615 18.0623
17 1 1 1 1 0 1 30 30 0.5389 1.7855 0 22.6755
18 1 1 0 1 1 1 24.3746 30 0 1.7855 15 16.8397
19 1 1 1 1 0 1 28.6983 30 0 1.3017 0 30
20 1 1 1 1 1 1 30 13.2532 0 0 15 28.7467
21 1 1 1 1 0 1 30 17.3224 0 0.6776 0 30
22 1 0 1 1 1 1 30 0 0 0 15 26
23 1 0 0 0 1 1 6 0 0 0 30 29
24 1 1 1 0 1 1 6 21.4939 0 0 30 -1.4939

9. Conclusion

In this paper, an expert multi-objective Adaptive Modified PSO
(AMPSO) optimization algorithm is proposed and implemented to
solve the multi-operation management problem in a typical MG
with RESs. A CLS approach is applied to find the best local solutions
within the search space and a FSA mechanism is utilized to adjust
PSO parameters when they are needed. Moreover, a fuzzy clustering
approach is used to control the size of repository for non-dominated

solutions. To evaluate the performance of the proposed algorithm
several test cases are introduced and the simulation results are
gathered subsequently. The numerical results indicate that the
proposed method not only demonstrates superior performances
but also shows dynamic stability and excellent convergence of the
swarms. The proposed method also yields a true and well-
distributed set of Pareto-optimal solutions giving the system
operators various options to select an appropriate power dispatch
plan according to environmental or economical considerations.
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Appendix A
To compare the performance of the proposed algorithm with

some analytical methods a test system with three plants and six
generating units is considered as shown in Fig. A.1. The fuel costs

Plant 1
G1 G2 G3

and the emission coefficients of corresponding units are tabulated
in Tables A.1—A.2. For simplicity, only one type of pollutant (NOy) is
considered for optimization process. The transmission loss coeffi-
cients are also shown in (A.1). More information on related test
system is given in Ref. [52].

G6

Plant 3

Fig. A.1. A Typical 4-bus test system with six generation units [52].
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Fig. A.2. Pareto-fronts of AMPSO algorithm for the test system.

G4
Plant 2
Table A1
Fuel cost coefficients.
Plant Unit Fuel cost coefficients Pg.min (MW)  Pg max (MW)
a; b; Ci
1 Gy 0.15274 38.53973  756.79886 10 125
G, 0.10578 46.15916  451.32513 10 150
Gs 0.02803 40.39655 1049.32513 40 250
2 Gy 0.03546 38.30553 1243.5311 35 210
Gs 0.02111 36.32782 1658.5696 130 325
3 Gg 0.01799 3827041 1356.65920 125 315
Table A.2
Emission coefficients (NOy).
Plant Unit Fuel cost coefficients Pemin (MW) PG max (MW)
d; e fi
1 G1 0.00419 032767 13.85932 10 125
G, 0.00419 032767 13.85932 10 150
Gs 0.00683  —0.54551 40.2669 40 250
2 Gy 0.00683  —0.54551 40.2669 35 210
Gs 0.00461 -0.51116 42.89553 130 325
3 Gg 0.00461 -0.51116 42.89553 125 315
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Table A.3

Simulation results for economic dispatch.
Optimization method AMPSO Ref. [52] Ref. [53]
P.(MW) 33.71 33.77 33.77
Po(MW) 12.65 12.65 12.65
P3(MW) 150.54 150.57 150.56
P4(MW) 1485 148.50 148.50
Ps(MW) 296.32 296.29 296.29
Ps(MW) 293.71 293.69 293.68
Total cost ($/h) 47187.36 47188.38 47188.29
Net emission (kg/h) 857.79 857.76 857.74
Total loss (MW) 3543 35.46 35.45
CPU time (s)* 10.35 0.805 0.189

2 The results are on an Intel Pentium IIl processor, 996 MHz, 416 MB of RAM
computer.

Table A.4

Simulation results for emission dispatch.
Optimization method AMPSO Ref. [52] Ref. [53]
P1(MW) 124.51 124.53 124.51
Po(MW) 124.51 124.53 124.51
P3(MW) 140.306 140.32 140.31
P4(MW) 140.306 140.32 140.31
Ps(MW) 204.14 204.16 204.15
Pg(MW) 204.14 204.16 204.15
Total cost ($/h) 50217.47 50223.26 50217.62
Net emission (kg/h) 696.91 697.06 696.99
Total loss (MW) 3791 38.02 37.92
CPU time (s) 10.33 0.805 0.189

Table A.5

Simulation results for economic/emission dispatch.
Optimization method AMPSO Ref. [52] Ref. [53]
P1(MW) 51.82 51.83 51.82
Po(MW) 32.65 38.66 38.64
P5(MW) 208.77 248.74 248.73
P4(MW) 128.12 122.15 122.14
Ps(MW) 292.03 252.03 252.02
Pg(MW) 223.57 223.58 223.57
Total cost ($/h) 47548.97 47809.03 47804.55
Net emission (kg/h) 823.35 843.53 843.42
Total loss (MW) 36.89 36.99 36.90
CPU time (s) 12.54 0.814 0.195

0.000091 0.000031 0.000029
B; = | 0.000031 0.000062 0.000028 (A1)
0.000029 0.000028 0.000072

Tables A.3—A.5 provide the dispatch results of the proposed and
the classical methods in the case of economic dispatch, emission
dispatch and combined economic and emission dispatch with
transmission losses, respectively. For the entire test cases the load
demand is fixed to 900 MW. As observed from numerical results,
the proposed AMPSO not only demonstrates better results in the
case of each single objective but also outweighs in optimal power
dispatch regarding both objectives compared to the conventional
analytical methods mentioned in Refs. [52,53]. The Pareto-fronts of
AMPSO algorithm in the case of both objectives is also shown in
Fig. A.2 for the mentioned test system. As an example, it’s observed
that by applying AMPSO to optimal power dispatch problem the
total cost reduces about 1.02 ($/h) in comparison with the one
proposed in Ref. [52] and about 0.93 ($/h) compared to the Ref. [53]
regarding the cost objective. Likewise, the net emission inside the
grid reduces 0.15 (kg/h) and 0.8 (kg/h) by using the AMPSO algo-
rithm in comparison with Refs. [52,53] considering emission
objective solely.
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