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CHAPTER 99 
 
 
 

ESTIMATION OF BRIDGE RELIABILITY DISTRIBUTIONS1 
 

P. Thoft-Christensen 
            Aalborg University, Aalborg, Denmark 
      
 
 
 

 
1. INTRODUCTION 
In this paper it is shown how the so-called reliability distributions for structures can be 
estimated using crude Monte Carlo simulation. The main purpose is to demonstrate the 
methodology. Therefore very exact data concerning reliability and deterioration are not 
needed. However, it is intended in the paper to use realistic data everywhere. The 
methodology is illustrated using UK data for reinforced concrete overbridges. 

The reliability distributions derived in this paper are used in development of 
optimum strategies for highway bridges, see Frangopol et al. [1]. However, reliability 
distributions can be used for several other purposes. A number of definitions are used in 
this paper for single bridges and for a group of bridges. 

 
Single bridge: 
( )tβ , where β is a measure of the reliability e.g. the reliability index, and where t is 

the time. Is called the reliability profile for the structure in question, see figure 
1. 

 
Group of bridges: 
( )0β  is called the initial reliability distribution, see figure 3. 

( )If t , where It , a measure of the deterioration initiation time for a bridge, is called the 
deterioration initiation distribution, see figure 5. 

( )g α , where α , a measure of the deterioration rate of a bridge, is called the 

1 Proceedings from Conference on “Bridge Design, Construction, and Maintenance”, Singapore, October 
1999. Thomas Telford, London, 1999 pp. 15-25. 
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 deterioration rate distribution. 
f (t)  is called the fundamental reliability distribution at the time t. 
( ) ,cra t  where tcr is defined by ( )cr crtβ β= and where crβ is the critical reliability index,   

is called the rehabilitation time distribution. If no maintenance has taken place 
it is called the first rehabilitation time distribution. If maintenance has taken 
place it is called the rehabilitation time distribution after maintenance. 

In the paper it is shown how all these distributions can be estimated for reinforced 
concrete bridges using Monte Carlo simulation. 
 
 
2. RELIABILITY PROFILES 
In this paper two straight lines as shown in figure 1 are used to model the reliability 
profile for a reinforced concrete overbridge. The time t = 0 is the year when the bridge 
in question is built. ( )0β  is the reliability index at the time t = 0. ( )tβ is the reliability 
index at the time t. Deterioration is assumed to be initiated at the time tI . The 
deterioration rate as defined in (1) is ,α . ( )tβ = 4.6 is used here as the critical (target) 
reliability index. 

 
 
 
 
 
 
 
 
 
 
 
 

 
The reliability index ( )tβ  as a function of the time t is 

( ) ( )
( ) ( )
0 0
0

I

I I

for t t
t

t t for t t
β

β
β α

≤ ≤=  − − ≤
                      (1) 

The stochastic modelling is based on three stochastic variables modelling the 
reliability index ( )0β at the time t = 0, the deterioration (corrosion) initiation time tI 
[years], and the deterioration (corrosion rate) α  [years-1], respectively. 

These three stochastic variables are discussed below for reinforced concrete 
overbridges with the conclusion that the following distribution types can be used: 

α  ( )0β is modelled using a log-normal distribution 
α  tI  is modelled using a Weibull distribution 
α  α  is modelled using a normal distribution. 

 
 
 
 

Figure 1. Modelling of a reliability profile. 
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Figure 2. Reliability index at the time t = 0 for good bridges. Slab bridges are indicated 
by an asterisk and beam/slab bridges are indicated by a circle. Taken from [2]. 
 

3. INITIAL RELIABILITY DISTRIBUTION ( )0β  

Only little information is available on the reliability index of reinforced concrete 
bridges as built (t = 0). In Thoft-Christensen & Jensen [2] the reliability index ( )0β of 
15 "good" bridges in UK is evaluated, see figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Modelling of the /3(0) distribution using  
a log-normal distribution LN(2.0,0.15). 
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The β -values shown in figure 2 cannot be used directly as a basis for modelling 
the initial distribution at the time t = 0, since they can only be expected to model the 
upper part of the distribution. However, a log-normal distribution with a small 
probability for β  -values smaller than the critical value, here chosen as 4.6, and with an 
upper tail corresponding to the information shown in figure 2 is chosen for the 
simulation study. The log-normal distribution is shown in figure 3. The parameters are 
LN(2.0,0.15). 
 
 
4. DETERIORATION INITIATION DISTRIBUTION 
The deterioration considered for the reinforced concrete overbridges is here limited to 
corrosion of the reinforcement. The corrosion initiation time is based on information 
obtained by P. Thoft-Christensen [3], see figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Density function of the corrosion initiation time tI, Taken from [2]. 

Figure 5. Modelling of the t[ distribution using a Weibull 
distribution with a = 0.00037952 and b =1.81. 
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The distribution of the corrosion initiation the time t[ (for "high" corrosion) as 
indicated in figure 4 is well approximated by the Weibull distribution shown in figure 5. 
The parameters of that distribution are a = 0.00037952 and b = 1.81 (or µ = 63.67, k = 
1.81 and ε  = 0). 
 
 
5. DETERIORATION RATE DISTRIBUTION 
The corrosion rate a used in this study is based on information obtained by Thoft-
Christensen & Jensen [1] for 15 "good" bridges in the UK and "high" corrosion, see 
figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Corrosion rates for "high" deterioration. Slab bridges are indicated by an 
asterisk and beam/slab bridges are indicated by a circle. Taken from [2]. 
 

On the basis of the information in figure 6 a uniform distribution U[0.01,0.20] is 
chosen for α . 
 
 
6. TIME PROFILE OF RELIABILITY DISTRIBUTIONS (FUNDAMENTAL 
DISTRIBUTIONS) 
In this section the variation with time of the reliability distributions (fundamental 
reliability distributions) is estimated on the basis of simulations. The simulation results 
are fitted to normal distributions. The resulting fundamental distributions are shown in 
figure 7. As expected, the mean value decreases with time and the standard deviation 
increases with time: 

( )tµ  = -0.000635t2 + 0.00035t + 7.4888 

( )tσ  = 0.000253t2 +0.0108t + 0.9920                                                                  (2) 
t = 0 years corresponds to the construction year of a given bridge. In figure 7, N = 

0 indicates the time 0 years, N = 10 indicates the time 10 years, etc. The expressions in 
(2) are obtained by curve fitting. 
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Figure 7. The variation of the fundamental reliability distribution with time t. 
 
7. RELIABILITY STATE ESTIMATION FOR NON-MAINTAINED BRIDGES 
This section shows how to estimate the number of bridges in different states (reliability 
states) as a function of the time t. For illustration, reinforced concrete overbridges in the 
UK are used. The bridge states as functions of the reliability index β  are defined in 
table 1. 

 
Table 1. Definition of bridge states. 

 
To simplify the calculations the 

construction years and numbers of reinforced 
concrete overbridges are shown in table 2. In the 
table the 291 bridges built in 1970 were actually 
built in the time interval 1965-1975, etc. 

It is seen in figure 7 that the upper tails of 
the normal distributions for increasing time t 
show an unrealistic behaviour due to these 
approximations, namely an increasing probability 
for high β  values. This has to be counteracted 
by truncation when the number of bridges in the 
different states is estimated. However, this 
problem is of less importance for a maintenance 
methodology since bridges with very high β  

values will not need any maintenance in the period of time considered. 

Table 2. Simplified data for 
number of bridges and 
construction years. 
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Bridges built in each of the five time intervals [1945 , 1955],..., [1985 ,1995] 
apply the distributions in figure 7 analysed as a group, and not individually, to simplify 
the calculations. The above-mentioned correction for unrealistic predictions in the 
upper tails of the fundamental distributions is performed manually. Using this 
procedure the number of bridges in each of the states are estimated for years 2000, 
2005,..., 2030. Maintenance is not taken into account, so the predictions apply to 
bridges without any maintenance. The result of this estimation is shown in figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. FIRST REHABILITATION TIME DISTRIBUTION 
In this section it is shown how the distribution indicated by “?” in figure 9 can be 
estimated using the data obtained. This distribution, called the first rehabilitation time 

distribution, is e.g. essential for 
the design of optimal 
maintenance strategies. 

When bridges deteriorate 
without any intervention such 
as preventive maintenance, the 
reliability level will decrease 
and at a certain time it will 
cross the critical level (say, 
4.6). This is the time when 
essential rehabilitation is 
needed. The variability at the 
age when bridges of a 
particular class require 
essential rehabilitation is the 
first rehabilitation time 
distribution. 
 

Figure 8. The distribution of the 970 non-maintained bridges 
on reliability states as a function of time. 
 

Figure 9. Definition of the first rehabilitation  
time distribution. 
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The first rehabilitation time distribution can easily be calculated using the 
fundamental distributions shown in figure 7. The result of the estimation is shown in 
figure 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9. RELIABILITY STATE ESTIMATION FOR MAINTAINED BRIDGES 
The main effect of preventive maintenance is a delay in the deterioration (the 
corrosion). Therefore, it is in this study assumed that a bridge undergoing preventive 
maintenance will remain in the current state but that the corrosion rate will be reduced 
(improved). This modelling is illustrated in figure 11. 

The main effects of 
essential maintenance of a 
bridge are not only a delay 
in the deterioration rate (the 
corrosion rate), but the 
bridge reliability is at the 
same time increased. The 
bridge moves up to a higher 
state perhaps even to its 
initial state or even higher. 
For the sake of simplicity it 
is here assumed that a 
bridge undergoing essential 
maintenance will return to 
the initial state and will, 
from a deterioration point 
of view, behave like a new 
bridge, i.e. with the same 
corrosion initiation time 

and corrosion rate distributions as new bridges. This modelling is illustrated in figure 
12. 

The main purpose of this section is to obtain the data needed to estimate the 
distribution indicated by “?” in figure 11 and figure 12 when preventive and/or essential 

Figure 10. The first rehabilitation time distribution. 

Figure 11. Stochastic modeling of preventive  
maintenance. 

 1254 



Chapter 99  

maintenance is performed. This distribution is called the rehabilitation time distribution 
after maintenance. 

 The bridge distribution on states depends significantly on the maintenance 
strategy chosen. Since the state of a bridge at the time t depends not only on the state at 

t - 5 years, but also on the 
state at earlier points of time, 
a Baysian approach will 
probably be too uncertain an 
approximation. However, it 
is not necessary to follow the 
state development for each 
individual bridge. It is 
sufficient to treat similar 
bridges as a group. This 
conclusion will simplify the 
analysis considerably, but it 
is still not a trivial matter to 
estimate bridge distribution 
on states, when preventive 
and essential maintenance is 
taken into account. 

To illustrate the 
proposed methodology the following artificial, but hopefully not too unrealistic, 
maintenance strategy is chosen: 

• 25 % of all bridges 
that are in state 2 at 
the time t will 
undergo preventive 
maintenance between 
the time t and the time 
t + 5 years. The bridge 
will remain in state 2 
but the new corrosion 
rate a PM will be 
smaller, since no data 
equal to 0.04 are 
available. 

• 50 % of all bridges 
that are in state 1 at 
the time t will 
undergo essential 
maintenance between 
the time t and the time 

t + 5 years. For the sake of simplicity, it is assumed that the state of the bridge 
will change from state 1 to state 3. 

• Bridges in states 3-5 will not undergo any maintenance. 
This very simplified maintenance strategy will drastically increase the number of 

bridges in state 2 and decrease the number of bridges in state 1 as time goes on. The 
reliability estimates after preventive maintenance are made using a method similar to 

Figure 12. Stochastic modelling of essential  
maintenance. 

Figure 13. The distribution of the 970 maintained  
bridges on reliability states as a function of time. 
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the one used in the making of figure 8, but simulation is not needed, since only one 
deterministic variable is involved. The result of this analysis is with some minor manual 
corrections shown in figure 13. 

It is interesting to compare this figure with figure 8. The number of bridges in 
state 1 is in year 2030 reduced from 302 to 128 bridges due to preventive maintenance. 
This is a substantial reduction that should be calibrated against real data. As expected, 
the number of bridges in state 2 in year 2030 will increase, namely from 223 to 397 
bridges. The number of bridges in the states 3-5 is unchanged, since the maintenance 
strategy used does not affect these states. 

 
 

10. REHABILITATION TIME AFTER MAINTENANCE 
In this section IT is shown how the lower tail of the rehabilitation time distribution after 
maintenance indicated by “?” in figure 12 can be estimated using the same procedure as 
applied for estimation of the first rehabilitation time distribution shown in figure 10. 
Table 3 shows a simple estimation of the distribution based on the number of bridges in 
state 1 for the years 2000, 2005,..., 2030 (see figure 13) divided by the total number of 
bridges in the year in question. Further, values of the density function ( )f ⋅  are 
calculated by numerical differentiation. 

 
 
 
 
 
With the maintenance strategy chosen in this study, few bridges will cross the 

critical level in the considered time interval. This is of course one of the reasons for 
performing maintenance. This is reflected in the estimation of ( )f ⋅  values as function 
of t. Only the lower tail of the rehabilitation time distribution after maintenance is 
obtained, see figure 14. 

 
 

Table 3. Calculation of values of the distribution function ( )F ⋅   
and the density function ( )f ⋅ . 
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11. CONCLUSIONS 
A number of important bridge reliability distributions are defined in the paper. 
Simplified modelling of the controlling distributions is proposed. A procedure for 
estimation of the so-called fundamental distributions, the first rehabilitation time 
distribution and the rehabilitation time distribution after maintenance is described. The 
procedure is applied to 970 reinforced concrete overbridges in UK. 
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Figure 14. Lower tail part of the rehabilitation time  
distribution after maintenance. 
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