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A Comprehensive Review of Low-Voltage-Ride-Through 
Methods for Fixed-Speed Wind Power Generators 

Amirhasan Moghadasi, Arif Sarwat, and Josep M. Guerrero 

 
 

Abstract 

This paper presents a comprehensive review of various techniques employed to enhance the low voltage ride through (LVRT) 

capability of the fixed-speed induction generators (FSIGs)-based wind turbines (WTs), which has a non-negligible 20% 

contribution of the existing wind energy in the world. As the FSIG-based WT system is directly connected to the grid with no 

power electronic interfaces, terminal voltage or reactive power output may not be precisely controlled. Thus, various LVRT 

strategies based on installation of the additional supporting technologies have been proposed in the literature. Although the 

various individual technologies are well documented, a comparative study of existing approaches has not been reported so far. 

This paper attempts to fill this void by providing a comprehensive analysis of these LVRT methods for FSIG-based WTs in 

terms of dynamic performance, controller complexity, and economic feasibility. A novel feature of this paper is to categorize 

LVRT capability enhancement approaches into three main groups depending on the connection configuration: series, shunt, 

and series-shunt (hybrid) connections and then discuss their advantages and limitations in detail. For verification purposes, 

several simulations are presented in MATLAB software to demonstrate and compare the reviewed LVRT schemes. Based on 

the simulated results, series connection dynamic voltage restorer (DVR) and shunt connection static synchronous compensators 

(STATCOM) are the highly efficient LVRT capability enhancement approaches.   

Keywords 

Economic feasibility, fixed-speed induction generators (FSIGs), low voltage ride-through (LVRT), wind turbines (WTs).  

1. Introduction 

Fortunately, the goal of reducing green-house gas emissions is aligned, to a significant extent, with the evolution and 

penetration of renewable energy sources (RES) [1]. The attempts to reduce the continued pollution are promising in view of the 

recent dramatic increase of installed wind turbines’ (WTs) capacity [2-4]. However, grid integration of large WTs can pose 

serious adverse effects in weak or faulty grids [5]. The trend towards the integration of more WTs contributes to the increase in 

the fault current levels, as well as voltage reductions at the terminals of wind generators, which may lead to the disconnection 

of WTs, and consequently affects power system stability during and after fault clearance [6-8].  
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Fig. 1. Danish grid codes (a) LVRT requirement. (b) Reactive power support requirement 

Recently, many power system operators in Europe and other regions of the world have begun expanding and modifying their 

interconnection requirements for wind farms through technical standards, known as grid codes [9, 10]. One of the critical 

requirements concerning the grid voltage support is the low voltage ride-through (LVRT) capability, which is included in many 

new grid codes [11-15]. Fig. 1 (a) shows a practical example of the LVRT curve defined by the Danish system operator 

(Energinet. dk) for WTs connected to the grid [16]. Based on this regulation, if the voltage remains at a level greater than 20% 

of nominal value for a period of less than 0.5 s, the WT should remain connected to the grid. 

WTs are only allowed to disconnect from the grid when the voltage profile falls into Area B. Besides the LVRT requirements, 

some grid codes require large WTs to contribute to the voltage restoration of the power system by injecting the reactive power 

during the fault and the recovery period [17, 18], while maintaining the operating point above the area of Fig. 1 (b). A literature 

review on international grid codes for wind power integration has been discussed and summarized in [19-23]. 

Although most wind turbine generators manufactured today are doubly-fed induction generators (DFIGs) [24, 25] and 

permanent-magnet synchronous generators (PMSGs) [26], a non-negligible 20% of the existing wind energy in Europe is still 

employing fixed-speed induction generators (FSIGs) due to their simple structure and lower maintenance cost [27, 28]. Thus, 

the fault-ride through characteristics of FSIG-based wind turbines still need to be analyzed. However, this technology is unable 

to fulfill new grid code requirements since they have no power electronic converters to control terminal voltage and reactive 

power output. In this case, induction generators may suffer from a voltage instability problem, which is becoming a significant 

concern with large-scale wind farm penetration. Therefore, technical solutions must be developed in order to ensure that those 

wind farms fulfill grid code requirements for their operations. 

In the recent literature, various studies have been individually documented in terms of installing additional supporting 

technologies to enhance the LVRT capability of the FSIGs-based WTs, which need to be properly reviewed and discussed.  
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Fig. 2. The main components of the wind turbine based on FSIG. 

Although there are a few valuable review papers of LVRT enhancement strategies for DFIGs and PMSGs-based WTs [29-31],        

up to the present time, as far as the authors are aware, there has been no comprehensive report, fully considering LVRT 

improvement methods of FSIGs based WTs. Reference [32] only presented a brief review and comparison of the series 

compensators for LVRT enhancement of a wind generator system based on FSIGs. 

The main contributions of this paper are organized into the following sections: after describing the operation of the FSIG-based 

WT under normal and faulty conditions in Section 2, the comprehensive review of the recently LVRT capability improvement 

approaches is discussed in Section 3. The reviewed methodologies are classified into the three main groups, namely, (i) series-

connected solutions (i.e., thyristor-controlled series compensation (TCSC), dynamic voltage restore (DVR), series dynamic 

braking resistor (SDBR), magnetic energy recovery switch (MERS), and fault current limiter (FCL)); (ii) shunt-connected 

solutions (i.e., static var compensator (SVC), static synchronous compensator (STATCOM), and superconducting dynamic 

synchronous condenser (SDSC); (iii) hybrid-connected solutions (i.e., unified power quality conditioner (UPQC), and unified 

compensation system (UCS). A comparative study in terms of dynamic performance, controller complexity, and cost 

evaluation of these LVRT methods is carried out in Section 4. In Section 5, simulation results of several LVRT methods are 

illustrated to compare the dynamic performance of the wind turbine equipped with auxiliary devices. Finally, the conclusions 

are presented in Section 6.  

2. FSIG-based wind turbine 

A non-negligible number of WTs equipped with induction generators are still in operation at an almost fixed speed due to wide 

usage of early wind turbine systems. These were the first Danish wind turbines which completely dominated the market up to 

the mid-1990s, hence the reason why this technology is named Danish concept [28, 33, 34]. The basic configuration of the WT 

based on FSIG is shown in Fig 2, including a turbine rotor, gearbox, squirrel-cage induction generator, soft-starter, mechanical-

switched capacitors (MSCs), and a transformer for grid connection.  
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Fig. 3. The output power of a wind turbine as a function of the wind speed [37]. 
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Fig. 4. Conventional pitch angle control used in FSIG-based wind turbine. 

2.1. Steady-state operation 

WTs extract the power from the wind via aerodynamically designed blades and convert it to mechanical power. Under high 

wind speed conditions, the power delivered by a WT may exceed its rated value. Thus, an effective approach must be applied 

to reduce a portion of the wind power so as to avoid turbine damages. The aerodynamics of fixed-speed wind turbines can be 

controlled by passive stall, active-stall, and pitch control approaches which have been developed for low, medium, and large 

WTs, respectively [35, 36]. An example of the relationship between the wind speed and the power generated by the wind 

turbine is shown in Fig. 3 [37]. The blades start to move around 4 m/s, and optimal aerodynamic efficiency is achieved at the 

wind speed rated about 15 m/s. The extra power obtained from wind speed between 15 and 25 m/s may be smoothly curtailed 

by spinning the blades using either active stall or pitch control to avoid overloading the wind turbine system. Over the cutout 

wind speed, the turbine has to be disconnected in order to avoid damage. It has been reported that the pitch control has become 

dominant in the wind power market (used four times more than the stall control) [38].  

Many methods of WT pitch control have been documented such as the classical proportional-integral-derivative (PID) control 

[39], gain-scheduling control [40], or robust control [41], among other nonlinear controllers [42]. Fig. 4 depicts the 

conventional pitch angle regulator in which the input and output of the model are the generated power Pout and blade angle β, 

respectively. The gearbox plays an essential role in the fixed speed WTs to adapt low-speed, high-torque rotation of the turbine 

rotor into the faster rotation of the electrical generator [38]. The critical issue in implementing the gearbox technology is the 

wind gusts and turbulences, which may lead to misalignment of the drive train and a gradual failure of the gear components, 

consequently increasing the capital and operating cost of the WTs [43].  
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Fig. 5. Modified pitch angle control used in FSIG-based wind turbine. 

Induction generators with squirrel-cage rotor can be used in the fixed-speed WTs at low cost and with low maintenance due to 

rugged brushless construction [28, 33, 44]. Nevertheless, it has some important drawbacks, as it requires a stiff power grid to 

enable stable operation, and may also require a more expensive mechanical construction in order to absorb high mechanical 

stress, since wind gusts can cause torque pulsations on the drive train [37]. Moreover, the induction generators tend to draw 

large amount of reactive power from the grid in their steady-state operation for self-excitation because stator windings are 

directly connected to the grid with no power electronics [45]. Thus, the low-cost MSCs generally includes a bank of shunt 

capacitors are connected to the terminal of the wind generator to achieve a unit power factor and provide voltage regulation in 

normal operation conditions [46].  

The high starting inrush currents generated by the connection of induction generators to the power system may cause 

disturbances to both the grid voltage and high torque spikes in the drive train of WTs. Thus, current limiters or soft-starters 

based on thyristor technology are used to typically limit the rms value of the inrush currents to a level below two times of the 

generator rated current [37]. Further, the soft-starters effectively dampen the torque peaks associated with the peak currents, 

and hence reduce the loads on the gearbox. 

2.2. Transient-state operation 

When the fault starts, the voltage at the terminals of the WT drops down, thus leading to significant reduction in 

electromagnetic torque and electric-power output of the induction generator. However, the mechanical-input torque remains 

constant during the fault, causing the rotor speed increases beyond its safety limits in order to mechanically store the energy 

excess [47]. Therefore, it is important to keep the balance between the mechanical-input power and the electrical-output power 

for enhancing the fault ride-through capability of FSIG-based WT. 

After the fault clearance, since the rotor speed increases during the fault period, a large amount of reactive power is absorbed 

by induction generator from the grid. As a consequence, not only induction generator is not able to fulfill the reactive injection 

requirements along the fault, but also it exacerbates the voltage sag condition by absorbing reactive power, making it difficult 

to restore the terminal voltage within the acceptable level [19]. As illustrated in Fig. 4, if Pout exceeds its rated value, the pitch 

angle β increase to limit generated wind power to its rated value. Under fault conditions, the generated power is abruptly falls 

and it is unable to perfectly contribute in LVRT improvement.  
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To overcome this drawbacks, the modified pitch angle controllers are proposed in the literature based on wind generator speed, 

so that these can immediately increase the pitch angle to reduce the mechanical-input torque, as shown in Fig. 5. [48-50]. 

Although pitch control system is the cheapest solution for enhancing the LVRT capability of FSIG-based wind turbine, but it 

has very slow dynamic response due to the mechanical constraints of the system [51].  

Also, MSCs represent relatively weak performance during fault conditions, owing to the decrease of their reactive power 

injection capability following voltage drops. Furthermore, excessive switching of the capacitor bank provokes failures, applies 

the inherent voltage steps stress on the wind turbines, and increases the required maintenance of the system [37].  

The above discussions have covered symmetrical grid faults, but in general the majority of grid faults result in asymmetrical 

voltage dips with both positive and negative sequence components. When the grid voltage is unbalanced, i.e. it contains a 

fundamental negative sequence component, the stator current of induction generator becomes unbalanced as well. As stated in 

[52], a slight amount of negative-sequence voltage causes higher amounts of negative-sequence currents, and consequently 

creates the additional torque oscillations of the double grid frequency, resulting in heating of the stator windings, thus reducing 

the life span of the gearbox, blade assembly, and other components of a typical WT [53-55]. The magnitude of the negative and 

positive sequences of the torque can be calculated as follows [56] 

where T+ and T- are the positive and negative torque sequences, p is the number of poles, ωs is the sliding angular frequency, 

Vs
+ is positive-sequence voltage, Is+ and Is

- are positive and negative current sequences, respectively. It is clear from (1) and 

(2) that the average torque is reduced due to the decreased positive-sequence voltage, leading to the acceleration of the 

induction generator, mechanical vibrations, and acoustic noise. The response of WTs based on FSIG during asymmetrical 

faults have been investigated in the literature and several control methods injecting negative sequence current have been 

proposed to balance the grid voltage by reducing the negative sequence voltage [55-59].  

3. Low voltage ride-through strategies for FSIG-based WTs  

As discussed previously, the LVRT performance of FSIG-based wind turbines is problematic because the stator windings are 

directly coupled to the grid, and the induction generator consumes reactive power during and after a fault. Therefore, it fails to 

fulfill some of the important grid integration requirements, such as reactive power compensation or terminal voltage control. 

Thus, the induction generators need the external supporting devices to avoid their tripping during voltage reduction.  

3
2 s s

s

pT V I
ω

+ + +≅ × × ×  (1) 

3
2 s s

s

pT V I
ω

− + −≅ × × ×  (2) 
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Fig. 6. Classified LVRT capability enhancement methods. 

There are many auxiliary devices reported in the literature to provide adequate dynamic voltage support and enhance the LVRT 

capability of WTs. The major categories of LVRT methods of FSIG-based wind turbine are depicted in Fig. 6. Depending on 

the connection configuration, these methods can be classified into the series-connected solutions [60-102], shunt-connected 

solutions [103-127], and hybrid-connected solutions [128-132]. 

3.1 Review of series-connected solutions  

Series-connected auxiliary technologies have been successfully implemented to alleviate grid congestion, defer construction of 

new transmission lines, and improve system capacity. These types of technologies, as a relatively simple solution, with a 

smaller current injection compared to shunt-connected technologies, is effectively used to regulate voltage or limit fault current 

resulting significant increase in the transient and voltage stability in transmission systems. A brief explanation of series-

connected solutions is presented in the following subsections. 

3.1.1.   Thyristor-controlled series compensation (TCSC) 

The essential principle of the TCSC is to control power flow of the grid lines, increase the dynamic stability of power 

transmission, and effectively limit the power oscillations [60-62]. These features have been effectively proven by existing 

installations of TCSCs described in the literature, such as the Western Area Power Administration’s Kayenta site [63], or the 

Bonneville Power Administration’s Slatt substation [64]. Recently, the abilities of this technology have particularly been 

realized where inconstancy in the transmission lines for delivering the huge WT generated power into the grid, lead to voltage 

collapse and cut off the fixed speed WT [65, 66]. Moreover, the ability of TCSC to limit fault current and control voltage 

unbalance of wind farm systems is discussed in [67]. Fig. 7 illustrates a typical TCSC module installed outside the wind farm 

along with the basic control scheme. A TCSC consists of three components: capacitor banks C, bypass inductor L, and 

forward-biased thyristors  
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Fig. 7. TCSC module installed outside the wind farm with the basic control scheme. 

T1 and T2. The control scheme has been well-documented in the literature [60, 61]. The function of the control block is to 

generate appropriate gate drive signals for the thyristors when the fault is initiated. Basically, thyristors are fired with respect to 

zero crossing of the line current to inject additional current into the capacitor through the bypass inductor and increase the 

capacitive reactance value, typically up to a factor of three times the original reactance. This way, a variable capacitive 

reactance can be obtained to compensate the reactive power absorbed by the induction generator, improve the fault right 

through of WT. This technology may be useful for wind farms located far away from the PCC, such as offshore wind farms 

[37].  

3.1.2.   Dynamic voltage restorer (DVR) 

A promising approach to effectively overcome the grid-fault-derived problems with WT generators and to enhance ride-

through capability is to control the connection-point voltage by compensating voltage fluctuations during the fault. This can be 

accomplished by using a series-connected power electronic compensator called dynamic voltage restorer (DVR) which injects 

an appropriate voltage into the grid bus to keep the generator voltage constant at PCC and with the same phase as the network, 

as shown in Fig. 8. Depending on the time frame assumed by the regional grid code (e.g. in the Danish electrical system 80% 

three-phase voltage-dips should be ride-through for up to 30 grid-cycles), a DVR might have a sufficient energy storage 

capacity to generate missing voltage at the WT terminal during the dips. There are several efforts that demonstrate the 

utilization of a DVR for voltage dip mitigation and voltage recovery in which DVR restores the WT terminal voltage to the 

operating point within the shaded area of the LVRT curve [68-70]. Industrial examples of DVRs are also given in [71, 72]. 

However, by using a DVR for voltage sag mitigation in fixed-speed wind generators has certain technical challenges [73]. 

According to the voltage vector diagram shown in Fig. 9 (a), the voltage dip is causing not only a reduction in voltage 

magnitude, but also a change in phase, which is described as a phase angle jump δ (phase angle difference between the voltage 

phase during the sag and the one before the sag), which can be obtained as following [74]:  

arctan arctan s FF

F s F

X XX
R R R

δ
   +

= −    +   
 (3) 
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Fig. 9. Single-phase vector diagram. (a) Voltage dip compensation with DVR. (b) Voltage dip compensation once the phasor has been rotated. 

where, Zs=Rs+jXs and ZF=RF+jXF are gird impedance and fault impedance, respectively. 

The phase-angle jump reveals itself as a shift in zero crossing of the instantaneous voltage, causing a large transient at the 

beginning and the end of the sag because the internal generator flux is out of phase with the voltage [70, 75].  

Moreover, the DVR requires absorbing part of the extra active power generated by the wind generator during the fault to keep 

dc-link voltage (Vdc) at the desire level, thus it must has energy dissipation capabilities which is the main drawback of the DVR 

(see Fig. 10). To address the aforementioned problems, some successful control schemes are discussed in the literature [70, 76-

79]. In the work described in [70], the energy dissipation was accomplished by using a resistor which is connected to the dc 

link through a power electronic switch, once the dc-link voltage exceeds its safety limits. The decoupled control of d-and q-

axis voltages have been reported in [76, 78] for the DVR inverter to improve the LVRT capability of the FSIG based WTs. In 

[79], the authors propose an adaptive control system based on proportional + resonant (PR) controller to provide voltage and 

current decoupling in order to improve the DVR output voltage tracking capability. In [70], Dionisio et al. carried out a control 

scheme based on a two-step strategy. First, the DVR compensated the voltage sag to maintain the magnitude and phase of the 

wind generator voltage at 1 p.u and second, control system gradually rotated the series voltage supplied by the DVR, VDVR, in 

order to inject reactive power into the grid while the magnitude of the wind generator voltage was kept at 1 pu (see Fig. 9 (b)). 
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3.1.3.   Series dynamic braking resistor (SDBR) 

The concept of series-connected dynamic braking resistors (series-DBRs) in wind power application was early introduced by 

the authors in 2004-2005 [80]. DBRs have been developed to contribute directly to the balance of active power between the 

mechanical and electrical side of the WT system during a fault, potentially reduce or eliminate the need for pitch angle control 

or reactive power compensation (RPC) devices [81, 82]. This is performed by dynamically installing a resistor in series 

between the WT and the grid, in order to boost the voltage at the terminals of the generator, and thereby alleviate the instability 

concerns on electrical torque and power during the fault period [83]. 

The typical schematic layout of SDBR may incorporate one or two stages of resistor/switch units, as shown by Fig. 10 (a) and 

(b), including the static bypass switch, allowing sub-cycle response and smoothly variable control [84]. Under normal 

conditions, dynamic braking resistor must be cut off by closing the bypass switch. At the beginning of the fault, the current 

start the passing through the resistor, Rsh and continue in operation in the initial post-fault recovery. Once the voltage recovered 

above a minimum set point level and met the grid code compliance, the bypass switch is closed and the circuit is returned to its 

normal state.          Fig. 10 (c) also displays a possible arrangement, using thyristor based soft-starter that is already utilized for 

a grid connected FSIG-based wind turbine, can enable continuous, optimized control of dynamic braking resistance [84]. Also, 

ABB represented an additional feature for SDBR scheme, in which the resistors were independently controlled in each of the 

three phases, enhancing the scheme's performance during unbalanced fault condition [85]. The effect of SDBR on stator 

voltage is displayed by the phasor diagram of Fig. 11, where the stator voltage is increased across SDBR.  
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Fig. 11. Single-phase vector diagram for voltage dip compensation with SDBR [81]. 

Since the mechanical torque generated by the induction generator changes with the square of the voltage, the presence of 

SDBR can increase the mechanical power extracted from the drive train therefore, reducing its rotor speed during a voltage dip. 

This action can also enhance the post-fault recovery of a WT system.  

3.1.4.   Magnetic energy recovery switch (MERS) 

The MERS has recently been proposed as a variable series compensator between the main transformer of the wind farm and 

power grid to improve the LVRT capability of fixed-speed WTs by compensating the reactive power and controlling the 

terminal voltage of WT [86-89]. The circuit configuration of the MERS is shown in Fig. 12, including four reverse conductive 

semi-conductor switches and a dc capacitor. As it is obvious from Fig. 12, that it has a similar topology with respect to a 

single-phase full-bridge inverter with the exception that dc-link capacitor is several times smaller than that of a single-phase 

full bridge inverter, due to the capacitor voltage is permitted to alter considerably and to become zero during each fundamental 

cycle (50 or 60 Hz) [89]. Moreover, this scheme possesses fewer losses compared to the PWM converters so that 

semiconductors in MERS are switched synchronously to the line frequency which is extremely important for high-power wind 

applications. The principal results of switching patterns and waveforms for one fundamental cycle are illustrated in Fig. 13 

based on two main set-points control, i.e. minimum capacitor voltage, VC,min and the length of the zero injected voltage period, 

2γ. By adjusting the VC,min and the γ reference,  the current passing through the device can be regulated to provide the variable 

series-injected from zero to the rated voltage for all currents within the device rating. Wiik et al. developed in [87] a control 

method suitable for the LVRT application in transmission systems shown in Fig. 12 for injecting series voltage based on 

MERS equivalent compensating reactance expressed as  

,min4 cos1 2 sin 21
2

C
M

grid

V
X

C I
gg g

ω π π π
 = − − + 
 

 (4) 

where, Igrid is the line current and C in the capacitance of the dc capacitor. 
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Fig. 13. Switching patterns for one current cycle. (Left part) voltage and current waveform of MERS; (Right part) the flow of the current through the MERS 

for the different areas illustrated on the left [89]. 

3.1.5.   Fault current limiter (FCL) 

The need for FCL is increased by the rising fault current levels due to integration of high penetration of WTs into the power 

grids. In recent years, various types of FCL such as, solid state FCL, resonant circuit, transformer coupled bridge-type fault 

current limiter (BFCL), and superconducting fault current limiter (SFCL) have been proposed and developed [90-92]. 

Previous studies have proven the ability of SFCL and BFCL technology to improve LVRT capability and enhance transient 

stability of wind generator systems. By using these types of FCL during the fault, the stator current of induction generator has 

been effectively limited and the voltage reduction level of the generator terminals has been decreased, leading to meet 

international grid codes. Once, the FCL is adopted in the wind farm system, the peak value of short circuit current can be 

limited to a level within the switchgear rating, allowing deploying of light circuit breakers. 
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3.1.5.1.   Bridge-type fault current limiter (BFCL) 

As shown in Fig.14 (a) and presented in [93, 94], the bridge-type FCL with discharging resistor (Rdc) requires the coupling 

transformer to be connected to the power grid. A resistor in parallel with a semiconductor switch has been connected in series 

with the dc reactor (Ldc) of the conventional bridge-type FCL, in order to control the fault current level by controlling the dc 

reactor current. The increase of the fault current is curbed by dc reactor without any delay. This characteristic of the bridge-

type FCL suppresses the instantaneous voltage drop and it is able to improve the transient behavior of WTs in fault instant, 

which is the main advantage of the bridge-type FCL to other FRT enhancement techniques [95]. Moreover, Rdc in the bridge-

type FCL used to increase the terminal voltage of the generator, thereby smoothing the electrical torque and active output 

power fluctuations during the fault. However, this topology needs a special and costly transformer to connect the three-phase 

diode bridge in series into the system, in which primary voltage rating of the transformer must be almost equal to the 

transmission line voltage to maintain desired level of voltage within the fault duration [96]. 

In [96], the authors proposed a new modified configuration of BFCL including the four-diode bridge part and shunt resistive 

path, shown in Fig. 14 (b), in order to achieve the LVRT of fixed speed wind generator system. In normal condition, the switch 

must be kept closed as its gate signal S1 is at a high level, in which line current through the dc reactor placed within the diode 

bridge flows in the same direction, charging the Ldc to the peak current. Once the fault occurs, the sudden rise of fault current 

would be instantaneously limited by the reactor. Hence, abrupt voltage reduction at generator terminal is prevented during the 

fault, providing the improved transient behavior. Once, line current in dc side idc exceeds a predefined threshold ith, the IGBT 

switch must be turned off via sending the low level signal to S1. In this case, the diode bridge is cut off and the line current 

passes through the shunt resistor Rsh in order to suppress fault current and consumes excess energy from the wind generator. By 

controlling the duration of ON and OFF periods of IGBT switch, control system provides a manageable resistor in order to 

control the terminal voltage of induction generator, leading to a reduction in the rotor acceleration and stabilizing the system. 

The controller used for the BFCL was developed in [96] and shown in Fig. 15. 

Ldc Rdc

S1

3-ph Transformer

3-ph diode bridge 

  

Ldc

Rdc
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Rsh

 
(a)                                                                                                                          (b) 

Fig. 14. Fault current limiter topology. (a) Bridge-type FCL (BFCL). (b) Modified configuration of BFCL. 
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Fig. 15. Modified configuration of BFCL installed outside the wind farm with the control scheme. 

3.1.5.2.   Superconducting fault current limiter (SFCL) 

The SFCLs have been launched and introduced into the network to restrict prospective fault currents immediately to a 

manageable level by suddenly raising the resistance value [97, 98]. SFCL is considered as self-healing technology since it 

eliminates the need for any control action or human intervention due to its automatic excessive current detecting and automatic 

recovering from non-superconducting to superconducting states. By using the SFCL, the fault current is suppressed effectively 

and the voltage dip level of the WPP terminals is diminished, leading to enlarge the voltage safety margin of the LVRT curve 

[99- 101]. The first-cycle suppression of a fault current by an SFCL results in an increased transient stability of the power 

system carrying higher power with greater stability. This innovating device introduces an exclusive feature that cannot be 

obtained by conventional current limitations.  

Generally speaking, high temperature superconducting fault current limiters (SFCLs) have been classified into the resistive, 

inductive, and hybrid types [98]. Amongst diverse SFCL devices, resistive SFCL has a simple structure with a lengthy 

superconductor wire inserted in series with the transmission lines. To preserve the superconductor from detrimental hot spots 

during the operation, the shunt resistance, Rshunt is essential. This parallel resistance must be contacted all over the length of the 

superconductor, and it regulates the controlled current to elude over-voltages likely occurring when the resistance of the 

superconductor increases much quicker. With the recent breakthrough of economical second-generation high-temperature 

(HTS) wires, the SFCL has become more viable and is eventually expected to be at least a factor of ten lower in cost than 

presently available HTS conductor [102]. The structure of FSIG-based WT with resistive SFCL is schematically shown in Fig. 

16. The current limiting behavior of the RSFCL can be modeled by the resistance transition of HTS tapes in terms of 

temperature and current density as defined by the following equation [100]. 
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Fig. 16. Operation of resistive SFCL installed in transmission line including fault current and voltage profile at the wind turbine terminal. 
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where J and T are the current density and temperature, respectively, while Jc and Tc are their critical values and n represents the 

exponent of E − J power law relation.  

3.2 Review on shunt-connected solutions  

Among the external topologies, the shunt-connected devices have been widely utilized to provide smooth and fast steady state 

and transient voltage control at point of connection. Since, the output current of these devices is adjusted to control either the 

nodal voltage magnitude or reactive power injected at the voltage terminal, the shunt-connected topology proved to be the most 

effective solution in the wind power application in order to fulfill the recent international grid codes. A brief explanation of 

shunt-connected solutions is presented in following subsections. 

3.2.1   Static var compensator (SVC) 

Thyristor-controlled SVCs reported in [103, 104], have been applied for voltage support of critical loads, reactive power 

compensation, and transient stability improvement in electric power transmission systems. The SVC is a combination of a 

thyristor-controlled reactor (TCR) with a thyristor-switched capacitor (TSC) or MSC as one compensator system which is 

practically connected to the PCC bus (or the wind turbine terminals) in order to provide fast voltage support and fulfill LVRT 

of WTs with induction generators [105-109].  
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Fig. 17. Shunt compensation system for wind driven induction generator using SVC along with the basic control system.  

Based on new grid codes, this is a supplementary feature now for wind turbines to supply variable reactive power depending on 

network demand and actual voltage level, while the crucial problem of SVC is to inject an uncontrollable reactive current 

dependently on the grid voltage [109]. Thus, the current injected by the SVC reduces linearly with the voltage sag and 

consequently the injected reactive power diminishes quadratically. 

The basic control of the SVC was applied in [109] and shown in Fig. 17 as a PI controller to control the firing angle of the 

thyristors of the TCR and TSC, keeping VPCC at 1 p.u during and immediately after the fault. One key issue for designing of an 

SVC for proper operation is to tune the PI controller, which does not achieve in a simplistic method. 

As discussed in [110], a fast response from the closed loop voltage control of the SVC can cause severe voltage oscillations 

under week grid operating, in which reduction of transient gain was proposed as a possible solution in order to diminish the 

SVC’s response. However, tuning down the transient gain of SVC leads to a slower voltage recovery after the fault, thereby 

exceeding the LVRT requirements [111]. In [110], the authors implicitly promoted the idea of using several small distributed 

SVCs compared to a large central SVC for better voltage response with stable voltage oscillations. A Fuzzy controller was 

designed in [105] for the SVC to significantly prove an improved dynamic response in terms of overshoot and settling time as 

compared to a conventional PI controller.  

3.2.2.   Static synchronous compensator (STATCOM) 

Unlike SVC, the STATCOM, also named SVC Light by ABB [37], can continuously and independently provides a controllable 

reactive current in response to voltage reduction, supporting the stability of grid voltage. The prospect of the STATCOM 

application in the wind power system has emerged in the 1990s, where its significant contribution was power quality 

improvement during normal operation [112]. The most important component of STATCOM is the modular voltage source 

converter (VSC), equipped with insulated gate bipolar transistors (IGBTs) that are controlled by pulse width modulation 

(PWM). Fig. 18 displays the basic STATCOM which can be used in LVRT capability for fixed-speed wind turbines. 
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Fig. 18. The structure of the FSIG-based WT along with STATCOM connected to wind turbine terminal.  

It is connected to the grid to inject or absorb reactive power through a three-phase transformer. This system is appropriate to 

alleviate the effects of both steady-state and transient contingencies [37]. Various papers have been documented in the 

literature [109, 113-119] to prove the ability of STATCOM for LVRT enhancement of FSIG-based WT. In [109], Molinas et 

al. conducted a comparison between the STATCOM and SVC in terms of LVRT improvement. They found that STATCOM 

could be the economical solution in more situations (15% cheaper than SVC) if the same rating is assumed for the devices. A 

modified STATCOM controller was proposed in [115] based on the series combination of a power factor and a voltage 

regulation loop, which allows an optimized behavior of the fixed-speed WT both in normal and fault conditions. The feasibility 

of incorporating SDBR with STATCOM to fulfill LVRT requirement of FSWT was investigated in [120], where results 

showed that the less STATCOM rating was required compared to utilizing only STATCOM for the same effective 

performance. Since STATCOM is able to provide only reactive power, application of the energy storage system (ESS) with 

STATCOM have emerged as a promising solution for wind power system applications [116, 121]. The new robust 

decentralized control system for large interconnected wind power system was introduced in [122] based on the linear quadratic 

(LQ) output-feedback control method to demonstrate that STATCOM/ESS structure can be an effective device for the grid-

code compliant. Another alternative suggested in [123] was to simultaneously control both the reactive power and active power 

via the STATCOM and the pitch angle of the WT to ameliorate the LVRT capability of induction generators in wind farms. It 

was proved that the combined strategy of robust STATCOM and pitch angle control makes the system ride-through the fault 

without having to disconnect the generators from the system. However, utilizing the STACTOM for enhancing the LVRT 

capability augment the torque capability of the induction machine during the recovery process after the fault, causing in higher 

maximum torque, and correspondingly higher stresses on the drive-train. Therefore, authors in [117] suggested a solution based 

on indirect torque control (ITC) to temporarily set the voltage for the STATCOM controller to limit the maximum torque 

during the recovery. 
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(a)                                                                                                              (b) 

Fig. 19. The HTS DSC Concept (a) Structure of the SDCS. (a) Var curve for conventional synchronous and HTS DSC machines [126]. 

3.2.3.   Superconducting dynamic synchronous condenser (SDSC) 

One possible solution of integrating large-scale wind farm in power system comprehensively presented in [124-127], is the 

superconducting dynamic synchronous condenser (SDSC) shown in Fig. 19 (a), so that rotor windings entailed of HTS wires.  

Compared with a conventional synchronous condenser, SDSCs provide up to 45% more dynamic reactive compensation in 

order to boost the bus voltage during a severe fault situation with power losses and maintenance (Fig. 19 (b)). Since, SDSC 

machin has a relatively low synchronous reactance relatively low compared to other synchronous machines with the same 

rating, allowing the machine to respond significantly to transient changes in voltage by injecting or absorbing reactive power. 

The SDSCs are able to perform with a very high field current (up to 2.0 p.u) for a long period of time, allowing the machine to 

release the reactive power up to three-times rated output during a transient low-voltage event. Thus, the SDSC can assist a 

wind farm to meet the interconnection agreement with the utility by providing voltage regulation and improving stability of a 

power system [126]. 

3.3 Review on hybrid-connected solutions  

Reactive power and voltage compensation using series-shunt (hybrid) topologies has been one of the effective techniques in 

improving the LVRT capability of the large scale of the wind farm level at the point of common coupling. The unified power 

quality conditioner (UPQC) demonstrates there may be a possible solution to the technical grid integration problems coming 

from the wind-driven FSIG [128-130]. Fundamentally, UPQC which is an integration of series and shunt VSC have been 

commonly studied by many researchers as the ultimate device to improve voltage sag, voltage unbalance, harmonics, dynamic 

active and reactive power regulation [131]. In [128], Jayanti et al. described the application of the UPQC systems to enhance 

low voltage ride-through capability of the FSIG-based wind turbine. The results show that series VSC provides the lack of 

voltage to prevent over-speeding of the FSIG while the shunt VSC injects additional VAR required during the voltage 

reduction. 



20 
 
 

VPCCVWT

Wind Turbine

Grid

Zs

Zf
Fault

UPQC System Based Voltage Source Converter

Resistive SFCL

Rshunt

RSFCL

Series VSCShunt VSC Cdc

 
Fig. 20. The structure of the proposed system: FSIG-based wind turbine with UPQC and SFCL connected to the grid. 
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Fig. 21. The structure of the proposed system: FSIG-based wind turbine with current source UPQC and SFCL connected to the dc link. 

However, the capital cost involved in the installation of this device is higher than any other solutions devices because of its use 

of two converters. Therefore, authors in [129] propose a novel combination of resistive SFCL and UPQC illustrated in Fig. 20, 

in order to improve power quality problems and fulfill grid code requirements. The obtained results confirm that the SFCL can 

not only reduce the volt-ampere rating of the UPQC, thereby reducing the installation cost, but also aid the LVRT capability of 

the wind turbine and improves dynamic performance of the induction generator for additional support. 

Moreover, the feasibility of resistive SFCL incorporated in series with the dc-link inductance of the UPQC based on a current-

source converter is proposed in [130] to limit excessive current in the event of the generator side fault (see Fig. 21) and 

increase voltage level at the generator terminal leading to compliance with international grid codes. 

Huang et al. introduce in [132] a novel topology based on combined shunt and series grid interface configuration, namely, 

unified compensation system (UCS) to improve FRT capability for FSIG wind turbines. The system structure depicted in Fig. 

22 utilizes one converter to provide both series and shunt compensation. In normal operation, the UCS operates like a 

STATCOM and supports voltage or reactive power regulation through the shunt connection. In faulty conditions, the UCS 

instantaneously switches from the shunt to the series grid connection, compensates the voltage, and maintains the stator voltage 

at its rated value. 
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4. Technical-economical evaluation study of the LVRT methods 

With regard to the above-described LVRT enhancement methods for the FSIG-based WT, no comparative studies have been 

considered between the different configuration schemes. In this section, a comparative study of these LVRT methods in terms 

of dynamic performance and economic feasibility is performed.  

4.1  Technical comparative study 

Table 1 summarizes the advantages and limitations of applying the three categories of the LVRT schemes discussed in section 

3.1, 3.2, and 3.3. While the final aim of this summary is not to prioritize the LVRT enhancement methods based on technical 

features, it provides simple and clear metrics which could be used for decision making purposes.  

The contributions of SVC and TCSC to transient voltage stability of the FSIG-based WT and power grid are presented in [65]. 

The comparative study verified that, in the case of wind speed fluctuation randomly, SVC can offer better reactive power 

compensation to maintain the transient stability, while TCSC can effectively promote the terminal voltage and enhance LVRT 

capability in the case of severe three-phase fault currents. Although TCSC and SVC have some sophisticated components such 

as thyristor, inductors and capacitors, they have relatively simple control structure. Compared with SVC, STATCOM provides 

faster response, fewer disturbances, and better performance at reduced voltage levels; as a result, it is the most extensively 

proposed solution for the ride-through capability enhancement of wind turbines based on FSIG. STATCOM may be rated for 

75% of SVC rating for same performance in response to line fault [109]. STATCOM have a slightly smaller footprint than 

SVC because they use power electronics instead of capacitors and reactors. In [127], the authors studied a comparison between 

the SVC and SDSC in terms of voltage regulation in wind power applications. The results showed that the SVC has better 

dynamic performance during the fault with minor voltage reduction on the wind turbine terminal, while SDSC could adjust the 

voltage to the rated value faster during the severe faults such as three phase to ground faults. Among FATCS devices, although 

UPQC and UCS can exhibit superior performance due to the fact that they provide both series and shunt compensation, the 

overall cost and control complexity of these types of technologies are higher than other FACTS devices because of using two 
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converters. However, compared with UPQC, UCS has less control complexity because only one converter is connected to the 

grid at the same time. The SDBR can be considered a very simple and cost-effective solution for LVRT capability 

enhancement of the wind generator system since it uses a high power resistor and fewer switches than other auxiliary methods. 

In [81], the direct comparison of SDBR and RPC for the fixed-speed WT was conducted, and demonstrated that a 0.05 p.u. 

dynamic resistor is equivalent to 0.4 p.u. of dynamic RPC. However, the SDBR can dissipate active power, but it cannot 

control reactive power; hence, it is unable to minimize voltage and power fluctuations of wind generator. Amongst diverse 

FCL devices, BFCL and SFCL technologies with simpler control structures have proven their ability to enhance LVRT 

capability and transient stability of WTs. However, BFCL needs a special and costly transformer to connect the three-phase 

diode bridge in series into the system.  

Table 1. Technical comparison of LVRT improvement methods for FSIG-based WTs.  
 

Methods  Main advantages  Main limitations  Notes(s) 

Se
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es
 C
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ne
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TCSC 
[60-67] 

• Variable capacitive reactance 
• Useful for voltage unbalance and fault 

current limitation 

• Undesirable resonance 
• Harmonic injection 

• An effective solution for offshore wind 
farm 

DVR 
[68-79] 

• Fast voltage recovery 
• Controllable reactive power supply 

• Phase angle jump 
• Active power absorption  

• Compatible with a proper energy storage 
capacity 

SDBR 
[80-85] 

• Mechanical active power mitigation 
• Reduction of pitch angle activation 
• High reliability and low maintenance 

• Unable to control reactive power 
• Unable to damp voltage fluctuations 
• Useless in low power factor usage 

• 0.05 p.u SDBR is equivalent to 0.4 p.u of 
dynamic RPC for LVRT enhancement 

MERS 
[86-89] 

• Eliminating reverse blocking switch 
• Effectiveness for large-scale 

application 
• Low switching losses 

• Less robust control 
• Mechanical by-pass switch 

• Capacitor is so smaller than a single-phase 
full bridge 

• Operating range is 71% larger than TCSC 

BFCL 
[93-96] 

• Useful for high voltage drops 
• Minimizing rotor speed variations 
• Low conduction loss 
• No need to measure any parameters 

• Needs a large-scale coupling 
transformer 

• Big reactance in huge application 
• Undesirable saturation of dc 

reactance 

• Consumes more active power  
than the SDBR 
• Better performance than the  
SDBR in a sudden drop 

SFCL  
[97-102] 

• Automatic fault current detecting 
• Automatic recovering 
• Fast fault current limiting action 

• Unable to work at room temperature 
• Unable to control reactive power 
• High recovery time 

• More feasible with second-generation of 
HTS wires. 

Sh
un

t C
on

ne
ct

io
n SVC 

[103-11] 

• Reactive current injection 
• Voltage stability in weak system 
• Continuous voltage control 

• Voltage-dependent reactive control  
• Unstable voltage oscillations due to  
faster response 

• Inject more reactive power compared with 
SDSC with same capacity 

STATCOM 
[112-123] 

• Controllable reactive current 
• Rapid response to disturbances 
• Negative-sequence voltage reduction 

• Needs to cut off in a high voltage 
drop 

• Unable to supply active power 

• Provide faster response and less 
disturbances compared with SVC  

SDSC 
[124-127] 

• Able to perform with a very high 
current (up to 2.0 p.u) for a long time 
• Low level of losses 

• Less effective for low voltage drop 
• Adjust the voltage faster than SVC 
• Provide 45% more reactive power 

compared to older types 

H
yb

ri
d 

C
on

ne
ct

io
n UPQC 

[128, 131] 

• Both active and reactive control 
• Fast reactive power compensation 
• Long critical clearance time 

• Active power absorption 
• Needs a huge dc-link capacitor 

• Share voltage control and reactive power 
control into the two VSC of the UPQC 

UPQC & 
SFCL 

[129-130] 

• Fault current limiting action 
• Increasing the voltage safety 
margin of LVRT curve 

• Difficulty in coordinating control 
scheme between SFCL and UPQC 

• SFCL reduces the rating and cost of 
UPQC 

UCS [132] • Supporting both shunt and series 
compensation with one converter 

• High conduction losses of series  
bypass switch 

• Behave like STATCOM in normal 
operation 

• Switch to the series grid interface in faulty 
condition 

http://en.wikipedia.org/wiki/Reactive_power
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4.2 Economical comparative study  

This section further provides the economic study of all LVRT solutions to evaluate the complexities and economic feasibility 

of different existing LVRT methods. Economic considerations take into account the cost of wind power integration and the 

cost of allocated auxiliary devices for a range of operating conditions in terms of the cost per kW or KVar of implementation. 

4.2.1 Wind power generation cost 

The installed cost of a commercial wind power project is dominated by the capital cost for the wind turbines including blades, 

towers and transformer and this can be in the range of 65% to 84% of the total installed cost [133]. The other installed costs of 

a wind technology can be categorized into three groups, i.e., grid connection costs including transformers and substations (9% 

to 14%), civil works and construction costs (4% to 16%), and other capital cost including construction of buildings, control 

systems, project consultancy with costs share 4% to 10% of the total installed cost. The total installed capital costs for wind 

technology vary significantly depending on the energy market and the local cost structure. China and India have the lowest 

installed capital costs for new onshore projects of between USD 1100/kW and USD 1400/kW in 2010 and in the range USD 

1850 to USD 2200 in the major developed country markets of the United States, Germany and Spain. Figure 23 presents the 

assumptions for onshore wind capital costs for typical projects in Europe, North America and China/India for 2010 and 2011, 

as well as the predicted values for 2015 [133]. Moreover, additional LVRT technologies impact the operation of WT 

technology economically and technically. Although the actual costs of the auxiliary devices are not widely available, using 

existing reported data from commissioned projects, the overall cost of these technologies can be roughly estimated. The overall 

cost of LVRT solutions can be obtained based on their major components such as number of power electronic switches used, 

coupling transformer, magnetic inductance, high power resistance, capacitor etc.  

4.2.2 Economic feasibility of LVRT solutions 

The growing integration of wind generation in power grids, is expected to surge the demand of FACTS in different 

geographies. The overall FACTS market is projected to reach $1,386.01 million by 2018 from the $912.85 million that it 

accounted for in 2012 [134]. SVC is the most widely used solution in the global market, followed by the Fixed Series 

Capacitors (FSC); whereas devices such as STATCOM and UPFC are customized solutions made for special requirements of 

the power grids. Obviously, FACTS-based methods are the relatively expensive because they consist of many components such 

as power electronic devices, thyristors, reactors, capacitor banks, switchgear, protection and control systems, and so on. In this 

section, the cost range of the major FACTS devices is mostly taken from the Siemens and electric power research institute 

(EPRI) database reported in [135]-[137], as shown in Fig. 24(a), (b). 
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Fig. 23. Installed cost of wind power projects in three area; 2010, 2011, and 2015.  

Accordingly, the cost functions for TCSC, SVC, STATCOM and UPFC are developed as follows: 

2

2

2

2

Cos 0.0015 0.713 153.75         $/KVar

Cos 0.003 0.305 127.38            $/KVar

Cos 0.003 0.233 153.45       $/KVar
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 (6) 

where s is the operating range of FACTS devices in MVar. The marginal cost per installed kVar of the FACTS devices 

decreases as the operating rate capability is increased. An overall cost for a 100-MVar SVC and a 100-MVar TCSC varies 

from USD 60 to USD 100 per kVar and USD 70 to USD 95 per kVar, respectively. Although TCSC and SVC have some 

sophisticated components such as thyristor, inductors and capacitors, they have relatively simple control structure. Similarly, 

based on Fig 23, the overall cost for STATCOM and UPFC varies from USD 100 to USD 130 per kVar and USD 130 to USD 

170 per kVar at 100 MVar rating of the operation, respectively. A cost analysis has been reported for the DVR in [138-139], 

where the overall cost including series transformers, VSC using IGBT, and capacitor bank is estimated between around 

$130/KVar and $150/KVA at operating rate of 100 MVar. This research service provides revenue forecasts for the total 

dynamic voltage restorer (DVR) markets as well as for low voltage and medium voltage restorers. The demand for DVR 

equipment is set the global DVR markets to grow at 6.9 percent between 2004 and 2011, the growth being more prominent in 

North America and Asia Pacific. Spanish company CONVERTDIP has successfully put their related products into markets, 

which is called W2PS [140]. 

The 8-MVar SDSC machine, developed by American Superconductor, was demonstrated at the Tennessee Valley Authority 

(TVA) in Gallatin in order to dynamically absorb or produce reactive power, costing between $1 million and $1.2 million 

[141]. 
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Fig. 24. An operating cost comparison between FACTS devices. (a) SVC, TCSC, and UPFC [135]. (b) SVC and STATCOM [137]. 

Due to its compact size and low-cost design, the total cost of the SDSC can be reached up to USD 100/kVar for operating 

range of 100 MVar or more. Because of high efficiency and the low maintenance cost of the new HTS dynamic synchronous 

condenser it is a very economic option for providing peak and dynamic reactive compensation to a power system. Also, at the 

present time, the cost of superconducting materials and the cryogenic cooling system of the SFCL are extremely high (up to 

$200,000@800 W/2.5kA [142]); thus, to maintain economic feasibility of the final product, the market trend is to minimize the 

amount of HTS material needed. With the recent breakthrough of economical second-generation HTS wires, the SFCL has 

become more viable and is eventually expected to be at least ten USD less in cost than presently available HTS conductors 

[143]. The average energy dissipated by SDBR determines its size and cost, so that power rating of the SDBR chosen to be 

greater than average energy dissipated. Once these values are determined, the resistors can be chosen. ABB represented a 

multi-level structure, call their products Transient Booster® [85]. Multistage resistors increase the cost and complexity of 

SDBR, while single-stage mechanical switching as the lowest cost and least complex option with high reliability and low 

maintenance and, as a result, single stage SDBR in comparison with FACTS devices may be a preferred solution. 

Although study of the SDBR, MERC and the BFCL cost are unreported, but based on the complexity of the controller and the 

configuration of them, SDBR can be easily considered as cheapest solution for LVRT improvement after the capacitor bank. 

The cost of MERC and BFCL can also be estimated as LVRT solutions that are less costly than FACTS devices because they 

don’t require series transformer, sophisticated power electronic converters, or energy storage. As stated in section 3.1.4, the dc-

link capacitor of the MERS is several times smaller than that of a regular single-phase full bridge inverter. Thus, between 

MERS and STATCOM with the same topology, the MERC might be cheaper. Since the economical scope of this section is to 

only compare the average and estimated overall costs of all LVRT solutions for FSIG-based WT, the range of prices (US$) per 

KVar is shown in Fig. 25. 
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Fig. 25. Average and estimated overall cost of LVRT solutions for operating range of around 100 MVar.  

5. Simulation results and performances comparison 

As stated in Section 3 and shown in Table I, the presented LVRT capability enhancement methods for FSIG-based WTs hold 

some advantages and limitations. To verify effectiveness of the described methods and also to compare them, some simulation 

studies using MATLAB/SIMULINK software were carried out in this section. The single-line diagram of the proposed power 

system, including a large wind farm, a hydro power represented by a synchronous generator, and possible shunt and series 

connected compensators is schematically shown in Fig. 26. As arbitrary choices, the most common series and shunt connected 

RPC devices, i.e., STATCOM, SVC, TCSC, and DVR, are applied at the terminal of the wind generator. The parameters of the 

grid components, FSIG, and RPC devices are given in Tables 2-4 in the Appendix. For comparison purposes, the dynamic 

performance of the combinatorial wind farm and auxiliary devices were compared with the cases without the compensation 

scheme. A three-phase symmetrical grid fault is considered, since the fault ride-through capability of the regional grid codes 

mostly refer to this type of fault. Thus, a three-phase fault is applied at t = 10 s and is cleared after 150 ms, resulting in 80% 

voltage dip at the PCC. The responses of the terminal voltage (PCC), active and reactive power, stator current, and rotor speed 

of the FSIG are shown in Figs. 27-31, respectively. Although all auxiliary devices can meet the LVRT capability requirements 

of the wind generator, their performance varies with their behavior and capabilities. 

It is clear that among the described methods, the performances of the STATCOM and DVR are the best and can effectively 

stabilize the wind generator system, while TCSC exhibits the worst performance; yet it can enhance the LVRT compared with 

the “No Compensation” case.  
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Fig. 26. Single-line diagram of the power network including a series-connected or shunt-connected compensator. 
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Fig. 27. FSIG terminal voltage at PCC. 
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Fig. 28. FSIG active power output at PCC. 
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Fig. 30. Stator current of the FSIG. 
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Fig. 29. Reactive power absorbed by FSIG. 
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Fig. 31. FSIG rotor speed.

Fig. 27 shows voltage at the PCC in different methodologies. Among the described methods, DVR method has superior 

performance for diminishing the voltage dip during the fault, where voltage can be significantly retained to around 1 p.u, using 

STATCOM after clearing the fault. Since quick voltage recovery is very important for an FSIG-based WT wind turbine, 

STATCOM is a very useful method to provide the quick reactive power and voltage control.  
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The performance of TCSC and SVC methods are approximately similar and these methods allow wind turbines to handle only 

a fraction of the total FSIG active power. Fig. 28 depicts wind turbine active power during and after clearing the voltage sag. 

During the fault, the machine output active power becomes almost zero with no compensation. But STATCOM helps maintain 

more than half of the rated active power at the PCC during the fault. Although the DVR method has the best performance in 

PCC voltage regulation, when the DVR compensates for the voltage sag; some portion of the wind turbine active power is 

partly fed into the DVR system, resulting in less active power transferred to the grid.  

Fig. 29 illustrates total reactive power absorbed by the FSIG from the network. After fault clearing (at t=10.15 s), the generator 

needs to draw a large amount of reactive power to re-establish the magnetic field, which leads to a lower voltage at the terminal 

of the WT system. However, compared with the no compensation case, the absorbed reactive power from the grid is 

significantly reduced with the STATCOM and DVR, which helps to avoid other problems such as voltage collapse and 

recovery process.  

Machine speed response and stator current of the FSIG are shown in Fig. 30 and Fig. 31, respectively. As it can be seen, the 

rotor speed and stator current increases during the fault period which may lead to power system instability and is detrimental 

for the turbine generator system if the fault duration is long and proper auxiliary devices are not used (no controller). Similarly, 

STATCOM and DVR can limit the rate of rising of machine speed and the magnitude of the machine current in order to make 

better stability.  

6. Conclusions 
 

This paper presented the comprehensive review of the state-of-the-art developments for LVRT capability improvement of WTs 

based on fixed-speed wind turbines, which is relatively a new concept in maintaining voltage profile of the wind power 

generation. First, the responses of the FSIG under steady-state and transient-state condition were extensively discussed. Then, 

all reviewed methodologies were categorized into three main groups, i.e., series-connected solutions, shunt-connected 

solutions, and hybrid-connected solutions; discussing the performance of the LVRT schemes including their advantages and 

limitations in details. Also, a comprehensive analysis of these LVRT methods in terms of dynamic performance, controller 

complexity, and economic feasibility was comparatively investigated and summarized in Table 1. It is found that the overall 

cost and control complexity of the SFCL and UPQC schemes are higher than other types of LVRT technologies. On the other 

hand, the SDBR and BFCL methods were relatively the cheapest and simplest control structure among other LVRT solutions 

from economic feasibility point of view. Finally, some selected case studies were simulated using the MATLAB/Simulink 

software. Comparison of simulated methods indicated that DVR from series-connected solutions and STATCOM from shunt 

connected solutions are the most reliable and effective LVRT capability enhancement methods, while TCSC exhibited the 
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worst performance; yet it can enhance the LVRT compared with no LVRT controller employed with FSIG-based WT. 

Although the market share in the conventional fixed-speed wind turbine concept has diminished, nevertheless a non-negligible 

20% of the existing wind energy in Europe is still employing FSIGs due to their simple structure and lower maintenance cost. 

Thus, this effort helps the researchers understand the relative effectiveness of the proposed auxiliary equipment and provides a 

guideline for selecting a suitable technique for the LVRT capability improvement of wind turbine generator systems.  

 

Appendix A 

See Tables 2-4 

 

 

Table 2. FSIG-based WT parameters. 
 

Wind turbine Parameters      Values FSIG Parameters         Values 
Rated turbine power 3 MW Rated power 3 MW 

Rated wind speed 10 m/s Rated voltage 0.69 kV 
Blade radius 44 m Stator resistance 0.0048 pu 

Optimal power coefficient 0.45 Rotor resistance 0.0044 pu 
Optimal tip speed ratio 8.32 Stator inductance 0.125 pu 

Rotor speed 1.2 p.u Rotor inductance 0.179 pu 

Table 3. FSIG-based WT parameters. 
 

Parameters of the grid     Values 
Rated voltage 120 kV 

Rated frequency 60 Hz 
Transmission line 0.11+j0.001 pu 

Load 2 MW 
Rated SG power 5 MW 
Rated SG voltage 25 kV 

 
Table 4. Parameters of FACTS devices. 

 

Parameters of STATCOM     Values Parameters of TCSC     Values 
Rated power 3 MVar Rated power 3 MVar 

Transformer voltage 2.5/25 kV Rated voltage 25 kV 
DC-link voltage 2760 V Capacitance 21.91 uF 

DC-link capacitance 0.02 F Reactance 0.043 H 
Parameters of SVC Values Parameters of DVR Values 

Rated power 3 MVar Rated power 3 MVar 
Transformer voltage 2.5/25 kV Transformer voltage 2.5/25 kV 

Rated capacitor power 3 MVar DC-link voltage 2700 V 
Rated inductance Power 1.5 MVar DC-link capacitor 6 mF 
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