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Multiaxial fatigue assessment of welded joints using the notch stress approach

M.M. Pedersen

Aalborg University, Department of Energy Technology, Pontoppidanstraede 101, DK-9220 Aalborg East, Denmark
(e-mail: mmp@et.aau.dk).

Abstract

This paper presents an evaluation of the safety involved when performing fatigue assessment of multiaxially loaded
welded joints. The notch stress approach according to the IIW is used together with 8 different multiaxial criteria,
including equivalent stress-, interaction equation- and critical plane approaches. The investigation is carried out
by testing the criteria on a large amount of fatigue test results collected from the literature (351 specimens total).
Subsequently, the probability of achieving a non-conservative fatigue assessment is calculated in order to evaluate the
different criteria quantitatively. Large variation in safety is observed, especially for non-proportional loading.

Keywords: Welded joints, multiaxial fatigue, notch stress approach.

1. Introduction

Multiaxial fatigue loading in welded joints generally
refers to normal stresses σx perpendicular to the weld
interacting with shear stresses τxy parallel to the weld.

Two types of loading are considered; proportional
(in-phase) loading and non-proportional (out-of phase)
loading. For proportional loading, the principal stress
directions remain constant and the situation is not that
different from uniaxial loading of the weld at an angle.
In the case of non-proportional loading, the principal
stress directions may change over time which appar-
ently causes the existing assessment procedures to fail.

The literature provides an abundance of criteria for
assessment of welded joints under multiaxial loads, typ-
ically based on either stress interaction equations or crit-
ical plane approaches. However, there do not appear to
be much consensus, neither in codes nor in the scien-
tific literature, as to which multiaxial fatigue criterion is
the most accurate. The purpose of this work is therefore
to perform a rigorous evaluation of commonly applied
multiaxial fatigue criteria.

In principle this evaluation could be based on either
nominal-, structural- or notch stresses, or some of the
more advanced quantities used for fatigue assessment
e.g. based on strain energy density. Here, the notch
stress approach according to the IIW is applied, in the
hope that it will allow for the most unbiased comparison
of test results obtained from specimens of different ge-
ometries, i.e. by limiting effects of differences in stress

concentration.
We consider only welded steel joints, in as-welded

condition, subjected to constant amplitude multiaxial
loading transverse to the direction of the weld (exclud-
ing tests under longitudinal loading, because this case
is not suited for assessment using the notch stress ap-
proach). A total of 351 fatigue test results could be
found, which complied to these requirements, roughly
half of these were tested under combined loading and
the other half under pure uniaxial/shear loading.

This paper is organized in the following main parts:
2) review of multiaxial fatigue criteria for welded joints,
3) review of fatigue test data available in the open liter-
ature, and 4) evaluation of the multiaxial fatigue criteria
against the experimental data.

2. Multiaxial fatigue criteria

The assessment criteria for multiaxial fatigue loading
can be based on three concepts; equivalent stresses, in-
teraction equations and critical plane approaches.

2.1. Equivalent stress and interaction equations
Early design codes typically specified an equivalent

stress range in the form of either the von Mises or princi-
pal stress to be evaluated against the uniaxial SN curves
[1]. More recent codes specify the use of interaction
equations, in which the normal and shear stress compo-
nents are evaluated individually against the correspond-
ing uniaxial SN curve (e.g. EC3 or IIW).
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Most criteria are generally not specific to any
stress system, but are equally applicable using nomi-
nal/structural/ notch stresses. However, in the case of
the notch stress approach, the IIW gives specific guid-
ance [2], regarding the use of principal- and von Mises
stresses. Both are limited to proportional loading, but
here we test them also under non-proportional loading
to illustrate the potential problems.

2.1.1. Principal stress
The maximum principal stress range is recommended

for proportional loading when the minimum and max-
imum principal stress have the same sign and the in-
fluence of shear is less significant [2]. The range is
calculated from the numerically largest of the maxi-
mum/minimum principal stress during the load cycle.

σ1 =

(
σx + σy +

√
(σx − σy)2 + 4τ2

xy

)
/2 (1)

Bäckström [3] investigated the use of the principal
stress range as a damage parameter with the hot-spot
stress approach but found a quite poor correlation, i.e.
a scatter of almost an order of magnitude on the stress
range.

Figure 1 shows why the principal stress approach
fails for non-proportional loading. The calculated stress
range is smaller for this case (b), when compared to
proportional loading (a), which indicates that it would
be less damaging. However, experiments, e.g. Siljander
[4], show that the opposite is generally the case, i.e. that
non-proportional loading is more damaging than pro-
portional loading.

2.1.2. von Mises
The IIW recommends using the von Mises equivalent

stress together with the notch stress approach in case
of proportional loading and significant shear [2]. The
von Mises equivalent stress range is calculated from the
range of notch stress components

∆σvM =

√
∆σ2

x + ∆σ2
y − ∆σx∆σy + 3∆τ2

xy (2)

Another approach would be to calculate the von
Mises stress over time and resolving the range from
here. In such case, however, any (partial) compressive
stress state would not contribute to the range, due to the
strictly positive nature of the von Mises stress. The IIW
approach (eq. 2) is therefore preferable.

One drawback of this approach is that it does not in-
clude any directional information; hence the most unfa-
vorable direction of stress relative to the weld must be
assumed in the analysis.

Sonsino [5] have showed this approach to be poten-
tially non-conservative by up to a factor of 15 on life for
non-proportional loading.
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Figure 1: The range of principal stress is smaller for non-proportional
loading than for proportional, after [1].

The IIW recommends using FAT200/3 together with
the von Mises equivalent stress range [2]. Here, we eval-
uate all criteria against the same SN curve (FAT225/3)
for comparison though. The FATxxx/y notation refers
to an SN curve with fatigue strength xxx [MPa] at
N = 2 · 106 cycles and a slope of m = y.

2.1.3. Eurocode 3 approach
According to Eurocode 3 [6] welds subjected to mul-

tiaxial loading must be assessed using(
∆σx

∆σR

)3

+

(
∆τxy

∆τR

)5

≤ DEC3 (3)

Where ∆σR and ∆τR are the uniaxial normal and
shear fatigue strengths, respectively. The allowable
damage sum is DEC3 = 1.0 for all cases. This is equiv-
alent to the simple addition of the damage resulting
from normal and shear stress, calculated independently
of each other

Dσ + Dτ ≤ DEC3 (4)

No distinction between proportional and non-
proportional loading is this made in this context. Eq.
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(3) can be re-written to express a fatigue effective stress
range

∆σEC3 =
3
√

∆σ3
x + k · ∆τ5

x (5)

where k = ∆σ3
R/∆τ

5
R. This effective stress can then be

evaluated against the uniaxial SN curve given by ∆σR.

2.1.4. IIW approach
According to the IIW recommendations [7] welds

subjected to multiaxial fatigue loading should be as-
sessed using the Gough-Pollard equation(

∆σx

∆σR

)2

+

(
∆τxy

∆τR

)2

≤ CV (6)

Where CV is a comparison value that takes the
value 1.0 for proportional loading and 0.5 for non-
proportional. The concept resembles that of EC3, where
the damage from the two stress components is summed,
however, the contents of eq. (6) cannot really be con-
sidered as damage due to the exponent of 2.

Eq. (6) can also be rewritten to express a fatigue ef-
fective stress range

∆σIIW =
1
√

CV

√
∆σ2

x + k · ∆τ2
xy (7)

where k = ∆σ2
R/∆τ

2
R. Further limitations are imposed

in the case of variable amplitude loading, however, this
is not within the scope of this study.

2.2. Critical plane approaches
In critical plane approaches a number of search

planes intersecting the surface either orthogonally
and/or at some inclination are searched for the maxi-
mum value of a damage parameter.

The plane that maximizes the damage parameter is
called the critical plane. Each search plane is defined by
its unit normal vector n, which is again defined by the
angle to the local x-axis θ and the inclination angle φ as
shown in Figure 2.

The stress tensor in each material point is needed as
the starting point for the analysis, i.e.

σ =

σxx τxy τxz

τxy σyy τyz

τxz τyz σzz

 (8)

The stress tensor is generally a function of time, but
this is not shown due to clarity. The stress vector acting
on a search plane can be calculated as

Sn = σn (9)

z’

x’

y’

θ 

ϕ nθ,ϕ 

z

x

y

Figure 2: Search plane in the notch radius. Note that the notch coordi-
nate system is slightly inclined, such that the z’-axis is normal to the
notch surface.

The stress vector can then be divided in a component
normal to the plane, i.e. the normal stress

σn = nnTσn (10)

and parallel to the plane, i.e. the shear stress

τ = Sn − σn = σn − nnTσn (11)

For proportional loading, the shear stress vector τ has
a constant direction; however under non-proportional
loading, it describes some trajectory in the search plane,
whereas only the magnitude of the normal stress will
change, see Figure 3. In the latter case, the extraction of
shear stress range is not trivial, and a multitude of ap-
proaches have been proposed for this. Here, we use the
Longest Chord method [8] which is sufficient for the
relatively simple trajectories obtained from sinusoidal
loading.

In this work the set of search planes is limited to θ =

0 − 180◦ and φ = 0 − 90◦ in 5◦ steps.
The critical plane approach was originally developed

for multiaxial fatigue assessment of non-welded com-
ponents, but several extensions have been proposed for
welded joints, as will be explained in the following.

2.2.1. EESH by Sonsino
Sonsino [9] proposed a critical plane oriented integral

hypothesis called Effective Equivalent Stress Hypothe-
sis (EESH) for multiaxial fatigue assessment of ductile
materials, e.g. welds in structural steel.
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Figure 3: Example stress trajectory under non-proportional loading.

Here, the damage parameter F is calculated as an in-
tegral value of the shear stress over all search planes or-
thogonal to the surface (φ = 0◦). The reason behind the
integral approach is that damage is assumed to accumu-
late on multiple planes under non-proportional loading.

F(θ) =
1
π

∫ π

0
τ(θ)dθ (12)

The effective equivalent stress can then be calculated
from this damage parameter, depending on the phase-
shift of the loading δ

∆σEES H(δ) = ∆σEES H(0◦)
F(δ)
F(0◦)

√
S z (13)

where

∆σEES H(0◦) =

√
∆σ2

x + ∆σ2
y − ∆σx∆σy + f 2

s · 3∆τ2
xy

(14)
and

fs =

√
∆σ2

Rx + ∆σ2
Ry − ∆σRx∆σRy + 3∆τ2

R (15)

S =
1 + Kt,σ

1 + Kt,τ
(16)

z = 1 −
(
δ − 90◦

90◦

)2

(17)

The size factor fs is calculated from the local fatigue
strength and includes a transverse component calculated
as ∆σRy = µ · ∆σRx. The effective equivalent stress (13)
is then evaluated against the SN curve for uniaxial nor-
mal stress.

Sonsino and Lagoda [10] successfully applied the
EESH together with an early version of the notch stress
approach based on a fictitious radius of 1mm.

2.2.2. Carpinteri and Spagnoli (C-S)
Carpinteri et al. [11] proposed a rather simple ap-

proach in which the critical plane orientation can be de-
termined a priori. The orientation of the critical plane
is assumed to coincide with the principal stress direc-
tions at the time instant where the first principal stress
achieves its maximum during the load cycle.

The damage parameter is defined as a fatigue effec-
tive stress consisting of a non-linear combination of the
normal and shear stress ranges occurring on the critical
plane, modified by the squared ratio of normal to shear
fatigue strength at fully reversed loading (R = −1).

∆σC−S =

√
∆σ2

eq + k · ∆τ2 (18)

where k = ∆σ2
R,−1/∆τ

2
R,−1. The equivalent normal

stress in (18) is defined by including the Goodman mean
stress correction as follows

∆σeq = ∆σ + ∆σR,−1
σm

Rm
(19)

Here, a common value for tensile strength equal to
Rm = 520MPa is used. Apart from the mean stress
correction eq. (18) corresponds to the Gough-Pollard
equation as given in (6), but here it is applied in a critical
plane manner.

The fatigue strength for fully reversed loading ∆σR,−1
is generally not available in an engineering context,
since codes and recommendations do not relate the fa-
tigue strength of welded joints to the stress ratio (R).
We thus apply the standard fatigue strength ∆σR here,
as would be the logical solution in practice.

The criterion was tested by Carpinteri et al. [11] us-
ing SN curves derived from the experimental data in the
nominal stress system. They found a fairly good and
mostly conservative correlation between the predictions
and experimental data.

2.2.3. Findley Criterion
The Findley criterion [12] is a shear stress based crit-

ical plane criterion which predicts failure on the plane
that maximizes the damage parameter

f = τ + kσmax (20)

Here τ is the shear stress amplitude, σmax is the max-
imum normal stress occurring over a load cycle. k is
an experimentally determined material factor describing
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the sensitivity to normal stress assumed to be k = 0.3
[13].

This criterion has been applied for welded joints in
original or modified form e.g. [4], [3], [13] and [14].

In its original formulation, infinite life was predicted
if the damage parameter is below some experimentally
determined threshold value f ≤ fcrit. Recently, Bruun
and Härkegård [15] demonstrated how the Findley cri-
terion may be reformulated in terms of an equivalent
stress amplitude to be evaluated against the uniaxial fa-
tigue resistance instead of fcrit, i.e.

∆σF =
∆τ + 2kσmax

1
2 (k +

√
1 + k2)

≤ ∆σR (21)

This is the formulation applied here. The implication
of using this formulation compared to the original (and
taking fcrit = ∆σR) corresponds to a magnification fac-
tor of 1.49 on the stress range (for k = 0.3).

2.2.4. MWCM by Susmel
The Modified Wöhler Curve Method (MWCM) ac-

cording to Susmel [16] is a shear stress based critical
plane approach, i.e. the critical plane is assumed to be
that attaining the largest shear stress range during the
load cycle. The basic idea in this approach is to derive a
load-specific SN curve suitable for the actual combina-
tion of normal and shear stress, see Figure 4.

The derivation is based on the stress ratio

ρw =
∆σn

∆τ
(22)

On the critical plane (max shear stress plane), the
stress ratio is 0 for pure torsion and 1 for pure bend-
ing/tension.

The modified SN curve is derived from two SN
curves - one for normal stress (∆σR and mσ) and one
for shear stress (∆τR and mτ), obtained from code or
experiments.

The slope is determined as

mm(ρw) = (mσ − mτ)ρw + mτ (23)

The slope is limited by that of the normal stress SN
curve, i.e. mm ≥ mσ. The modified shear stress resis-
tance is then found from

∆τRm =

(
∆σR

2
− ∆τR

)
ρw + ∆τR (24)

A limit of ρw ≤ ∆τR/(2∆τR − ∆σR) is enforced in
order to avoid over-conservative results.

𝛥𝜏   

𝛥𝜏Rm=𝛥𝜏R

𝛥𝜏Rm=𝛥𝜎R

               2

𝜌w=0

NR

0<𝜌w<1

𝜌w=1

𝜌w>1

Nf 

m
m=m

𝜏 

m
m=m

𝜎 

Figure 4: Modified SN curves, after [16]

The damage parameter in this criterion is the shear
stress range on the critical plane which is evaluated
against the modified SN curve.

Susmel [17] used the MWCM together with the notch
stress approach and obtained good results when using
the rotated SN curves (mσ = 5 and mτ = 7) proposed
by Sonsino [18] for ”thin and flexible joints”, although
with a high level of conservatism in some cases.

3. Experimental investigations

Surprisingly few experimental investigations have
been carried out on multiaxial fatigue in welded joints.
Only the 12 investigations listed in Table 1 could be
found which complied with the limitations of this study,
i.e. steel base material, as-welded condition and con-
stant amplitude loading.

Table 1: Experimental studies of welded joints under multiaxial loads,
see also Table A.3.

Loading
Primary author t [mm] Primary Secondary
Siljander [4] 9.5 Bending Torsion
Bäckström [3] 5 Bending Torsion
Yung [19] 8 Bending Torsion
Sonsino TP [9] 10 Bending Torsion
Sonsino TT [9] 6 Bending Torsion
Witt [20] 8 Bending Torsion
Amstutz [21] 10 Bending Torsion
Yousefi [22] 8 Bending Torsion
Razmjoo [23] 3.2 Tension Torsion
Archer [24] 6 Bending Shear
Dahle [25] 10 Bending Torsion
Takahashi [26] 12 Tension Tension

According to the IIW [2], the notch stress approach
with rre f = 1mm should only be applied for t ≥ 5mm,
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thus including the tests of Razmjoo [23] and Dahle [3]
is questionable. However, as will be seen later, these
results agree well with the others and are therefore kept
in the analysis.

The majority of the results from Dahle [25] are ex-
cluded since the specimens were cracking in a longi-
tudinally loaded weld and thus are not suitable for as-
sessment using the notch stress approach. Only the
specimens cracking from the transverse butt weld (TW)
are included. These results are corrected by a factor
km = 1.10 for misalignment, according to IIW rec-
ommendations [7]. The results from Takahashi [26]
are divided in two groups, because the specimens were
slightly different in the uniaxial case (U) compared to
that used for the biaxial case (L).

TakahashiU
TakahashiL Razmjoo

DahleTW

Archer

Bäckström

Siljander
Yung

SonsinoTP
Amstutz

Witt
Yousefi

SonsinoTT

Figure 5: Fatigue test specimens (same scale).

3.1. Test conditions
The experimental work was carried out under differ-

ent test conditions regarding geometry, loading, mean
stress, residual stress (stress relieving) and weld quality.
This will of course lead to more scatter in the results,
but it will also allow for testing the multiaxial criteria
under a wide variety of conditions.

3.2. Notch stress analysis
Detailed finite element analysis was carried out for all

specimen geometries according to the IIW recommen-
dations [2], i.e. using a reference radius of rre f = 1mm
and second order elements smaller than 0.25mm in the
notch. Figure 6 shows an example FE model including
a close-up of the typical mesh in the weld toe. For the
cases where the weld leg length is not reported in the
reference, it was set equal to the plate thickness.

R1Constraints
Load

Figure 6: FE model example including close-up of notch mesh.

The FE models of the tube-to-plate specimens were
constrained in the bolt holes, shown in Figure 5, and not
on the back face of the plate. This led to almost iden-
tical stress levels as obtained in a non-linear FE model
with bolts and friction (within 10%). Fixing the entire
back face of the plate on the other hand led to greatly
underestimated stress levels, e.g. a factor 2 difference to
the non-linear model.

Unity nominal stress in bending/tension/torsion/shear
was then applied to the models and the notch stress
tensor could be determined, see Table A.4. The node
displaying the maximum normal stress under the pri-
mary load was selected as the location of investiga-
tion. The reason behind this choice is that the normal
stress exhibits a peak value somewhere on the geome-
try, whereas the shear stress due to torsion was generally
more evenly distributed.

Typically, the selected node was located not on the
edge of the radius, but some distance into the radius.
Therefore a notch coordinate system was introduced at
this location with the z-axis normal to the curved face
of the notch, see Figure 2. The inclination of the notch
coordinate system was typically 15◦ relative to horizon-
tal.

Although minor, this inclination of the notch coor-
dinate system makes a difference when setting up the
search planes for calculating the notch stress in the crit-
ical plane approaches.

The notch stress tensor time histories of all specimens
were then established from superposition of the values
in Table A.4 multiplied with the nominal stress trajecto-
ries given in the references. The stress range could then
be resolved from the notch stress history according to
the different multiaxial criteria.
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Figure 7: Compiled fatigue test results for bending/tension only test results (left) and torsion/shear only test results (right). Results shown in the
notch stress system.

3.3. Reference SN curves

In order to apply any of the multiaxial criteria it is
necessary to establish two reference uniaxial SN curves,
i.e. for pure normal- and shear stress. Here, FAT225/3
and FAT160/5 are applied, as recommended by the IIW
[7] and Sonsino [27].

The validity of these curves is briefly examined in the
following by comparing them against the relevant uni-
axial fatigue data. As seen in Figure 7(left) the normal
stress SN curve FAT225/3 covers the data very well.

It should be kept in mind though, that several of the
test results stems from specimens subjected to stress re-
lieving, which usually improves the fatigue resistance.
Yung and Lawrence [19] however found stress relieving
to be detrimental, because the residual stress state at the
critical location in the weld toe was compressive in their
specimens.

Furthermore, the SN-curve provided by the IIW is
derived for welds subjected to high tensile residual
stresses. This condition is typically simulated by per-
forming the fatigue test at a high stress ratio R = 0.5.
The fatigue tests considered here were generally carried
out under low stress ratios, i.e. R = −1 and R = 0,
though.

It is thus clear that there is a discrepancy between the
test results and the SN curve. However, due to the un-
known residual stress state of the specimens and like-
wise uncertain effect of stress relieving, no corrections
have been applied to account for this.

Another issue that adds to the scatter in the results is
weld quality, in particular the weld toe radius. Unfor-
tunately, this important value is typically not recorded
and its influence on the results can thus not be quanti-
fied. Jonsson et al. [28] showed that the weld toe radius
is highly influenced by the direction of gravity relative
to the weld during welding. They found a difference of
more than 60% on the fatigue strength of fillet welds
welded in lying and standing position, respectively, and
credited this difference to the influence of gravity in
forming the weld toe radius. For the specimens con-
sidered in this investigation one could thus expect the
same difference depending on whether the specimens
were welded in lying or standing position.

Sonsino [27] proposed using FAT160/5 for the assess-
ment of welded joints loaded in pure torsion/shear. As
seen from Figure 7(right) this curve also fits the exper-
imental data very well. It covers all the data, except 2
from Archers investigation.

Sonsino [18] also observed that in some cases, fatigue
tests of thin/flexible specimens tend to give results fol-
lowing an SN curve with a shallower slope. He there-
fore suggested using slopes of mσ = 5 and mτ = 7 for
normal- and shear stress, respectively, in such cases.
However, according to Figure 7, the usual slopes of
mσ = 3 and mτ = 5 seems to fit the data sufficiently
well.

The result of an evaluation such as this one is of
course highly dependent on the selected reference SN
curves. Better results than presented here are often seen
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in the literature e.g. based on experimentally deter-
mined mean SN curves. In this work, however, we use
the standard/accepted design SN curves as provided by
the IIW [2] and [27] in order to shed light on the safety
of the assessments carried out in practical engineering.

4. Evaluation

In the following we evaluate the 8 multiaxial fatigue
criteria by applying them to the collected fatigue test
data for combined loading, omitting the uniaxial results
for clarity.

All the fatigue test data are plotted in SN diagrams
using the calculated equivalent uniaxial stress range
for each criteria for comparison against the FAT225/3
SN curve. The markers are color-coded according to
the loading (light for proportional and dark for non-
proportional) and the marker shape indicates the au-
thor/specimen of the original investigation, see Figures
8 and 9.

The MWCM results cannot be directly plotted in the
same form because this method uses differentiated SN
curves depending on the specific loading conditions of
each test specimen. Instead, we consider the experimen-
tally determined life vs. the calculated life in Figure 9d.

In the typical statistical analysis of fatigue data for
welded joints, all data points are recalculated to the
same stress range in order to fit a log-normal distribu-
tion to the N-data and subsequently calculate the proba-
bility of failure relative to an SN curve. e.g. [7]. In case
of the MWCM, this is not possible, since the method
uses a modified SN curve for each data point, i.e. the
population of test results do not refer to the same SN
curve. This feature of the MWCM makes quantitative
comparison of the criterion against other criteria diffi-
cult.

In order to overcome this difficulty, a prediction ratio
similar to the one employed by Bruun and Härkegård
[15] is introduced

p =
∆σeq,N,i

∆σR,N
(25)

Here, ∆σeq,i,N is the equivalent stress range at N cy-
cles for the i’th specimen and ∆σR,N is the design fa-
tigue strength at the same number of cycles. It thus
describes the ratio of experimentally determined fatigue
strength to the theoretical fatigue strength for each spec-
imen. Therefore p < 1 indicates a non-conservative pre-
diction and p ≥ 1 means that the prediction is conser-
vative, i.e. the data point at hand is at or above the SN
curve.

The advantage of using this prediction ratio is that
it can be applied equally well for criteria based on a
equivalent (modified) stress range and to criteria relying
on a modified fatigue strength, such as the MWCM. In
case of the latter, the prediction ratio takes the form

p =
∆τN,i

∆τRm,N,i
(26)

where the ∆τN,i is the shear stress range on the critical
plane and ∆τRm,N,i is the modified shear stress resistance
at the same number of cycles, N, calculated using the
associated modified slope mm,i of the i’th specimen.

The prediction ratio is calculated for each specimen
using the different criteria and plotted in histograms in
Figure 10. A 3 parameter Weibull distribution is fitted to
each data set in order to calculate the probability of non-
conservative predictions, PNC[%], i.e. the probability of
a test results falling below the SN curve.

The resulting probabilities of non-conservative pre-
diction are listed in Table 2 for each of the multiaxial
criteria.

Table 2: Probability of non-conservative prediction PNC for each mul-
tiaxial criteria when evaluated against FAT225/3 and FAT160/5.

Criterion Loading
Proportional Non-proportional

Principal stress 13.6% 45.6%
von Mises 12.8% 27.1%
Eurocode 3 10.8% 20.4%
IIW recommendations 14.9% 3.6%
Sonsino EESH 8.6% 0.1%
Carpinteri-Spagnoli 13.9% 27.9%
Findley 5.4% 17.8%
Susmel MWCM 10.7% 36.7%

Referring to Figure 10a, the plot shows the predic-
tion ratio for the reference data, i.e. the bending/tension
only specimens evaluated using the normal stress range
∆σx against the FAT225/3 SN curve. Similarly Figure
10b shows the torsion/shear only specimens evaluated
using the shear stress range ∆τxy against the FAT160/5
SN curve, respectively. For these two cases, the proba-
bility of non-conservative prediction is PNC = 4.5% and
1.7%, respectively.

Although these values cannot be directly compared
with SN curve probability of failure (P f = 5% in the
IIW system [7]) they are in the expected order of mag-
nitude.

The remaining plots in Figure 10 (c to j) shows the
prediction ratio calculated using the 8 multiaxial crite-
ria for the specimens under combined loading. These
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Figure 8: Evaluation of equivalent stress and interaction equations.

plots show the same data as in the SN diagrams in Fig-
ures 8 and 9. The light gray bars and curves represent
proportional loading, whereas the darker ones represent
non-proportional loading. Atop each histogram the me-
dian ± 1 standard deviation is shown for the prediction
ratio.

Most criteria show the best performance un-
der proportional loading, with probabilities of non-
conservative predictions generally in the range of 9 −
15%, except the Findley criteria, which achieves the
best results with PNC = 5.4%

All criteria, except the IIW and the EESH, shows
higher probability of non-conservative prediction un-
der non-proportional loading compared to proportional
loading. Several other comments must be made regard-
ing these two criteria. They are by far the most safe with

PNC = 0.1− 3.6% but at the same time the most scatter-
ing and at times over conservative. E.g. approximately
half the predictions of the EESH have p ≥ 2. Like-
wise, they are the only ones in which the calculation
of the equivalent stress range deviates between propor-
tional and non-proportional loading. Considering this,
it is thus not surprising that these criteria achieves the
safest results for non-proportional loading.

The principal stress approach on the other hand (Fig-
ure 8a and 10c), shows the most troubling finding of this
study, i.e. 45.5% non-conservative predictions in case of
non-proportional loading. For proportional loading, the
approach is on par with most other criteria. The IIW
recommendation of not using this approach for non-
proportionally loading should thus be taken very seri-
ously.
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Figure 9: Evaluation of critical plane approaches.

Using the von Mises equivalent stress, Figure 8b and
10d, covers the data somewhat better, both regarding
proportional and non-proportional loading.

Comparing the EC3 and IIW interaction equations
(Figure 8a and b and 10e and f), it is seen that the
IIW approach is superior for non-proportional loading.
The performance under proportional loading, on the
other hand is more even. The IIW correction for non-
proportional loading (using a lower CV = 0.5) corre-
sponding to a penalty factor of 1/

√
0.5 = 1.41 on the

stress range is relatively crude, but it does provide al-
most exclusively safe results (PNC = 3.6%).

The EESH, Figure 9a, generally provides the most
safe results overall, maybe a bit on the conservative side

for non-proportional loading, Figure 10g. A drawback
of this approach is that it needs very specific information
(e.g. Kt,τ and δ) which is available for fatigue tests, but
may be unknown in practice, i.e. the stress concentra-
tion factor may be difficult to determine in case of com-
plex geometry (due to ill-defined nominal stress) and the
phase shift between the loading may vary. Also in the
case of non-torsional secondary loading, e.g. Takahashi
[26], the shear stress concentration factor Kt,τ becomes
very small and the assessment thus very conservative.

For proportional loading, the Carpinteri-Spagnoli cri-
teria corresponds to the principal stress approach with
the addition of a mean stress correction (eq. (19)), but
since most test results are obtained under R = −1, the
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effect is minor. For non-proportional loading, on the
other hand, the shear stress range is included in the cal-
culation of the effective stress range scaled by a factor
of k = 1.98 according to eq. (18).

From the analysis of the MWCM results, it turns out
that the limit value on the modified slope mm ≥ mσ is
crucial for the performance, whereas the limit on the
stress ratio ρw seems less significant. Considering non-
proportional loading, the MWCM is the second least
safe of the criteria with PNC = 36.7%. It does how-
ever show the least amount of scatter in the prediction
results, Figure 10j. For proportional loading, the results
are on line with the other criteria.

The two reference SN curves (FAT225/3 and
FAT160/5) should not be blamed for the poor perfor-
mance of some the criteria, since they both cover the
uniaxial test results very well.

More conservative assessments could of course be
obtained using the rotated SN curves proposed by Son-
sino [18] (mσ = 5 and mτ = 7) for thin or flexible spec-
imens. However, considering the specimen geometries
in Figure 5, none of them appear particularly thin or
flexible in the opinion of the author, though this is of
course a subjective judgment.

5. Conclusions

This paper presented a re-analysis of a large amount
of fatigue test results of welded joints subjected to mul-
tiaxial loading. The investigation is carried out using the
notch stress approach and 8 different multiaxial criteria.

A quantitative evaluation is performed by calculating
a prediction ratio for each test result using each of the
multiaxial criteria. The population of prediction ratios is
then subjected to statistical analysis and the probability
of non-conservative prediction is determined for each
criteria.

Here, it should be kept in mind that some of the scat-
ter observed in the results may stem from other issues
than just the multiaxial criteria, however the results pre-
sented here reflects the safety obtained in an engineering
context when using the approaches described.

The following conclusions are drawn

1. The uniaxial reference SN curves FAT225/3 and
FAT160/5 agree well with the experimental re-
sults studied here for pure bending/tension and tor-
sion/shear, respectively.

2. The probability of non-conservative prediction is
generally very high for non-proportional loading,
up to 45%.

3. For proportional loading, the probability of non-
conservative prediction is generally much lower,
but still up to 15%.

4. The Findley criterion lead to the safest predictions
for proportional loading.

5. The EESH and IIW criteria are recommended for
non-proportional loading, since these showed the
lowest probability of non-conservative predictions.
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Table A.3: Fatigue test series data. 1Count used here. 2Typical value (varies). 3Torsion specimens machined, corrected by 1/1.3 4Secondary load
not shear, but transverse tension (σy)

Author No.1 Rσ Rτ τ/σ Material Stress relieved Dimensions [mm]
Siljander [4] 38 -1;0 -1;0 0.422 ASTM A519 yes �50.8x9.5
Bäckström [3] 22 -1;0;> 0 -1;0 0.432 S355 no SHS100x100x5
Yung [19] 18 -1 -1 0.582 ASTM A519 some �47.6x8
Sonsino (TP) [9] 34 -1 -1 0.58 StE460 yes �88.9x10
Sonsino (TT) [9]3 46 -1 -1 0.58 StE460 yes �88.9x6
Witt [20] 41 -1;0 -1;0 1.00 S460M yes �84.9x8
Amstutz [21] 37 -1;0 -1;0 1.00 StE460 yes �88.9x10
Yousefi [22] 40 -1 -1 1.00 P460 yes �84.9x8
Razmjoo [23] 28 0 0 > 1.002 BS4360-50D no �48.6x3.2
Archer [24] 22 0 -1 1.00 BS4360-43C/A no Beam 192x200x8
Dahle [25] 8 -1 -1 ≈ 1.002 Domex 350 no Beam 150x150x10
Takahashi [26]4 17 0 0;< −1 ≈ 1.002 JIS SM400B no 100x12 longitudinal

Table A.4: Notch stress at unity nominal stress.
Primary load Secondary load

Author Type σx σy σz τxy τyz τxz Type σx σy σz τxy τyz τxz

Siljander Bending 2.34 0.76 0.15 0.00 -0.00 -0.53 Torsion 0.00 -0.00 -0.00 1.63 -0.33 0.00
Backstrom Bending 3.45 1.07 0.75 0.06 -0.01 -0.81 Torsion 0.00 -0.01 -0.00 1.42 -0.39 0.00
Yung Bending 2.80 0.96 0.25 -0.00 0.00 -0.65 Torsion -0.00 -0.00 -0.00 1.57 -0.35 0.00
SonsinoTP Bending 3.31 1.14 0.16 -0.00 0.00 -0.68 Torsion -0.00 -0.00 -0.00 1.74 -0.34 -0.00
SonsinoTT Bending 1.65 0.22 0.04 0.01 0.01 -0.22 Torsion -0.00 0.02 -0.02 1.36 -0.17 0.07
Witt Bending 2.88 1.04 0.24 -0.00 -0.00 -0.61 Torsion -0.00 0.00 -0.00 1.62 -0.33 -0.00
Amstutz Bending 3.31 1.14 0.16 -0.00 0.00 -0.68 Torsion -0.00 -0.00 -0.00 1.74 -0.34 -0.00
Yousefi Bending 2.88 1.04 0.24 -0.00 -0.00 -0.61 Torsion -0.00 0.00 -0.00 1.62 -0.33 -0.00
Razmjoo Tension 4.06 1.85 0.19 -0.00 -0.00 -0.83 Torsion 0.00 0.00 0.00 1.46 -0.29 0.00
Archer Bending 2.00 0.40 0.11 -0.01 0.00 -0.42 Shear 0.07 -0.02 0.00 1.57 -0.33 -0.01
DahleTW Bending 1.79 0.30 0.14 -0.00 -0.00 -0.43 Torsion 0.00 -0.00 0.00 1.55 -0.39 -0.00
TakahashiL Tension 2.62 0.43 0.38 0.04 -0.01 -0.67 Tension -0.84 0.39 -0.13 -0.01 0.00 0.23
TakahashiU Tension 3.15 0.62 0.41 0.05 -0.01 -0.76 None - - - - - -
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Table A.5: Nomenclature
σx normal stress perpendicular to weld θ search plane rotation angle
σy normal stress parallel to weld φ search plane inclination angle
τxy shear stress parallel to weld ρw critical plane stress ratio
∆σ1 principal stress range mm slope of modified SN curve (MWCM)
∆σvM von Mises stress range ∆τRm fatigue strength of modified SN curve (MWCM)
∆σEC3 EC3 equivalent stress range f Findley damage parameter
∆σIIW IIW equivalent stress range fcrit critical value of the Findley parameter
∆σR normal stress fatigue strength σmax maximum normal stress over cycle
∆τR shear stress fatigue strength F(θ) EESH damage parameter
D damage ∆σEES H EESH equivalent stress range
CV comparison value fs EESH size factor
σ stress tensor N number of cycles
Sn stress vector on plane ∆σn normal stress range on critical plane
σn normal stress on plane ∆σC−S Carpinteri-Spagnoli stress range
τ shear stress on plane ∆σeq equivalent normal stress range
n plane unit normal vector σm mean stress
P f probability of failure Ps probability of survival
m slope of SN curve R stress ratio
mσ slope of normal stress SN curve mτ slope of shear stress SN curve
t plate thickness [mm] Kt,σ stress concentration factor (normal stress)
µ Poisson’s ratio Kt,τ stress concentration factor (shear stress)
km correction for misalignment Rm tensile strength [MPa]
k constant δ phase shift in loading
p prediction ratio PNC probability of non-conservative prediction
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