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Abstract

General-purpose compression algorithms encode files as dictionaries of substrings
with the positions of these strings’ occurrences. We hypothesized that such al-
gorithms could be used for pattern discovery in music. We compared LZ77,
LZ78, Burrows–Wheeler and COSIATEC on classifying folk song melodies. A
novel method was used, combining multiple viewpoints, the k-nearest-neighbour
algorithm and a novel distance metric, corpus compression distance. Using sin-
gle viewpoints, COSIATEC outperformed the general-purpose compressors, with
a classification success rate of 85% on this task. However, by combining 8 of the
10 best-performing viewpoints, including seven that used LZ77, the classification
success rate rose to over 94%. In a second experiment, we compared LZ77 with
COSIATEC on the task of discovering subject and countersubject entries in fugues
by J. S. Bach. When voice information was absent in the input data, COSIATEC
outperformed LZ77 with a mean F1 score of 0.123, compared with 0.053 for LZ77.
However, when the music was processed a voice at a time, the F1 score for LZ77
more than doubled to 0.124. We also discovered a significant correlation between
compression factor and F1 score for all the algorithms, supporting the hypothesis
that the best analyses are those represented by the shortest descriptions.
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1 Introduction

In this paper, we explore the use of general-purpose text-compression algorithms for
analysing symbolic music data. Drawing on the theory of Kolmogorov complexity (Kol-
mogorov, 1965; Li and Vitányi, 2008), it has been suggested previously that the simplest
and shortest descriptions of any musical object are those that describe the best possible
explanations for the structure of that object (Meredith, 2012, 2016). An explanation for
the structure of an object is a description of the object that provides a hypothesis as
to the process that gave rise to it. Typically, we want explanations to be as simple or
short as possible, while also describing the explained object in as much detail as possible.
This so-called “principle of parsimony” can be traced back to antiquity1 and is known in
common parlance as “Ockham’s razor”, after the mediaeval English philosopher, William
of Ockham (ca. 1287–1347), who made several statements to this effect.

In more recent times, the parsimony principle has been formalized in various ways, in-
cluding Rissanen’s (1978) minimum description length (MDL) principle and Solomonoff’s
(1964a; 1964b) theory of inductive inference. The essential idea underpinning these tech-
niques for learning from data is that explanations for data (i.e., ways of understanding it)
can be derived from it in a bottom-up way, simply by compressing it. Indeed, Vitányi and
Li (2000, p. 446) have shown that “data compression is almost always the best strategy”
both for model selection and prediction. This provides motivation for the work presented
in this paper, in which we explore the possibility that general-purpose compression al-
gorithms can effectively be used to automatically derive successful explanations for (i.e.,
analyses of) the structures of pieces of music. More specifically, our work is based on
the hypothesis that the shorter a description, the better it explains the object being de-
scribed, suggesting the possibility of automatically deriving explanatory descriptions of
objects (in our case, pieces of music) simply by compressing ‘in extenso’ descriptions of
them. In the case of music, such an ‘in extenso’ description might be simply a list of the
properties of the notes in a piece (e.g., the pitch, onset and duration of each note).

The minimum description length principle (MDL) as well as concepts related to MDL,
such as relative entropy and mutual information (which originate in Shannon’s (1948a;
1948b) information theory), have been used in several previous studies in the fields of com-
putational music analysis and music information retrieval (e.g., Bimbot et al., 2012; Con-
klin and Witten, 1995; Mavromatis, 2005, 2009; Temperley, 2014; White, 2014). However,
in these studies, stochastic models are typically assumed (e.g., HMMs (Mavromatis, 2005,
2009), Bayesian inference (Temperley, 2014), entropy-based models (Conklin and Witten,

1See, for example, chapter 25 of book 2 of Aristotle’s Posterior Analytics.
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1995)). That is, in these approaches, music is assumed to be the output of a random
source that emits symbols in accordance with some (possibly context-dependent) prob-
ability distribution. In contrast, in this study we focus on non-probabilistic, dictionary-
based compression algorithms, such as those based on the Lempel–Ziv algorithm (Ziv
and Lempel, 1977, 1978) and bzip2 (Seward, 2010), that achieve compression by discov-
ering repeated substrings in sequences and replacing occurrences of these substrings with
low-information pointers to items in a dictionary. We focus on such dictionary-based al-
gorithms rather than stochastic methods, because the former seem to relate more closely
to analytical methods such as paradigmatic analysis (Ruwet, 1966; Nattiez, 1975), in
which musical sequences are segmented and segments are compared and clustered into
paradigms.

General-purpose text-compression algorithms have been used previously for comput-
ing the normalized compression distances (NCDs) (Li et al., 2004) between pairs of musi-
cal objects in classification and clustering tasks (Cilibrasi et al., 2004; Li and Sleep, 2004,
2005; Hillewaere et al., 2012). The results of these studies support the hypothesis that
compressed encodings of melodies capture perceptually important structure in them. An
assumption underlying most of these studies is that the specific compressor used should
make little difference to the results. For example, Cilibrasi et al. (2004, p. 50) claim that
their method is “robust under choice of different compressors”. However, recent studies
by Meredith (2014a,b, 2015, 2016) show that the choice of compressor used to measure
NCD can have a large effect on performance in music classification tasks. For exam-
ple, on the task of classifying the melodies in the Annotated Corpus of Dutch folk songs
(Nederlandse Liederenbank, NLB) (Grijp, 2008; van Kranenburg et al., 2013), Meredith
found that the classification success rate varied from 12.5% to 84%, depending on which
compression algorithm was used to calculate the NCDs between the melodies. Moreover,
these results did not seem to indicate a clear correlation between how well an algorithm
compressed the melodies and how well it performed on classification. For example, the
general-purpose text-compression algorithm, bzip2 (Seward, 2010), achieved an average
compression factor of 2.76 but a success rate of only 12.5%; whereas the COSIATEC
point-set compression algorithm (Meredith et al., 2003; Meredith, 2014b), which was
originally designed for music analysis, achieved an average compression factor of only
1.58 but a classification success rate of 84%.

In this paper, we therefore investigate more closely the effect of choice of compressor
on classification performance, by comparing four compression algorithms on two music-
analytical tasks. The algorithms compared include three general-purpose, dictionary-
based, text-compression algorithms and the COSIATEC point-set compression algorithm
(which was originally designed for analysing music). We expect the general-purpose
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compressors to achieve better compression on average than COSIATEC, since they have
been specifically designed to achieve good compression on many different types of data,
whereas COSIATEC was designed to find patterns in music. Our motivating hypothe-
sis (that shorter descriptions provide better explanations) leads us to expect a positive
correlation between compression factor and classification accuracy, which, in turn, leads
us to expect better classification success rates from the algorithms that achieve better
compression. However, as mentioned above, this is not unambiguously supported by the
results obtained by Meredith (2014a,b, 2015, 2016). We are therefore particularly inter-
ested in determining whether the general-purpose compressors, which typically achieve
better compression factors than COSIATEC, are generally less successful than COSI-
ATEC on music-analytical tasks, or if the poor classification success rate that Meredith
achieved with bzip2 is atypical.

In a study by van Kranenburg et al. (2013), a classification method based on local
features (Conklin, 2013a,b; Hillewaere et al., 2009; van Kranenburg et al., 2013), such
as pattern similarity, outperformed methods that depended primarily on global features
(Freeman and Merriam, 1956; Hillewaere et al., 2009; van Kranenburg et al., 2013), such
as tonality, first and last note of a melody, average pitch and so on. Moreover, Conklin
(2013a,b) recently showed that combining both local and global features using the multiple
viewpoint approach yielded better results in a classification task than using just a single
feature or viewpoint. This approach has also produced good results on prediction and
generation of music (Conklin and Witten, 1995; Pachet, 2003). In this paper, we therefore
focus on local features and investigate the effect of using various different representation
schemes (i.e., viewpoints), both separately and in combination, on the efficiency and
effectiveness of the compression algorithms that are compared.

In section 2, we describe and analyse derivative versions of three general-purpose
compression algorithms: Burrows–Wheeler (Burrows and Wheeler, 1994), Lempel-Ziv-
77 (Ziv and Lempel, 1977) and Lempel-Ziv-78 (Ziv and Lempel, 1978). We also review the
COSIATEC algorithm, which was specifically developed for analysing music represented
as sets of points, but which could, in fact, be applied in general to multi-dimensional point-
set data. We use these four algorithms to compress sequences of two-dimensional points,
treated as one-dimensional sequences of symbols from the alphabet Z2. For this reason,
the examples presented below will use letters as symbol labels instead of two-dimensional
points. The goal was to preserve the design of the text compression algorithms, but
present the musical data in a way that allows these algorithms to find important repeated
patterns. In section 3, we then present a new classification method that combines the
multiple viewpoints approach (Conklin, 2013b) and the k-nearest-neighbour algorithm.
Finally, in section 4, we present the results obtained when the algorithms, combined with
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various input representations, were used to carry out two tasks:

1. a classification task run on the Annotated Corpus from the Dutch Song Database,
Onder der Groene linde (Grijp, 2008), using the new classification method, de-
scribed in section 3; and

2. a pattern discovery task for LZ77 and COSIATEC on the 24 fugues from the first
book of J. S. Bach’s Das Wohltemperirte Clavier.

2 The algorithms

2.1 Burrows–Wheeler

One of the most widely-used, general-purpose compression algorithms is bzip2 (Seward,
2010), which is based on the work of Burrows and Wheeler (1994) (see also Sayood, 2012).
The Burrows–Wheeler algorithm uses a transformation on the input sequence along with
entropy coding. The Burrows–Wheeler algorithm (at least as implemented in bzip2)
typically achieves better compression than the standard GNU compression program, gzip
(http://www.gzip.org).2 We therefore decided to explore the possibility of adapting it
for pattern discovery in note sequences.

The algorithm consists of three parts:

1. The Burrows–Wheeler transform. This step executes a permutation of the input
sequence that improves the compression effect of the following step.

2. Move-to-front coding. This is a transformation that can improve the performance
of entropy coding such as Huffman coding. It also has a high compression effect.

3. Huffman or arithmetic coding.

We implemented all steps of the algorithm, but only used the first two parts, as the
arithmetic (in our case, Huffman) coding step improved neither classification nor com-
pression performance on the Annotated Corpus. We suspect this is due to the fact that
the melodies we are analysing here are relatively short, which means that a radix-10 string
representation, that uses fewer characters, performs better than a radix-2 representation
(i.e., a bit-string). Nevertheless, by coding symbols in groups instead of individually,
it is feasible that arithmetic coding might improve the results of the Burrows–Wheeler
algorithm on the song classification task that we consider in this paper.

2See, for example, the results reported at http://tukaani.org/lzma/benchmarks.html.
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row T
0 a b a n a n
1 a n a b a n
2 a n a n a b
3 b a n a n a
4 n a b a n a
5 n a n a b a

Figure 1: Example of a matrix used by the Burrows–Wheeler transform.

2.1.1 Burrows–Wheeler transform

The Burrows–Wheeler transform performs a permutation on the input string. The aim of
this permutation is to bring equal elements closer together. This permutation increases
the probability of finding a character c at a point in a sequence if c already occurs near
this point. This can often result in better compression.

The Burrows–Wheeler transform uses an n × n matrix where n is the length of the
input string S (see Figure 1). The elements of this matrix are points in S. Each row is
a distinct cyclic shift of S. There is therefore at least one row that is equal to the input.
The rows are then sorted into lexicographic order. The output of the algorithm is a pair
(T, i), where T is the last column of the matrix and i is the index of a row corresponding
to S (usually, there is only one such row).

An example of such a sorted matrix using the input string S = banana is shown in
Figure 1. As S appears in row 3, the output is then the pair formed by the string of the
last column and this index: (nnbaaa, 3). In this example, characters that are equal are
regrouped together. However, this is not always the case, as can be seen in Burrows and
Wheeler’s (1994) own example, abraca, which is transformed into caraab.

2.1.2 Move-to-front coding

The second step in the algorithm is to encode the string returned by the Burrows–Wheeler
transform using move-to-front coding. This step takes a string, T , as input and returns a
vector, R, of integers. This algorithm needs to know the alphabet, Y , of the input, so the
first step consists of an iterative algorithm that builds the alphabet by reading the input
string from left to right, adding new characters to an initially empty alphabet. R is then
built by executing the algorithm shown in Figure 2. It replaces each character, T [i], by its
index in the alphabet, Y , and then places that character at the beginning of Y . Applied
to the string, nnbaaa, it first computes the alphabet, Y = [n, b, a], and then returns
the integer vector, R = [0, 0, 1, 2, 0, 0]. The input of this algorithm is such that, when a
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Move-To-Front(T )
1 Y ← The alphabet of T
2 Construct an empty array R of length |T |
3 for i← 0 to |T | − 1
4 R(i)← The index of T (i) in Y
5 Move T (i) to the front of Y
6 return R

Figure 2: The move-to-front coding algorithm.

character appears, the probability that it has already appeared or will appear again is
high. Therefore, the integer found in line 4 of Figure 2 will be lower than without the
transform. To ensure reversibility, the algorithm needs to return the alphabet, Y , as well
as the integer vector, R, and the index, i, returned by the Burrows–Wheeler transform.

2.2 Lempel-Ziv-77 (LZ77)

In 1977, A. Lempel and J. Ziv introduced a lossless, dictionary-based data compression
algorithm, commonly called LZ77 (Ziv and Lempel, 1977). There have been some im-
provements proposed for this algorithm, such as LZMA which is used by the 7zip compres-
sor (Pavlov, 2015). However, some compressors such as ZPAQ, which is one of the best
general-purpose compressors currently available (Mahoney, 2009), still continue to use
the basic version of LZ77. LZ77 achieves compression by discovering repeated patterns in
strings and coding repeated substrings by references to their occurrences (Sayood, 2012).
This motivated us to explore its potential for discovering musically relevant patterns in
note sequences.

The LZ77 algorithm uses a sliding window which consists of two parts: the dictionary
part and the look-ahead buffer. The dictionary contains an already-encoded part of the
sequence, and the look-ahead buffer contains the next portion of the input to encode.
The size of each part is determined by two parameters: n, the size of the sliding window;
and Ls, the maximal matching length (i.e., the size of the look-ahead buffer).

Before looking in detail at the working of LZ77, we first introduce some notation
relating to strings. Let S1 and S2 be two strings. S1(i) denotes the (i + 1)th element in
S1 (i.e., zero-based indexing is used). S1(i, j) is the substring from S1(i) to S1(j). S1S2 is
the string obtained by concatenating S1 and S2. Finally, Sn

1 denotes a string consisting
of n consecutive occurrences of S1.

The main principle of LZ77 is to find the longest prefix of the look-ahead buffer that
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also has an occurrence which begins in the dictionary. The output is then a sequence of
triples, (pi, li−1, c), where pi is a pointer to the first element of the dictionary occurrence,
li − 1 is the length of the prefix and c is the first element that follows the prefix in the
look-ahead buffer.

LZ77 is an iterative algorithm. First it initializes a window, W , by filling the dic-
tionary with a null symbol (a in the examples below, however, in practice, we use the
point (0, 0)). The look-ahead buffer is then filled with the first Ls elements of the input
sequence, S, to be encoded—that is,

W = an−LsS(0, Ls − 1) .

The followings steps are then repeated until the whole sequence, S, is encoded:

1. Find Si = W (n−Ls, n−Ls + li− 2), the longest prefix of length li− 1 of the look-
ahead buffer that also has an occurrence which begins at index pi in the dictionary.
When there is no prefix (i.e., li = 1), pi = 0, and when there are several possible
pi, the smaller is taken. The dictionary occurrence of the prefix may run into the
look-ahead buffer (and therefore overlap the prefix) if li + pi > n− Ls.

2. Add the triple, (pi, li−1, c), to the output string (radix-10 representation is used for
pi and li). c is the first element that follows the prefix in the look-ahead buffer—that
is, c = W (n− Ls + li − 1).

3. Shift the window and fill the end of the look-ahead buffer with the next li elements
of the input sequence: W becomes W (li, n)S(hi + 1, hi + li), where hi is the index
into S of the last element of W before the shift operation.

Figure 3 shows LZ77 being used to encode the sequence caabaabaabcccccb. It first fills
the dictionary with ‘a’ and the look-ahead buffer with the 8 first elements of the input
sequence. Then there is no substring in the dictionary that begins with a c, so li = 1,
pi = 0 and the element following the prefix is c. Then, we shift the window by one (value
of li) and obtain the state given in the second line. Here we find the prefix aa followed
by b, so li = 3 and, as pi can be any integer between 0 and 5, the algorithm returns the
lowest one: pi = 0. The window is then shifted by 3 and the state obtained is shown
on line 3. Here, an overlapping occurs in which the prefix found, aabaab, begins in the
dictionary and ends in the look-ahead buffer. On this step, the algorithm returns (5, 6, c).
The algorithm ends by doing one more step. Finally, the output is:

(0, 0, c)(0, 2, b)(5, 6, c)(7, 4, b) .
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Figure 3: Sliding window used by the LZ77 algorithm.

2.3 Lempel-Ziv-78

The Lempel–Ziv–78 (LZ78) algorithm is also a dictionary-based compression algo-
rithm (Ziv and Lempel, 1978) (see also Sayood, 2012). However, in LZ78, the size of the
dictionary is limited only by the amount of memory available. Many later compression al-
gorithms have been based on LZ78, perhaps most notably the Lempel–Ziv–Welch (LZW)
algorithm (Welch, 1984), which is used by the basic Linux command compress. However,
as LZW needs to store the input alphabet in the dictionary, and as the input alphabet
in our case is Z2 and therefore infinite, we preferred to use the basic version of LZ78.3

The principle of LZ78 is to fill an explicit dictionary with substrings of the input. A
feature of this algorithm is that the dictionary is the same at encoding and decoding.

LZ78 works in four steps:

1. Create an empty substring B and extend it by adding characters of the input S
until B does not appear in the dictionary.

2. Add the pair (i, c) to the output, where i is the last index met (i.e., the index
corresponding to the longest match of B in the dictionary) and c is the last character
added.4

3. Add B to the dictionary.

4. Set B to the empty string and repeat the steps until the whole input is encoded.
3Of course, in practice, our alphabet would be a finite subset of Z2, but this would still be very large

and therefore significantly increase the size of the dictionary.
4In practice, when i = −1, the algorithm returns (x, c). This improves compression a little because

it uses one character, whereas “−1” uses two.
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Dictionary
Output Index Entry
(x, c) 0 c
(x, a) 1 a
(1, b) 2 ab
(1, a) 3 aa
(x, b) 4 b
(3, b) 5 aab
(0, c) 6 cc
(6, c) 7 ccc
(4, ε) 8

Figure 4: Example of sequence encoding with the LZ78 algorithm.

Figure 4 illustrates the encoding of the sequence caabaabaabcccccb with LZ78. When
the algorithm begins, the dictionary is empty, therefore the two first letters encountered
(c and a) are directly added into it and the returned index is −1 (encoded as ‘x’). Then
a is added to an empty B, but as a is already in the dictionary, the algorithm adds also
b, producing B = ab which is not in the dictionary. The output is then (1, b), the index
of the longest match (a) in the dictionary and the last character of B. It also adds B
to the dictionary as a new substring encountered. The details of the remainder of the
encoding process are tabulated in Figure 4.

2.4 COSIATEC

Unlike the preceding algorithms, COSIATEC (Meredith et al., 2003; Meredith, 2014b)
has not, to date, been used for general-purpose compression. This algorithm takes as
input a set of points, D, in any number of dimensions, called a dataset, and outputs a
parsimonious encoding of this dataset in the form of a set of translational equivalence
classes (TECs) of maximal translatable patterns (MTPs). Any set of points in a dataset,
D, is called a pattern. A maximal translatable pattern in a dataset, D, for a given vector,
v, is the set of points in D that can be translated by v onto other points in D. That is,

MTP(v, D) = {p | p ∈ D ∧ p+ v ∈ D} , (1)

where p+ v is the point obtained by translating the point p by the vector v. MTP(v, D)
is the subset of all points of D that have an image in D when translated by v.

The TEC of a pattern, P , in a dataset, D, is the set of patterns in D onto which P

can be mapped by translation. Every TEC has a covered set which is the union of the
patterns that it contains. Each TEC in the output of COSIATEC is encoded compactly
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as a pair, (pattern, translator set), where the translator set is the set of vectors that map
the pattern onto its other occurrences in the dataset. The possibility of encoding a TEC
compactly in this way is the key to the algorithm’s ability to compute a compressed
encoding of an input dataset.

The algorithm used to find MTPs, called SIA, is fully described by Meredith et al.
(2002), and will therefore not be reviewed here.

The equivalence relation used to build TECs, denoted by ≡T , is defined between two
patterns P1 and P2 of a dataset D:

P1 ≡T P2 ⇐⇒ (∃v|P2 = P1 + v) , (2)

where P1 + v defines the set obtained by translating all points in P1 by the vector, v.
The TEC of the pattern, P ⊆ D, is the equivalence class of P :

TEC(P,D) = {Q | Q ≡T P ∧Q ⊆ D} . (3)

COSIATEC first runs the SIATEC algorithm (Meredith et al., 2002) to find MTP
TECs (i.e., translational equivalence classes of the maximal translatable patterns in
the input dataset). Each TEC in the output of SIATEC is represented by a pair
(pattern, translator set). The TEC in the output of SIATEC which gives the best com-
pression is then selected and added to the output encoding. The covered set of this TEC
is then removed from the dataset and the process of running SIATEC and selecting the
TEC that gives the best compression is repeated on the remaining dataset points. The
process is repeated until every point in the dataset is covered by a TEC in the output en-
coding. The output encoding generated by COSIATEC is therefore a list of MTP TECs
whose covered sets exclusively and exhaustively partition the input dataset.

The COSIATEC algorithm was originally designed for analysing music, but it is ac-
tually a compression algorithm that can be applied to any data that can be represented
as a set of points in a Euclidean space (of any dimensionality). For example, it could be
used for text-compression by using a reversible mapping from A∗ to Zk where A is an
alphabet. Such a mapping could, for example, consist of coding each symbol in a string,
S ∈ A∗, as a 2-dimensional point, 〈i, `〉, where i is the index of the symbol’s position in
the string and ` is the index of the symbol in A.
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3 Combined representations classification method

In this section, we present the method we used to evaluate the compression algorithms
described above. This method is based on Conklin and Witten’s (1995) notion that
“no single music representation can be sufficient for music” and that combining sev-
eral representations—that is, multiple viewpoints—can produce a better model. With
this method, good results have been achieved in prediction, generation and classifica-
tion (Chordia et al., 2010; Conklin, 2013a,b; Pachet, 2003; Pearce et al., 2005).

Meredith (2014b) compared the performance of several point-set compression algo-
rithms on the task of classifying songs from the Dutch Song Database (Grijp, 2008)
into tune families. For this classification, he used the 1-nearest-neighbour algorithm and
normalized compression distance (NCD) (Li et al., 2004) and evaluated the classifica-
tion success rate using leave-one-out cross-validation. As mentioned in the introduction,
NCD has been used previously in several music classification studies (Cilibrasi et al.,
2004; Hillewaere et al., 2012; Li and Sleep, 2004, 2005). Our new method combines the
multiple viewpoints approach with the well-known k-nearest-neighbour algorithm using
NCD to measure the similarity between melodies.

3.1 Representations

If (Z2)∗ is the set of strings of 2-dimensional points with integer co-ordinates, then we
define a representation of a melody to be a function, f : (Z2)∗ → (Z2)∗, where f preserves
the size of the string and the sequence of points—that is, a point is replaced in the
sequence by its new representation. The function must be reversible if it is to be used
for lossless compression, but for classification this is not necessary. Each representation
we used is described in Table 1. We also used composition of transformations, ◦, as the
composition on functions.

The viewpoint representations chosen for this study were based on those used by van
Kranenburg et al. (2013) and Conklin (2013b). Van Kranenburg et al. (2013) discovered
features that allow for the data from the folk song dataset to be classified with almost
perfect accuracy. However, the musicologists who provided the “ground-truth” classifi-
cation did not describe any explicit criteria or method that they used to determine the
tune families to which they judged the songs to belong. Indeed, one of the principal
motivations behind van Kranenburg et al.’s (2013) work was to discover the criteria that
had been implicitly used by the musicologists. We focused on using local features in our
viewpoint representations, since van Kranenburg et al. (2013) showed that local features,
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Name Description

basic The basic pitch–time representation—i.e., a string of (onset, pitch) points

int

A string of (onset, pitch interval ) points:

int(p0) = p0

int(pn) = (pn.onset, pn.pitch− pn−1.pitch)

int0

A string of (onset, pitch interval from first note) points:

int0(p0) = p0

int0(pn) = (pn.onset, pn.pitch− p0.pitch)

pp

A string of (onset, pitch pointer) points:

pp(p0) = p0

pp(pn) =
{

(pn.onset, pn.pitch), the first time the pitch occurs; and
(pn.onset, j − n), otherwise;

where j is the index of the most recent occurrence of the pitch pn.pitch.

ioi

Inter-onset interval:
int(p0) = p0

ioi(pn) = (pn.onset− pn−1.onset, pn.pitch)

oip

Same as pp but for onset-intervals:

oip(p0) = p0

oip(pn) =
{

(pn.onset− pn−1.onset, pn.pitch), the first time the IOI occurs; and
(j − n, pn.pitch), otherwise;

where j is the index of the most recent occurrence of the IOI, pn.onset− pn−1.onset.

Table 1: The viewpoints used in the experiments. pi is the (i+1)th point in the basic
representation. pi.x denotes property x of point pi.
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such as motivic similarity, performed better than global features such as key, median and
first/last note.

It is feasible that our results could have been improved by using higher-level structural
information in our viewpoints such as the metrical positions of event onsets or the tonal
functions of notes within keys (e.g., by using a pitch encoding that includes scale de-
gree information). Unfortunately, such metrical and tonal information was not provided
explicitly in the input data and would thus have had to have been either generated au-
tomatically or manually encoded. Moreover, using only low-level, “surface” information
(e.g., note onsets and pitches) as input to our classifiers simulates more closely the infor-
mation with which a listener is provided when recognizing the tune family of a melody
without having studied a (transcribed) score of that melody (note that these melodies
were only relatively recently written down after having been transmitted orally for gen-
erations). Of course, when hearing the melodies, a listener is very likely to infer a metre
and a key at each point in the music, relative to which pitched events are interpreted.
However, such higher-level metric and tonal information is inferred by a listener’s brain
(potentially drawing on all of that listener’s musical knowledge) and is typically not ex-
plicitly encoded in the physical sound that impinges on the listener’s ears. By restricting
the information given as input to the classifiers to low-level information about the pitches
and onsets of notes, we ensure that the task that we demand of our classifiers more closely
resembles that which is carried out by the musicologists who created the ground-truth
classification. While we accept that note onsets and pitches are also aspects of the ex-
perience of listening to a melody that are inferred by a listener’s brain, we contend that
there is rather less room for disagreement between listeners regarding what the pitches
and onsets of notes are in a melody, than there is regarding higher-level structures such
as metre and tonality. We therefore avoided using such higher-level structural informa-
tion in the representations used by our classifiers, in order to minimize the risk of these
classifiers depending on specific interpretations of the melodies that might not be shared
by most listeners.

If such high-level information had been manually encoded in the input data by experts,
then we could perhaps have reasonably assumed that this information had some legiti-
macy, but there would still have been the possibility of an expert encoding a metrical or
tonal structure that reflected an idiosyncratic, theory-laden or controversial interpretation
of the melody. On the other hand, if these structures had been generated automatically,
then we could not have guaranteed that they reflected anyone’s interpretation of the
music. Moreover, the results would then have depended on the specific algorithms used
to generate the higher-level structures, which would have made it much harder to assess
the contributions made by the different compression algorithms.
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Notwithstanding these arguments, we did, in fact, use morphetic pitch (Meredith,
1999, 2006, 2007; Collins, 2011) rather than chromatic pitch (or MIDI note number) in
all of our experiments. As explained by Meredith (2006, pp. 127), the morphetic pitch
of a note is an integer that is determined by the vertical position of the note-head of
the note on the staff, the clef in operation on that staff at the location of the note and
the transposition of the staff. Moving a note one step up on the staff (while keeping the
clef constant) increases its morphetic pitch by 1, regardless of the note’s accidental. The
morphetic pitch of A0 is defined to be 0, thus A0, A[0 and A]0 all have a morphetic
pitch of 0. The morphetic pitch of middle C (and C]4, C[4 and so on) is 23. Note that
it is possible for a note to have a higher chromatic pitch but lower morphetic pitch than
another note. For example, B 3 has a lower morphetic pitch (22) but a higher chromatic
pitch than C4. If pm is the morphetic pitch of a note, then the continuous name code of the
note in Brinkman’s (1990, p. 126) system of pitch representation is pm +5 and the diatone
of the note in Regener’s (1973, p. 32) system is pm − 17. For a more detailed discussion
of morphetic pitch, chromatic pitch and other pitch representations, see Meredith (2006,
pp. 126–130).

In a two-dimensional point-set representation, such as the ones that we employed,
in which the first co-ordinate gives the onset time of a note and the second gives its
morphetic pitch, patterns of notes related by modal transposition (e.g., (C,D,E) being
transposed up a third within a C major scale to (E,F,G)) are translationally equivalent
(i.e., they have the same shape). Such patterns are therefore discovered by algorithms
like COSIATEC that detect transposition- (or translation-) invariant occurrences. They
can also be discovered by general-purpose compression algorithms like LZ77, if the input
encoding represents intervals between consecutive melodic notes rather than the notes
themselves (as in our int and pp representations, see Table 1). It should be noted (again
notwithstanding our arguments above) that the morphetic pitch values of the notes in
our input data were computed using the PS13s1 pitch-spelling algorithm (Meredith, 2006,
2007). However, unlike metrical and tonal analysis algorithms whose output can be quite
controversial, the output of the PS13s1 algorithm has been shown to reliably generate
output that corresponds almost perfectly to the way that musical experts spell pitches in
tonal and modal music. This, incidentally, provides evidence for there being something of
a consensus among experts as to how pitches should be spelt in tonal and modal music,
in contrast to, for example, key and harmonic structure, over which experts commonly
disagree.

An important advantage of the representations chosen for this study is that they result
in a considerable amount of redundancy. Indeed, if the onsets had not been suitably
transformed, all notes would have mapped to distinct symbols, resulting in strings that
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could not have been compressed using the general-purpose compressors tested here. As
already noted, our representations also allow for the discovery of patterns related by
transposition (both modal and, at least in most cases in tonal music, chromatic).

To recap, in our experiments reported below, each melody was represented as a string
of two-dimensional points, (t, p), each representing a note, such that t is the onset time of
the note and p is the morphetic pitch of the note. Unless otherwise stated, all representa-
tions are applied to strings in which these (t, p) points have been sorted into lexicographic
order.

We define a compressed viewpoint to be a pair, (Z,R), where Z is a compression
algorithm and R is a viewpoint. A compressed viewpoint can be seen as a function,
Z ◦ R, that takes a melody in the pitch-time representation and returns a string of
symbols forming the encoding of that melody from that compressed viewpoint.

3.2 Normalized compression distance

As already mentioned above, normalized compression distance (NCD) (Li et al., 2004)
has been used as a measure of similarity between melodies in a number of previous
studies (Cilibrasi et al., 2004; Hillewaere et al., 2012; Li and Sleep, 2004, 2005; Meredith,
2014a,b, 2015, 2016). Normalized compression distance is a practical proxy for normalized
information distance, an ideal similarity metric, based on the Kolmogorov complexity of
an object, which is (roughly speaking) the length in bits of the shortest program that
generates the object as its only output. Li et al. (2004) defined the normalized information
distance (NID) between two objects x and y, as follows:

d(x, y) = max{K(x|y∗), K(y|x∗)}
max{K(x), K(y)} , (4)

where K(x) is the Kolmogorov complexity of x and K(x|y∗) is the conditional complexity
of x given a description of y whose length is equal to the Kolmogorov complexity of
y. But as the Kolmogorov complexity cannot, in general, be computed, it has to be
estimated by the length of a real compressed object. Therefore, Li et al. (2004) proposed
the normalized compression distance (NCD) as an estimator of the NID. Here, NCD is
defined for a compressed viewpoint, (Z,R), and two melodies, s and s′, as follows:

NCD(Z, s, s′) = |Z(ss′)| −min{|Z(s)|, |Z(s′)|}
max{|Z(s)|, |Z(s′)|} , (5)
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where Z is a real-world compressor (e.g., LZ77), |x| is the length of encoding x and ss′

is the concatenation of melodies s and s′.

3.3 Corpus compression distance

Unfortunately, the distance defined in Eq. 5 has two problems. First, the values are not
restricted to being in the interval [0, 1]. Second, for two different compression algorithms
on the same corpus, the distances will not be comparable. For example, in our evaluation,
one of the algorithms gave values in the range [0.5, 0.8], and another produced values in
the range [0.8, 1.2]. We therefore devised a new distance measure, which we call Corpus
Compression Distance (CCD), that depends not only on the compression algorithm, Z,
but also the corpus, C, of labelled melodies used for classification. This novel measure
has the feature that it computes values in the interval [0, 1] for all algorithms. If our task
is to label a melody, s, then we find the distance from s to each labelled melody, s′, in C
using the CCD, which is defined as follows:

CCD(s, s′, Z, C) = NCD(Z, s, s′)−min(D(s, C))
max(D(s, C))−min(D(s, C)) , (6)

where D(s, C) = {NCD(Z, s1, s2) | s1, s2 ∈ C ∪{s}} and min(D(s, C)) and max(D(s, C))
are, respectively, the minimum and maximum values in the set, D(s, C). To evaluate the
algorithms, we also examined the compression factors achieved, since these appeared to
be related to the classification success rates. The compression factor, CF(v, s), achieved
by an algorithm that generates an encoding, v, for a melody, s, is defined by:

CF(v, s) = |s|
|v|

. (7)

Finally, the classification success rate is defined as follows:

SR = number of correctly classified melodies
number of melodies in the corpus . (8)

3.4 Classification Method

The classification method takes a melody and a corpus as input and aims to return a
class which is the real tune family of the melody. For this, it computes a matrix, M , of
the type developed by Conklin (2013a,b). The matrix is shown in Table 2. To fill this
matrix, we use a function f that depends on:
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M 1 · · · j · · · m

v1
... ...
vi · · · f(C, s, j, vi, N) · · ·
... ...

vn

· · · g(j) · · ·

Table 2: Table computed for the melody to be classified.

• C, the known corpus (i.e., the labelled melodies);

• s, the melody to be classified (not yet labelled);

• j, the class (i.e., tune family) to evaluate;

• v, the viewpoint applied; and

• N , the number of nearest neighbours to consider.

This function, f , gives a measure of how similar the melody, s, is to its nearest neighbours
that are in tune family j. The higher the value is, the higher the probability that s will be
in j. It can be seen as a non-normalized estimation of the conditional probability defined
by Conklin (2013a,b), that is P (j|s, v). But for this estimation, the method computes a
score depending on nearest neighbours instead of n-grams. The value of f is given by the
following formula,

f(C, s, j, v,N) =
∑

si∈CN
j (s)

1
(CCD(s, si, v, C) + ε)Ni

, (9)

where ε is a constant as low as we want, and

CN
j (s) = Cj ∩ CN(s) , (10)

where Cj is the subset of C which contains the melodies in class, j, and CN(s) contains
the N nearest neighbours of s in C. The primary purpose of the ε factor is to avoid
divide-by-zero error, but the value and the placement of it under the power has little
effect on the results. In practice, we use ε = 0.1. Ni is the index assigned to the nearest
neighbour si—that is, Ni = N − i+ 1.
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The bottom row in Table 2 gives the geometric mean, g(j), of the values of f for the
class j, weighted by the proportion of corpus melodies in class j, that is,

g(j) = |Cj|
|C|

n

√√√√ n∏
i=1

Mi,j , (11)

where |.| is used for the cardinality of sets. As this method is used with the leave-one-out
strategy, s is neither in C nor Cj. Finally, we choose the class with the maximum value
to classify s:

c∗ = argmax
c∈[1,m]

g(c) . (12)

4 Results

The algorithms described above were first evaluated on the task of classifying melodies in
the Annotated Corpus from the Dutch Song Database (http://www.liederenbank.nl).
LZ77 and COSIATEC were then compared on the task of discovering subject and counter-
subject entries in the fugues in the first book of J. S. Bach’s Das Wohltemperirte Clavier.
The results of these experiments will now be presented and discussed.

4.1 Task 1: Classifying folk song melodies

In our first evaluation task, the algorithms described above were used to classify the
melodies in the Annotated Corpus of Dutch folk songs, Onder der groene linde (Grijp,
2008). This corpus is available on the website of the Dutch Song Database (http://www.
liederenbank.nl) provided by the Meertens Institute. It consists of 360 melodies, each
classified by expert musicologists into one of 26 tune families. Each family is represented
by at least 8 and not more than 27 melodies. Each melody is labelled in the database
with the name of the family to which it belongs. Each of the melodies is monophonic
and contains around 50 notes.

To classify each melody, we used the method described in Section 3 in combination
with leave-one-out cross-validation. We tested the method first with single viewpoints
separately and then with combined viewpoints. Appendix A describes how the LZ77
parameters were chosen.

As explained in Section 3.1, the pitch of each note in the input representations was
represented by its morphetic pitch, computed from the MIDI data using the PS13s1
algorithm (Meredith, 2006, 2007).
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4.1.1 Single Viewpoint Classification

To evaluate our method, we first used it with single viewpoints. The method was used
with N = 8. That is, the method only considered the first 8 nearest neighbours of the
melody to classify. The reason for this value is that the smallest tune family has only
8 melodies and so a larger N would increase the error in the method. Leave-one-out
cross-validation was then used to predict the tune family of each melody. We used the
representations defined in Table 1 above.

As all melodies in this corpus are monophonic, the onset times of the notes in a
melody are all distinct. A consequence of this is that, if the basic representation is used
(see Table 1), every symbol is distinct, leading to no repeated substrings, which results
in the general-purpose text-compression algorithms being unable to find any repeated
patterns. These algorithms can therefore only work on representations that transform
the onset values. Note that this problem does not apply to COSIATEC.

Conversely, COSIATEC cannot use representations that transform the onsets (ioi, oip
and combined—see Table 1). Those representations worked well for LZ77, LZ78 and BW
because they create redundancy, but COSIATEC needs a set of distinct points in order
to work. In fact it is a condition on the reversibility of COSIATEC. We tried solving
this problem by adding a third dimension corresponding to the index of a note, but this
drastically reduced the performance of the algorithm, both in terms of classification (less
than 70%) and compression (some compression factors were less than 1). Therefore, all
COSIATEC compressed viewpoints that involved transforming onsets were discarded.

Table 3 shows the results obtained by using the classification method on each com-
pressed viewpoint separately (i.e., in each case, the table corresponding to Table 2 con-
tained only one row). Only those compressed viewpoints that resulted in a success rate
higher than 70% are listed (along with the highest-scoring compressed viewpoint for
LZ78). Moreover, when the compression factor achieved by a particular compressed view-
point, (Z,R), was less than 1, this was invariably associated with a poor classification
success rate, so all compressed viewpoints with an average compression factor less than
1 were discarded. We can see in Table 3 that, in terms of success rate, the combination
of COSIATEC with the basic (onset,morphetic pitch) representation outperformed all of
the other compressed viewpoints with a classification success rate of 0.8528. The com-
pressed viewpoint (COSIATEC, int) achieved poorer results than (COSIATEC, basic),
implying that the patterns found were not the same with both representations. There-
fore, it is very important to find the representation that provides the best success rate
for a given compression algorithm.
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Compressed viewpoint 1-NN Leave-one-out SR CFAC CFpairs
(COSIATEC, basic) 0.8528 1.5794 1.6670
(LZ77, int ◦ ioi) 0.8222 1.4597 1.6735
(LZ77, ioi ◦ ioi) 0.8222 1.2108 1.3547
(LZ77, ioi) 0.8194 1.3075 1.4915
(LZ77, int0 ◦ ioi) 0.8139 1.3769 1.5690
(LZ77, oip) 0.7944 1.1188 1.2629
(LZ77, int0 ◦ oip) 0.7861 1.1806 1.3306
(COSIATEC, int) 0.7556 1.5266 1.6226
(LZ77, ioi ◦ oip) 0.7472 1.0088 1.1127
(LZ77, int ◦ oip) 0.7444 1.2389 1.4062
(BW, ioi) 0.7333 1.9627 2.2768
(BW, int0 ◦ ioi) 0.7194 2.0732 2.3853
(BW, int0 ◦ oip) 0.7111 1.4192 1.5436
(LZ78, ioi) 0.6361 1.7542 1.9292

Table 3: Results of the classification method with single viewpoints, sorted into descend-
ing order by success rate. SR denotes success rate; CFAC denotes mean compression
factor on Annotated Corpus; and CFpairs is the mean compression factor on pair files
used to compute the NCDs.

LZ77 also produced very good results and we can see that it is good for several rep-
resentations. In fact, eight of the ten best viewpoints use LZ77. However, this algorithm
does not compress well for most of the representations. Conversely, the Burrows–Wheeler
algorithm achieved good compression but did not perform so well in terms of classifica-
tion.

The bottom row of Table 3 gives the best result achieved using LZ78. The average
compression factor is similar to that achieved with Burrows–Wheeler, but the success
rate is very low. The reason is that the melodies are very short (approximately 50
notes), whereas LZ78 needs many notes to match long patterns. We would expect LZ78
to perform better on longer pieces such as fugues or sonata-form movements, since the
patterns it finds in such longer data would be likely to be longer and more relevant (i.e.,
there would be more long patterns).

Figure 5 shows graphs of compression factor against success rate for the values
in Table 3. In each case there was a weak, insignificant, negative correlation, indi-
cated by the trend lines (for CFAC: r = −0.4221, N = 14, p = 0.133; for CFpairs:
r = −0.4144, N = 14, p = 0.141). It is important to note, however, that Table 3 only
shows values of compression factor and success rate for the best-performing compressed
viewpoints. The fact that no significant correlation was found for this particular collec-
tion of relatively well-performing viewpoints does not imply that there is no correlation
between compression factor and success rate in general. Recall that, as explained above,
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Figure 5: Graphs of compression factor (CF) against success rate (SR) for the values in
Table 3. The graph on the left shows the mean compression factors on the Annotated
Corpus (i.e., with each melody compressed individually)(CFAC); the graph on the right
shows the mean compression factors for pairs of concatenated melodies (CFpairs).

all viewpoints resulting in poor compression (i.e., with mean compression factors less
than 1) were discarded because they were also invariably associated with poor success
rates.

4.1.2 Combined Viewpoints Classification

Having tested the algorithms with single compressed viewpoints, we then carried out an
evaluation in which the best compressed viewpoints were combined. We chose to use the
combined representations method only on compressed viewpoints that gave good results
when used alone. We then tested different combinations to determine which compressed
viewpoints improved the result. Table 4 shows the success rates obtained by the combined
representations method using the n compressed viewpoints that performed best individ-
ually. All these results are better than those obtained using single compressed viewpoints
(cf. Table 3). However, it seems that some compressed viewpoints have a detrimental ef-
fect on success rate (e.g., (LZ77, int0◦ioi), (COSIATEC, int)). The last result in Table 4,
denoted by 10′, is obtained by combining eight of the ten best compressed viewpoints,
omitting (LZ77, int0 ◦ ioi) and (COSIATEC, int).

All the above results show that the representation used is an important factor in the
classification success rate achieved. Indeed, the representation has a large effect on both
the accuracy of the classification method and the compression factor. On the other hand,
the results also suggest that general-purpose compression algorithms can be used to find
musically relevant patterns in a melody. The best success rate obtained with our new
method is 0.9444.

Conklin (2013a,b) ran his own method on the same corpus and achieved a success
rate of 0.967 with the arithmetic fusion function and 0.958 with the geometric one. We
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First viewpoints Leave-one-out SR
2 0.8833
3 0.9139
4 0.9250
5 0.9083
6 0.9083
8 0.9194
10 0.9333
12 0.9139
14 0.9139
10′ 0.9444

Table 4: Results for the classification method with the n best viewpoints.

speculate that the difference may be due to the fact that he was additionally using
duration and metrical information to build viewpoints, while we only use pitch and note
onset information.

4.2 Task 2: Discovering subject and countersubject entries in
fugues

As LZ77 is based on pattern matching, we decided to evaluate it on the task of discovering
entries of subjects and countersubjects in the fugues from the first book of J. S. Bach’s
Das Wohltemperirte Clavier (BWV 846–869). We compared the output generated by the
algorithms with the ground-truth analyses provided by Giraud et al. (2013). Again, we
tested the algorithm with several different representations: int◦ioi, int◦oip, ioi, int0◦ioi,
ioi ◦ ioi, oip, int0 ◦ oip and ioi ◦ oip. The parameters used for LZ77 were n = 500 and
Ls = 100. The way these values were chosen is described in Appendix A.

LZ77 was modified so that its output was in the form of a list of TECs (see Eq. 3
above), as this allowed for easier comparison with the ground-truth. This modification
was effected in two steps, as follows:

1. Running LZ77 and returning a list of (pattern, translator) pairs instead of a list of
(pi, li − 1, c) triples. Here, pattern is not the pattern in the viewpoint(s) that are
being used for matching. It is actually the pattern of points in the basic pitch–
time point-set representation that corresponds to the matched pattern in the view-
point(s) being used in a particular case. translator is the translation vector between
the first note of the occurrence of pattern in the equivalent dictionary and the first
note of the equivalent look-ahead buffer in the pitch–time point-set representation.
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Figure 6: One iteration of LZ77, modified for pattern discovery.

2. Combining the pairs of the first step into sets of (pattern, translator set) pairs when
the patterns are either equal or the patterns are longer than 3 notes and differ in
either their first note or last note.

Figure 6 shows an example of an iteration of the first of these two steps. The match is
done on the second representation which is int ◦ ioi but the algorithm returns the pair
((D,E, F ), (2, 8)).

Table 5 shows the results obtained with this modified LZ77 algorithm, compared
with those obtained using COSIATEC. These results were obtained with the notes in
each fugue sorted lexicographically (i.e., first by onset time, then by pitch height). For
these results, the voice information for each note was ignored. The table shows the
mean values over all the fugues for three-layer precision (TLP), three-layer recall (TLR)
and three-layer F1 score (TLF1) (see Meredith (2015, pp. 256–259) for definitions of
these measures). From this table, it can be seen that, when the notes in each fugue are
sorted lexicographically with no regard for voice structure, COSIATEC outperforms all
viewpoints based on LZ77, in terms of both compression factor and similarity between
the computed and ground-truth analyses.

This superior performance of COSIATEC can be explained by the fact that LZ77 only
discovers maximal substrings, whereas COSIATEC discovers maximal repeated point sets
which correspond to a special subclass of maximal subsequences. This makes COSI-
ATEC’s performance independent of the order in which the points are given in the input
file and it is still possible for it to find themes consisting of contiguous notes within voices
even if the points corresponding to these notes do not occur contiguously in the input
file. On the other hand, LZ77 only discovers maximal substrings, which implies that
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Compressed viewpoint TLF1 TLP TLR CF
(COSIATEC, basic) 0.123 0.071 0.523 2.6404
(LZ77, int ◦ ioi) 0.053 0.035 0.125 2.1976
(LZ77, int ◦ oip) 0.051 0.034 0.118 1.7464
(LZ77, ioi) 0.050 0.032 0.097 1.6876
(LZ77, int0 ◦ ioi) 0.049 0.033 0.097 1.7305
(LZ77, ioi ◦ ioi) 0.048 0.033 0.095 1.5397
(LZ77, oip) 0.044 0.030 0.087 1.3929
(LZ77, int0 ◦ oip) 0.044 0.030 0.087 1.4255
(LZ77, ioi ◦ oip) 0.043 0.030 0.080 1.3374

Table 5: Results for the pattern discovery task on Bach’s fugues with the compressed
viewpoints for LZ77 sorted by TLF1 value. The notes were lexicographically sorted
before applying the viewpoint, first by onset time then by pitch height with no regard
for voice information. TLP is three-layer precision, TLR is three-layer recall, TLF1 is
three-layer F1 score and CF is average compression factor.

its performance depends crucially on the order in which the points are presented in the
input file. It will thus only discover themes consisting of contiguous notes in a voice if
the points corresponding to these notes occur contiguously in the input file.

To explore the effect that the sorting order of the input data has on COSIATEC and
LZ77, we re-ran this experiment with the points sorted first by voice, then by onset time
and then by pitch height. Under these sorting conditions, adjacent notes within a voice
correspond to adjacent points in an input file, so we would expect LZ77’s performance
to increase but COSIATEC’s performance to remain unchanged, since its performance is
independent of the order in which the input data is sorted. Table 6 shows the results we
obtained using this new sorting strategy. As can be seen in this table, changing the order
in which the notes are encoded in the file, so that adjacent notes in the music correspond
to adjacent symbols in the input file, typically more than doubled the mean TLF1 scores
for LZ77. However, as predicted, changing the sorting order of the points in the input
data had no effect on the performance of COSIATEC. In fact, when combined with the
int ◦ ioi representation, under these input data sorting conditions, LZ77 outperformed
COSIATEC substantially in terms of compression factor and also marginally in terms of
TLF1 and TLP. It can also be seen in Table 6 that changing the order in which the input
file data is sorted does not affect the order of ranking of the different representations used
with LZ77.

We can also see in Tables 5 and 6 that the compression factor achieved seems to be
related to pattern discovery performance. Indeed, there is a strong, highly significant,
positive correlation, between compression factor and TLF1 both for the data in Table 5
(r = 0.8606, N = 9, p = 0.003) and for the data in Table 6 (r = 0.8542, N = 9, p = 0.003)
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Compressed viewpoint TLF1 TLP TLR CF
(LZ77, int ◦ ioi) 0.124 0.073 0.521 3.7142
(COSIATEC, basic) 0.123 0.071 0.523 2.6404
(LZ77, int ◦ oip) 0.120 0.072 0.441 2.5008
(LZ77, ioi) 0.114 0.073 0.298 1.9374
(LZ77, int0 ◦ ioi) 0.114 0.073 0.298 1.9553
(LZ77, ioi ◦ ioi) 0.108 0.068 0.280 1.7152
(LZ77, oip) 0.100 0.065 0.234 1.5428
(LZ77, int0 ◦ oip) 0.100 0.065 0.234 1.5584
(LZ77, ioi ◦ oip) 0.091 0.063 0.202 1.3424

Table 6: Results obtained on the pattern discovery task on Bach’s fugues using various
compressed viewpoints based on LZ77 and COSIATEC with the basic representation.
Results are sorted by TLF1 value. The notes were sorted first by voice, then by onset
time and then by pitch height, so that adjacent notes within voices corresponded to
adjacent symbols in the input data. TLP, TLR, TLF1 and CF are defined as in Table 5.

0"

0.5"

1"

1.5"

2"

2.5"

3"

0" 0.02" 0.04" 0.06" 0.08" 0.1" 0.12" 0.14"

Co
m
pr
es
si
on

*fa
ct
or
*

TLF1*

CF*vs.*TLF1*for*unvoiced*data*

0"
0.5"
1"

1.5"
2"

2.5"
3"

3.5"
4"

0" 0.02" 0.04" 0.06" 0.08" 0.1" 0.12" 0.14"

Co
m
pr
es
si
on

*fa
ct
or
*

TLF1*

CF*vs.*TLF1*for*voiced*data*

Figure 7: Graphs of compression factor (CF) against three-layer F1 score (TLF1) for the
values in Table 5 (left) and Table 6 (right). CF is strongly positively correlated with
TLF1 in both sets of data, as indicated by the linear trend lines. See main text for
details.
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(see also the graphs in Figure 7). This supports the hypothesis, suggested by Kolmogorov
complexity (Kolmogorov, 1965) and the minimum description length principle (Rissanen,
1978), that shorter descriptions represent better analyses. However, the results on this
pattern discovery task also illustrate the importance, both for compression and pattern
discovery, of choosing a data representation that is appropriate for a given compression
algorithm.

5 Summary and conclusions

In this paper, we have presented a new classification method and applied it to the problem
of classifying folk song melodies into tune families. The new method, based on normal-
ized compression distance, the k-nearest-neighbour algorithm and the multiple viewpoints
approach, was run with several compression algorithms and representations. The results
showed that the specific way in which local features are represented has a large effect on
classification performance. Of the algorithms tested, the geometric pattern discovery al-
gorithm, COSIATEC, outperformed the general-purpose compression algorithms tested
on the classification task when single viewpoints were used. However, LZ77 also per-
formed very well with single viewpoints—indeed, eight of the ten best single-viewpoint-
algorithm combinations tested used LZ77. Moreover, we were able to improve on the
classification rate achieved by COSIATEC by combining eight of the ten best-performing
combinations (7 of these used LZ77, the other used COSIATEC). This resulted in a clas-
sification success rate on the Annotated Corpus of Dutch folk song melodies of 94.4%.
These results indicate that general-purpose compression algorithms (particularly LZ77)
show great promise for use in melodic classification.

We also evaluated a modified version of LZ77 on the task of discovering subject and
countersubject entries in fugues by J. S. Bach and, again, compared the results with
those obtained using COSIATEC. COSIATEC out-performed LZ77 on this task when
using the lexicographical order of notes without regard for voice structure, achieving a
mean F1 score over the 24 fugues in the first book of Das Wohltemperirte Clavier of
0.123, compared with the best result of 0.053 for LZ77. However, we hypothesized that
this disparity was due to the fact that, with the notes sorted into lexicographical order,
LZ77 was rendered incapable of discovering repeated patterns consisting of sequences of
contiguous notes within single voices (e.g., repeated thematic patterns such as subjects
and countersubjects). To evaluate the effect on the algorithms of the order in which the
notes are sorted in the input data, we re-ran the experiment with the notes in each fugue
sorted first by voice, then by onset time and then by pitch height. This caused the notes
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to be re-ordered so that contiguous sequences of notes in voices in the fugues corresponded
to contiguous sequences of symbols in the input data. Changing the order of notes in the
input files in this way more than doubled the best F1 score for LZ77 to 0.124, marginally
better than that of COSIATEC, which remained unchanged by the change in sorting
order, as predicted. This result provides further evidence that LZ77 can successfully be
used for analysing polyphonic music, provided that the data is represented appropriately
and the algorithm is presented with the music one voice at a time. It should be noted,
however, that COSIATEC performed as well as LZ77 on this pattern-discovery task, even
when it was not provided with voice information.

Additionally, the results of our experiment on discovering fugal subject and coun-
tersubject entries revealed a highly significant, strong positive correlation between the
compression factor achieved by an algorithm and its pattern-discovery performance (mea-
sured in terms of three-layer F1 score) (r = 0.86, N = 9, p = 0.003). This result supports
the hypothesis, suggested by the minimum description length principle and the concept
of Kolmogorov complexity, that shorter descriptions of musical objects represent better
analyses.

In conclusion, the results reported above suggest that general-purpose compression
algorithms—and LZ77 in particular—could fruitfully be used for acquiring knowledge
from representations of musical surfaces, that will allow for a variety of musicological
tasks to be successfully automated. However, the usefulness and performance of such
algorithms depend critically on the input data being represented appropriately.
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A Parameters of LZ77

The LZ77 algorithm needs two parameters to be set:

• n, the size of the sliding window;

• Ls, the size of the look-ahead buffer, n− Ls is then the size of the dictionary.
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Figure 8: Worst case of LZ77 algorithm: periodic input of period p with p > n− Ls.

The algorithm is based on the hypothesis that patterns will occur close together.
Indeed there are a few cases where it does not work well. This can happen when the
pattern that occurs again is no longer in the dictionary. The worst case of this is when
the input is periodic with a period p > n − Ls and contains a lot of different symbols.
As is shown in Figure 8, the algorithm cannot find the first symbol in the dictionary and
consequently cannot find any pattern. It is therefore important to find good parameters
which correspond to the analysed corpus.

A.1 Parameters for the Annotated Corpus

To choose parameters for use on the folk-song classification task, we ran the classification
method on the Annotated Corpus several times with the single viewpoint (LZ77n,Ls , int ◦
ioi). Each pair of parameters (n, Ls) produced a success rate, an average compression
factor on melody files, and an average compression factor on pair files. The results are
reported in Table 7. This table shows that success rates tend to increase up to a limit
with the dictionary size. The size of the look-ahead buffer seems to have a similar effect
on compression factors. Moreover, the last line shows poor compression factor but a high
classification success rate. Poor compression factors are due to the fact that the size of
the dictionary is more than 99, and so the returned pointers, pi, can have three digits
instead of two. The high classification success rate can be explained by the fact that the
dictionary is larger.

The best success rate is achieved with the parameters, n = 100 and Ls = 10. Taking
these parameter values is a good choice because it increases the success rate and the
size of the dictionary allows the algorithm to find similarities between the two melodies.
Indeed, as the melodies have approximately 50 notes each, when LZ77 compresses the
second melody, the first one is still in the dictionary. Of course, for another corpus, which
contains larger pieces, it would be better to choose a larger value of n.

A.2 Parameters for discovering fugal subject and countersub-
ject entries

As fugues are typically longer than folk song melodies, we would expect a small n to
perform poorly. A fugue typically contains between 500 and 2000 notes. As the pattern
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n Ls 1-NN Leave-one-out SR CFAC CFpairs
55 15 0.5472 1.3201 1.4433
70 20 0.7083 1.3376 1.4782
80 20 0.7444 1.3377 1.4875
100 10 0.8222 1.3151 1.4718
100 15 0.8056 1.3301 1.4881
100 25 0.7972 1.3378 1.4951
140 40 0.7611 1.4316 1.6710
150 30 0.8000 1.2680 1.4291

Table 7: Results of the classification method with the single viewpoint (LZ77n,Ls , int◦ioi).
SR is success rate; CFAC is the mean compression factor on the Annotated Corpus; and
CFpairs is the average compression factor on pair files used to compute the CCDs.

discovery does not compare a fugue to another one, a dictionary size of 1000 is large
enough. But considering that a pattern will appear more than once in a piece, reducing
the size of the dictionary will not decrease the compression factor but will improve the
execution time of the algorithm. Therefore, for the pattern discovery task on fugues,
LZ77 was run with n = 500 and Ls = 100.
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