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Voltage control of DC islanded microgrids: a decentralized scalable
approach

Michele Tucci, Stefano Riverso, Member, IEEE, Juan C. Vasquez, Member, IEEE,
Josep M. Guerrero, Fellow, IEEE, and Giancarlo Ferrari-Trecate, Senior Member, IEEE

Abstract— We propose a new decentralized control scheme
for DC Islanded microGrids (ImGs) composed by several
Distributed Generation Units (DGUs) with a general intercon-
nection topology. Each local controller regulates to a reference
value the voltage of the Point of Common Coupling (PCC)
of the corresponding DGU. Notably, off-line control design is
conducted in a Plug-and-Play (PnP) fashion meaning that (i) the
possibility of adding/removing a DGU without spoiling stability
of the overall ImG is checked through an optimization problem;
(ii) when a DGU is plugged in or out at most neighbouring
DGUs have to update their controllers and (iii) the synthesis of
a local controller uses only information on the corresponding
DGU and lines connected to it. This guarantee total scalability
of control synthesis as the ImG size grows or DGUs gets
replaced. Yet, under mild approximations of line dynamics, we
formally guarantee stability of the overall closed-loop ImG. The
performance of the proposed controllers is analyzed simulating
different scenarios in PSCAD.

I. INTRODUCTION

In the recent years, the increasing penetration of renewable
energy sources has motivated a growing interest for micro-
grids, energy networks composed by the interconnection of
DGUs and loads [1]. Microgrids are self-sustained electric
systems that can supply local loads even in islanded mode,
i.e. disconnected from the main grid [2]. So far, research
mainly focused on AC microgrids [1], [2], [3], [4]. However,
technological advances in power electronics converters have
considerably facilitated the operation of DC power systems.
This, together with the increasing use of DC renewables (e.g.
PV panels), batteries and loads (e.g. electronic appliances,
LEDs and electric vehicles), has triggered a major interest
in DC microgrids [5], [6].

For AC ImGs a key issue is to guarantee voltage and
frequency stability by controlling inverters interfacing energy
sources with lines and loads. This problem has received great
attention and several decentralized control schemes have
been proposed [2], [7], [8], [3], [4]. Some control design
approaches are scalable, meaning that the design of a local
controller for a DGU is not based on the knowledge of
the whole ImG and the complexity of local control design
is independent of the ImG size. In particular, the method
proposed in [3], [4] allows for the seamless plugging-in,
unplugging and replacement of DGUs without spoiling ImG
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stability. Control design procedure with these features have
been termed PnP [9], [10], [11], [12].

Voltage stability is critical also in DC microgrids as they
cannot be directly coupled to an “infinite-power” source,
such as the AC main grid, and therefore they always operate
in islanded mode. Existing controllers for the stabilization
of DC ImGs are mainly based on droop control [5], [13],
[14] and stability analysis has been performed only for
specific ImGs [5], [13], [14]. Similar approaches to voltage
stabilization have been also used for multi-terminal high
voltage DC systems [15].

In this paper we develop a totally scalable method for
the synthesis of decentralized controllers for DC ImGs. In
Section III, we propose a PnP design procedure where the
synthesis of a local controller requires only the model of
the corresponding DGU and the parameters of transmission
lines connected to it. Importantly, no specific information
about any other DGU is needed. Moreover, when a DGU is
plugged in or out, only DGUs physically connected to it have
to retune their local controllers. As in [3], we exploit Quasi-
Stationary Line (QSL) approximations of line dynamics [16]
and use structured Lyapunov functions for mapping control
design into a Linear Matrix Inequality (LMI) problem. This
also allows to automatically deny plugging in/out requests if
these operations spoil the stability of the ImG.

In order to validate our results, we run several simulations
in PSCAD using realistic models of Buck converters and
associated filters.

II. MODEL OF A DC MICROGRID

This section discusses dynamic models of ImGs. For
clarity, we start by introducing an ImG consisting of two
parallel DGUs and then generalize it to N DGUs. Consider
the scheme depicted in Figure 1 comprising two DGUs
denoted with i and j and connected through a DC line
with an impedance specified by parameters Rij > 0 and
Lij > 0. At each DGU level, we represent a generic
renewable resource through a DC voltage source. Moreover,
a Buck converter is present in order to supply a local DC load
connected to the PCC through a series LC filter. For instance,
the DC load can be a combination of resistive electronic
loads and negative resistance of constant power loads. We
assume that loads are unknown and we treat them as current
disturbances (IL) [3], [17].

For ∗ ∈ {i, j}, the model of DGU ∗ can be described as
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Fig. 1: Electrical scheme of an ImG composed of two parallel DGUs with unmodeled loads.

follows
dV∗
dt

=
1

Ct∗
It∗ +

1

Ct∗
I∗◦ −

1

Ct∗
IL∗ (1a)

dIt∗
dt

= −Rt∗
Lt∗

It∗ −
1

Lt∗
V∗ +

1

Lt∗
Vt∗ (1b)

where ◦ ∈ {i, j} and ◦ 6= ∗. For the line ∗◦, we obtain

dI∗◦
dt

= −R∗◦
L∗◦

I∗◦ −
1

L∗◦
V∗ +

1

L∗◦
V◦ (2)

As in [3], we notice that setting ∗ = i or ∗ = j in (2)
translates into obtain two opposite line currents Iij and Iji.
This is equivalent to have a reference current entering in
each DGU. We exploit the following assumption to ensure
that Iij(t) = −Iji(t), ∀t ≥ 0.

Assumption 1: Initial states for the line currents fulfill
I∗◦(0) = −I◦∗(0). Furthermore, we set L∗◦ = L◦∗ and
R∗◦ = R◦∗.

In the following section, we show how to describe each
DGU as a dynamical system affected directly by state of the
other DGU connected to it.

A. QSL model

As in [16], we set dIij
dt = 0 and dIji

dt = 0. Consequently,
from (2), one gets the QSL model

Ī∗◦ =
V◦
R∗◦
− V∗
R∗◦

(3)

By replacing variable I∗◦ in (1a) with the right-hand side of
(3), we obtain the following model of DGU ∗ and we call it
ΣDGU[∗]

ẋ[∗](t) = A∗∗x[∗](t) +B∗u[∗](t) +M∗d[∗](t) + ξ[∗](t)

y[∗](t) = C∗x[∗](t)

z[∗](t) = H∗y[∗](t)

(4)

where x[∗] = [V∗, It∗]
T is the state, u[∗] = Vt∗ the control

input, d[∗] = IL∗ the exogenous input and z[∗] = V∗
the controlled variable of the system. Moreover, y[∗](t) is
the measurable output and we assume y[∗] = x[∗], while
ξ[∗](t) = A∗◦x[◦] represents the coupling with DGU ◦.
All the matrices of ΣDGU[∗] (obtained from (1) and (3)) are
provided in Appendix A.2 of [18]. At this point, we notice
that the model of DGU ∗ does not depend on the dynamics of
the line which, however, are asymptotically stable by virtue
of the positivity of the line parameters. Consequently, we can

conclude that stability of the ImG depends on the stability
of ΣDGU[i] and ΣDGU[j] interconnected through the QSL model
(3). The resulting system is called QSL-ImG model.

B. QSL model of a microgrid composed of N DGUs

In this section, a generalization of model (4) to ImGs
composed of N DGUs is presented. Let D = {1, . . . , N}.
First, we call two DGUs neighbours if there is a transmission
line connecting them. Then, we denote with Ni ⊂ D
the subset of neighbours of DGU i. We highlight that the
neighbouring relation is symmetric, consequently j ∈ Ni
implies i ∈ Nj . In order to describe the dynamics of DGU
i, we use model (4), with ξ[i] =

∑
j∈Ni

Aijx[j](t). The new
matrices of ΣDGU[i] are collected in Appendix A.3 of [18],
while the overall QSL-ImG model can be written as follows

ẋ(t) = Ax(t) + Bu(t) + Md(t) (5a)
y(t) = Cx(t) (5b)
z(t) = Hy(t) (5c)

where x = (x[1], . . . , x[N ]) ∈ R2N , u = (u[1], . . . , u[N ]) ∈
RN , d = (d[1], . . . , d[N ]) ∈ RN , y = (y[1], . . . , y[N ]) ∈
R2N , z = (z[1], . . . , z[N ]) ∈ RN . For the details of matrices
A, B, M, C and H we defer the reader to Appendix A.3
of [18].

III. PLUG-AND-PLAY DECENTRALIZED VOLTAGE
CONTROL

A. Decentralized control scheme with integrators

Let zref (t) denote the constant desired reference trajectory
for the output z(t). In order to track asymptotically zref (t)
when d(t) is constant, we consider the augmented ImG
model with integrators. A necessary condition for having that
the steady-state error e(t) = zref (t)− z(t) tends to zero as
t → ∞, is that for arbitrary constant signals d(t) = d̄ and
zref (t) = z̄ref , there are equilibrium states and inputs x̄ and
ū verifying

0 = Ax̄ + Bū + Md̄

z̄ref = HCx̄
(6)

Γ

[
x̄
ū

]
=

[
0 −M
I 0

] [
z̄ref
d̄

]
, Γ =

[
A B

HC 0

]
∈ R3N×3N

(7)
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Proposition 1: Given z̄ref and d̄, vectors x̄ and ū satis-
fying (7) always exist.

For the proof of this Proposition 1, we defer the reader to
[18]. As shown in Figure 2, the dynamics of the integrators

ImG...

−
+

∫
dt K1

zref [1] v[1] u[1]

−+
∫
dt KN

zref [N ] v[N ] u[N ]

d[1]

. . .
d[N ]

y[1]
. . .y[N ]

z[1]

z[N ]

......

Fig. 2: Control scheme with integrators for the overall
augmented microgrid model.

is

v̇[i](t) = e[i](t) = zref [i](t)−z[i](t) = zref [i](t)−HiCix[i](t)
(8)

Therefore, the DGU model augmented with integrators (par-
ticularly Σ̂DGU[i] ) can be written as follows

˙̂x[i](t) = Âiix̂[i](t) + B̂iu[i](t) + M̂id̂[i](t) + ξ̂[i](t)

ŷ[i](t) = Ĉix̂[i](t)

z[i](t) = Ĥiŷ[i](t)

(9)

where x̂[i] = [xT [i], vi,]
T ∈ R3 is the state, ŷ[i] = x̂[i] ∈ R3

is the measurable output, d̂[i] = [d[i], zref [i]]
T ∈ R2 collects

the exogenous signals (both current of the load and reference
signals) and ξ̂[i](t) =

∑
j∈Ni

Âij x̂[j](t). Combining model
ΣDGU[i] and (8), one obtains matrices in (9).

By virtue of the next proposition, we make sure that
the pair (Âii, B̂i) is controllable, thus system (9) can be
stabilized.

Proposition 2: The pair (Âii, B̂i) is controllable.
The proof of Proposition 2 is given in [18].

Recalling (9), we get the overall augmented system as
˙̂x(t) = Âx̂(t) + B̂u(t) + M̂d̂(t)

ŷ(t) = Ĉx̂(t)

z(t) = Ĥŷ(t)

(10)

where x̂ is the vector of variables x̂[i], ŷ collects variables
ŷ[i] while d̂ contains variables d̂[i]. Matrices Â, B̂, Ĉ, M̂ and
Ĥ are obtained from systems (9).

B. Decentralized PnP control
This section presents the adopted control approach that

allows us to design local controlles while guaranteeing
asymptotic stability for the augmented system (10). Local
controllers are synthesized in a decentralized fashion per-
mitting PnP operations.

We equip each DGU Σ̂DGU[i] with the following state-
feedback controller

C[i] : u[i](t) = Kiŷ[i](t) = Kix̂[i](t) (11)

where Ki ∈ R1×3 and controllers C[i], i ∈ D are decen-
tralized since u[i](t) depends on the state of Σ̂DGU[i] only.
Moreover, we assume that nominal subsystems are given
by Σ̂DGU[i] without coupling terms ξ̂[i](t). From Lyapunov
theory, we know that if there exists a symmetric matrix
Pi ∈ R3×3, Pi > 0 such that

(Âii + B̂iKi)
TPi + Pi(Âii + B̂iKi) < 0, (12)

then the nominal closed-loop subsystem equipped with con-
troller C[i] is asymptotically stable. Similarly, the closed-loop
QSL-ImG given by (9) and (11) is asymptotically stable if
matrix P = diag(P1, . . . , PN ) satisfies

(Â + B̂K)TP + P(Â + B̂K) < 0 (13)

where Â, B̂ and K collect matrices Âij , B̂i and Ki, for all
i, j ∈ D. We want to emphasize that, in general, (12) does
not imply (13), since one can show that decentralized design
of local controllers is not sufficient to guarantee voltage
stability of the whole ImG, if coupling among DGUs is
neglected (see Appendix B in [4] for an example in the case
of AC ImGs). In order to derive conditions such that (12)
ensures (13), we first define ÂD = diag(Âii, . . . , ÂNN ) and
ÂC = Â− ÂD. Then, we exploit the following assumptions
to obtain asymptotic stability of the closed-loop QSL-ImG.

Assumption 2: (i) Decentralized controllers C[i], i ∈ D
are designed such that (12) holds with

Pi =

 ηi 0 0
0 • •
0 • •

 (14)

where • denotes an arbitrary entry and ηi > 0 is a local
parameter.

(ii) It holds ηi
RijCti

≈ 0, ∀i ∈ D, ∀j ∈ Ni.
As regards Assumption 2-(i), we will show later that

checking the existence of Pi as in (14) and Ki fulfilling (12)
leads to solving a convex optimization problem. On the other
hand, to fulfill Assumption 2-(ii), when an upper bound to
all ratios 1

RijCti
(which depend upon line parameters only)

is known, one can simply set the control design parameter
ηi sufficiently small.

Proposition 3: Let Assumption 2 holds. Then, the overall
closed-loop QSL-ImG is asymptotically stable.
The proof of Proposition 3 is presented in [18].

At this point, in order to complete the design of the local
controller C[i], we have to solve the following problem.

Problem 1: Compute a matrix Ki such that the nominal
closed-loop subsystem is asymptotically stable and Assump-
tion 2-(i) is verified, i.e. (12) holds for a matrix Pi structured
as in (14).
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Consider the following optimization problem

Oi : min
Yi,Gi,γi,βi,δi

αi1γi + αi2βi + αi3δi

Yi =

[
η−1
i 0 0

0 • •
0 • •

]
> 0 (15a)[

YiÂ
T
ii +GTi B̂

T
i + ÂiiYi + B̂iGi Yi
Yi −γiI

]
≤ 0 (15b)[

−βiI GTi
Gi −I

]
< 0 (15c)[

Yi I
I δiI

]
> 0 (15d)

γi > 0, βi > 0, δi > 0 (15e)

where αi1, αi2 and αi3 represent positive weights and •
are arbitrary entries. Problem (15) is an LMI problem, i.e.
an optimization problem for which polynomial-time solvers
exist [19].

Lemma 1: Problem Oi is feasible if and only if Problem
1 has a solution. Moreover, Ki and Pi in (12) are given by
Ki = GiY

−1
i , Pi = Y −1i and ||Ki||2 <

√
βiδi.

The proof of Lemma 1 is given in [18].
Next, we discuss the key feature of the proposed decentral-

ized control approach. We first notice that constraints in (15)
depend upon local fixed matrices (Âii, B̂i) and local design
parameters (αi1, αi2, αi3). It follows that the computation
of controller C[i] is independent from the computation of
controllers C[j] when j 6= i. In addition, constraints (15c)
and (15d) affect only the magnitude of control variables (see
the proof of Lemma 1 in [18]).

In order to improve transient performances of controllers
C[i], pre-filters of reference signals (C̃[i]) and local compen-
sator of measurable disturbances (N[i]) can be incorporated
to each subsystem. These customary steps in control design
are detailed in Section 3.3 of [18].

Algorithm 1 summarizes the whole design procedure.

Algorithm 1 Design of controller C[i] and compensators C̃[i]

and N[i] for subsystem Σ̂DGU[i]

Input: DGU Σ̂DGU[i] as in (9)
Output: Controller C[i] and, optionally, pre-filter C̃[i] and
compensator N[i]

(A) Find Ki solving the LMI problem (15). If it is not
feasible stop (the controller C[i] cannot be designed).
Optional steps

(B) Design the asymptotically stable local pre-filter C̃[i] and
compensator N[i] (see Section 3.3 of [18]).

C. PnP operations

In the following section, the operations for updating the
controllers when DGUs are added to or removed from an
ImG are presented. We remind that all these operations must
be performed while preserving stability of the new closed-
loop system. Consider, as a starting point, an ImG composed
of subsystems Σ̂DGU[i] , i ∈ D equipped with local controllers

C[i] and compensators C̃[i] and N[i], i ∈ D produced by
Algorithm 1.

Remark 1: In order to avoid jumps in the control variable
when local regulator are switched, we embedded each local
regulator into a bumpless control scheme [20] described in
Appendix B of [18].

Plugging-in operation Assume that the plug-in of a new
DGU Σ̂DGU[N+1] described by matrices, ÂN+1N+1, B̂N+1,
ĈN+1, M̂N+1, ĤN+1 and {ÂN+1 j}j∈NN+1

needs to be
performed. Let NN+1 be the set of DGUs that are di-
rectly coupled to Σ̂DGU[N+1] through transmission lines and let
{ÂN+1 j}j∈NN+1

be the matrices containing the correspond-
ing coupling terms. According to our method, the design
of controller C[N+1] and compensators C̃[N+1] and N[N+i]

requires Algorithm 1 to be executed. Since DGUs Σ̂DGU[j] ,
j ∈ NN+1, have the new neighbour Σ̂DGU[N+1], we need to
redesign controllers C[j] and compensators C̃[j] and N[j],
∀j ∈ NN+1 because matrices Âjj , j ∈ NN+1 change.

Only if Algorithm 1 does not stop in Step A when com-
puting controllers C[k] for all k ∈ NN+1∪{N +1}, we have
that the plug-in of Σ̂DGU[N+1] is allowed. Moreover, we stress
that the redesign is not propagated further in the network and
therefore the asymptotic stability of the new overall closed-
loop QSL-ImG model is preserved even without changing
controllers C[i], C̃[i] and N[i], i 6∈ {N + 1} ∪ NN+1.

Prior to real-time plugging-in operation (hot plugging-in),
it is recommended to keep set points constant for a sufficient
amount of time so as to guarantee control variable in the
bumpless control scheme (see Remark 1) is in steady state.
This ensures smooth behaviours of the electrical variables.

Unplugging operation Let us now examine the unplug-
ging of DGU Σ̂DGU[k] , k ∈ D. The disconnection of Σ̂DGU[k]

from the network leads to a change in matrix Âjj of each
Σ̂DGU[j] , j ∈ Nk. Consequently, for each j ∈ Nk, we
have to redesign controllers C[j] and compensators C̃[j] and
N[j]. As for the plug-in operation, we run Algorithm 1.
If all operations can be successfully terminated, then the
unplugging of Σ̂DGU[k] is allowed and stability is preserved
without redesigning the local controllers C[j], j /∈ Nk.

When an unplugging operation is scheduled in advance, it
is advisable to follow an hot unplugging protocol similar to
the one introduced for the plugging-in operation.

IV. SIMULATION RESULTS

In this section, we study performance brought about by
PnP controllers described in Section III by using the ImG
in Figure 1 with two DGUs (Scenario 1) and an ImG with
6 DGUs (Scenario 2). Simulations have been performed
in PSCAD, a simulation environment for electric systems
which allows to implement the microgrid model with realistic
electric components. For both scenarios, we run a simulation
from time 0 s up to time 10 s. Each simulation has been split
into subparts that are discussed next.

www.microgrids.et.aau.dk



A. Scenario 1
In this Scenario, we consider the ImG shown in Figure 1

composed of two DGUs connected through high resistive-
inductive lines supporting 10 Ω and 6 Ω loads, respectively.
For the sake of simplicity, we set i = 1 and j = 2. The
output voltage reference v?MG has been selected at 48 V for
both DGUs. Parameters values for all DGUs are given in
Table 1 of [18] and they are comparable to those used in
[5].

1) Voltage reference tracking at the startup: We assume
that at the beginning of the simulation (t = 0 s), subsys-
tems Σ̂DGU[1] and Σ̂DGU[2] are not interconnected. Therefore,
stabilizing controllers Ci, i = 1, 2 are designed neglecting
coupling among DGUs. Moreover, in order to widen the
bandwidth of each closed-loop subsystem, we use local pre-
filters C̃[i], i = 1, 2 of reference signals (see Figure 5 of
[18]). The desired transfer functions F̃i(s), i = 1, 2 have
been chosen as low-pass filters with DC gain equal to 0 dB
and bandwidth equal to 100 Hz. Figures 3a and 3b show
the voltages at PCC1 and PCC2. Note that the controllers
ensure an excellent tracking of the reference signals at the
startup in a very short time.
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(a) Load voltage at PCC1.
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40

48

time (s)

V
2
 (

V
)

(b) Load voltage at PCC2.

Fig. 3: Scenario 1 - Voltage reference tracking at the startup.

2) Hot plugging-in of DGUs 1 and 2: At time t = 2
s, we connect DGUs 1 and 2 together. This requires real-
time switch of the local controllers which translates into
two hot plugging-in operations as described in Section III-
C. The new decentralized controllers for subsystems Σ̂DGU[1]

and Σ̂DGU[2] are designed running Algorithm 1. Notice that the
interconnection of the two subsystems leads to a variation of
each DGU dynamics, therefore even compensators C̃[i] and
N[i], i = 1, 2 need to be updated. In particular, the new
desired closed-loop transfer functions F̃i(s), i = 1, 2 have
been chosen as low-pass filters with DC gain equal to 0 dB
and bandwidth equal to 100 Hz.

Since Algorithm 1 never stops in Step A, the hot plug-in
of the DGUs is allowed and local controllers get replaced
by the new ones at t = 2 s. Bode plots of the compensators
and the closed-loop system are given in Figure 7 of [18].

Figure 4 shows the dynamic responses of the voltages
at PCC1 and PCC2 when the subsystems are connected
together. We highlight that the bumpless control transfer
schemes ensure no significant deviations in the output signals
when the controller switch is performed. Moreover, through
the proposed decentralized control strategy, voltage regula-
tion is excellent.
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(a) Load voltage at PCC1.
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(b) Load voltage at PCC2.

Fig. 4: Scenario 1 - Impact of bumpless control transfer on
the hot plug-in at time t = 2 s.

B. Scenario 2

In this second scenario, we consider the meshed ImG
depicted in black in Figure 5. However, differently from
Scenario 1, some DGUs have more than one neighbour
and hence the disturbances that will influence their dynam-
ics will be greater. It is also present a loop that further
complicates voltage regulation. To our knowledge, control
of loop-interconnected DGUs has never been investigated
for DC microgrids. We consider DGUs with non-identical
electrical parameters (given in Tables 2, 3 and 4 of [18]).
We also assume that DGUs 1-5 supply 10 Ω, 6 Ω, 20 Ω, 2 Ω
and 4 Ω loads, respectively. Moreover, for this Scenario, no
compensators C̃i and Ni have been used. At the beginning of
the simulation, all the DGUs are assumed to be isolated and
not connected to each other. However, we choose to equip
each subsystem Σ̂DGU[i] , i ∈ D = {1, . . . , 5}, with controllers
C[i] designed by running Algorithm 1 and taking into account
couplings among DGUs. This is possible because, as shown
in Section III-B, local controllers stabilize the ImG also
in absence of couplings. Because of this choice of local
controllers in the startup phase, when the five subsystems are
connected together at time t = 1.5 s, no bumpless control
scheme is required since no real-time switch of controllers
is performed.

For evaluating the PnP capabilities of our control ap-
proach, we simulate the connection of DGU Σ̂DGU[6] with
Σ̂DGU[1] and Σ̂DGU[5] , as shown in Figure 5. Therefore, we have
N6 = {1, 5}. In principle, subsystems Σ̂DGU[j] , j ∈ N6 must
update their controllers C[j] (see Section III-C). However,
we highlight that previous controllers for DGUs Σ̂DGU[1] and
Σ̂DGU[5] can be also maintained, provided that the already
computed matrices Kj , j ∈ N6 still fulfill all constraints
in (15) for the new ImG topology. Since this test succeeds,
we proceed by executing Algorithm 1 for synthesizing C[6]
for the new DGU only. Algorithm 1 never stops in Step A
and therefore the addition of Σ̂DGU[6] is allowed.

The real-time plugging-in of Σ̂DGU[6] is executed at time
t = 2 s. Until the plug-in of Σ̂DGU[6] , common reference v?MG

for DGUs 1-5 is the same as for DGUs 1-2 in Scenario 1 and
the subsystem Σ̂DGU[6] is assumed to work isolated, tracking
the reference voltage v?MG. We note that right after the hot
plug-in of Σ̂DGU[6] at t = 2 s, load voltages of Σ̂DGU[1] and
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DGU 3

DGU 4

DGU 5
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Fig. 5: Scenario 2 - Scheme of the ImG composed of 6 DGUs
(in black) and plugging-in of Σ̂DGU[6] (in red).

Σ̂DGU[5] do not deviate from the respective reference signals
(see Figure 15 in [18]). In order to test the robustness of the
overall ImG to unknown load dynamics, at t = 3 s we halve
the load of DGU 6, which was equal to 8 Ω for t < 3 s.
Figures 6a and 6b show that, when the load change of Σ̂DGU[6]

occurs, the voltages at PCC1 and PCC5 exhibit very small
variations which last for a short time. Then, load voltages of
Σ̂DGU[1] and Σ̂DGU[5] converge to their reference values. Similar
remarks can be done for the new DGU Σ̂DGU[6] : as shown in
Figure 6c, there is a short transient at the time of the load
change, that is effectively compensated by the control action.
These experiments highlight that controllers C[i], i = 1, . . . , 6
may ensure very good tracking of the reference signal and
robustness to unknown load dynamics even without using
compensators C̃[6] and N[6].
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(a) Voltage at PCC1.
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(b) Voltage at PCC5.
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(c) Voltage at PCC6.

Fig. 6: Scenario 2 - Performance of PnP decentralized
voltage controllers in terms of robustness to an abrupt change
of load resistances at time t = 3 s.

Moreover, in Section 4.2.3 of [18], we demonstrate good
performance of PnP controllers when a DGU is disconnected
at a certain time.

V. CONCLUSIONS

This paper presented a decentralized control scheme for
guaranteeing voltage stability in DC ImGs when DGUs are

plugged in or out. Future research will consider extensions
to general interconnections of DGUs and loads as well as
coupling of PnP controllers with a secondary control layer
devoted to current sharing.

REFERENCES

[1] R. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromson,
A. Meliopoulous, R. Yinger, and J. Eto, “The certs microgrid concept,”
White paper for Transmission Reliability Program, Office of Power
Technologies, US Department of Energy, 2002.

[2] J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, “Advanced
control architectures for intelligent microgrids - part I: decentralized
and hierarchical control,” IEEE Transactions on Industrial Electronics,
vol. 60, no. 4, pp. 1254–1262, 2013.

[3] S. Riverso, F. Sarzo, and G. Ferrari-Trecate, “Plug-and-play voltage
and frequency control of islanded microgrids with meshed topology,”
IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1176–1184, 2015.

[4] ——, “Plug-and-play voltage and frequency control of islanded
microgrids with meshed topology,” Tech. Rep., 2014. [Online].
Available: arXiv:1405.2421
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