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Abstract—During many years, battery models have been pro-
posed with different levels of accuracy and complexity. In some
cases, simple low-order aggregated battery pack models may
be more appropriate and feasible than complex physic-chemical
or high-order multi-cell battery pack models. For example:
in early stages of the system design process, in non-focused
battery applications, or whenever low configuration effort or low
computational complexity is a requirement. The latter may be
the case of Electrical Equivalent Circuit Models (EECM) suitable
for energy optimization purposes at a system level in the context
of energy management or sizing problem of energy storage
systems. In this paper, an improved parametrization method for
Li-ion linear static EECMs based on the so called concept of
direct current resistance (DCR) is presented. By drawing on
a DCR-based parametrization, the influence of both diffusion
polarization effects and changing of Open-Circuit Voltage (OCV)
are virtually excluded on the estimation of the battery’s inner
resistance. This results in a parametrization that only accounts
for pure ohmic and charge transfer effects, which may be
beneficial, since these effects dominate the battery dynamic
power response in the range of interest of many applications,
including electro-mobility. Model validation and performance
evaluation is achieved in simulations by comparison with other
low and high order EECM battery models over a dynamic driving
profile. Significant improvements in terms of terminal voltage
and power losses estimation may be achieved by a DCR-based
parametrization, which in its simplest form may only require one
short pulse characterization test within a relatively wide range
of SoCs and currents. Experimental data from a 53 Ah Li-ion
pouch cell produced by Kokam (Type SLPB 120216216) with
Nickel Manganese Cobalt oxide (NMC) cathode material is used.

I. INTRODUCTION

Electrochemical batteries are strongly non-linear electro-
chemical systems, consisting of a complex mixture of laws
of thermodynamics, electrode kinetics and mass transport
phenomena [1]. Hence, accurate modelling is not a simple
task. During many years, battery models have been proposed
with the basic aim at providing either an evaluation of prelim-
inary physic-chemical designs or a performance estimation of
already manufactured batteries [2]–[8].

In order to simplify the analysis, battery models have been
classified in accordance with their implementation method [3]–

  

 

 
  

Fig. 1: Linear static EECM of a single cell of a Li-ion battery.

[8]. For example, in [3] and [4] models have been classified
in four different approaches: physical, empirical, abstract and
mixed. On the other hand, the authors of [5] have focused
on modelling approaches most suitable for electro-mobility
related simulations, identifying next implementation methods:
physic-chemical (or physical), empirical, impedance-based and
energy-based. However, since impedance-based models are
one kind of the so called abstract models and energy-flow
based one kind of the so called empirical models, these two
categories have already been included in the more broad
classification given in [3] and [4]. A more specific overview
of impedance-based models, so-called Electrical Equivalent
Circuit Models (EECMs), is given in [6] and [7], the latter
including as well a comparative study.

Table I [8] gives an overview of the battery modelling
approaches according to the classification given in [3] and
[4] considering the following factors: accuracy, computational
complexity, configuration effort, analytical insight and pur-
pose. As a general rule, it may be stated that more complex
models provide more accurate results, but involve higher
computational complexity and configuration effort, defined
proportionally to the number and sensitivity of their param-
eters. Furthermore, advanced characterization tests require
specialized methods and testing equipment [2]–[8].

In some cases, simple aggregated battery pack models may
be more appropriate and feasible than complex multi-cell
battery pack models, e.g. in early stages of the system design
process, in non-focused battery applications or whenever low



TABLE I: Overview of Battery Modelling Approaches and Applications

Model
Approach

Accuracy Computational
Complexity

Computational
Effort

Analytical
Insight

Purpose

Physical Very high High Very high Low Battery design and model validation
Empirical Low-Medium Low Low Low Battery performance estimation
Abstract Low-High Low-Medium Low-High Medium Battery performance estimation
Mixed High Medium Low-Medium High Battery performance estimation

configuration effort or low computational complexity is a
requirement. The latter may be the case of battery pack models
suitable for energy optimization purposes at a system level
in the context of energy management or sizing problem of
energy storage systems. This issue is frequently addressed
in the literature, e.g. in hybrid electro-mobility [9]–[16].
Nevertheless, it should be noted that simplifications required
by optimization methodologies make accurate modelling of
battery performance more challenging, as discussed in [11].

Nowadays, besides lossless and constant efficiency models,
a modelling approach broadly followed in the context of en-
ergy optimization at a system level in hybrid electro-mobility
is to use an aggregated linear static battery pack EECM [9]–
[16], over a restricted operating window, without taking into
account cell-to-cell differences. Thus, a battery pack model
made up of n cells is built from the sum of n-identical single
cell models in a certain series-parallel arrangement.

Typically, the single cell EECM considered consists as well
on a constant resistor Rbat, which represents the battery’s
inner resistance, in series with a variable DC voltage source
vOCV (SoC), which models the relationship between Open
Circuit Voltage (OCV) and State-of-Charge (SoC) (Fig. 1).

The instantaneous cell voltage vcell(t) can be obtained as
the sum of the DC voltage vOCV (SoC) and the product of
the instantaneous cell current icell(t) by the inner resistance
Rbat as

vcell(t) = vOCV (SoC) + icell(t)Rbat (1)

where vOCV (SoC) [V] is the Open-Circuit Voltage (OCV)
of the cell, SoC [%] is the cell state-of-charge, icell(t) [A]
is the instantaneous cell current, Rbat [Ω] is the inner cell
resistance and t [s] is the simulation time.

The SoC may be defined in different ways, taking into
account different dependencies [2], [6]–[8]. In the aforemen-
tioned context the simplest form is commonly used [9]–[16],
which is an estimation based on coulomb counting given by

SoC = SoC0 +
100

3600Q

∫ t

0

icell(τ)dτ (2)

where SoC0 [%] is the initial cell state-of-charge and Q
[Ah] the rated cell capacity.

Regarding the variable DC voltage vOCV (SoC), the com-
mon approach [9]–[16] to simplify the non-linear OCV vs.
SoC characteristic is to use a linear function, which may
provide a good fit within a wide range of SoC, as could be
deduced e.g. from Fig. 6. The linear function is given by

vOCV (SoC) = a+ b · SoC (3)

where a and b are two constant coefficients calculated in a
linear fitting.
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Fig. 2: Schematic representation of the voltage changes of a
battery during a discharge current pulse1.

The instantaneous cell power losses Ploss(t) are usually
assumed [9]–[16] as the result of Joule heating as

Ploss(t) = i2cell(t)Rbat (4)

In this paper, an improved approach to parametrize the
single cell linear static EECM described above is proposed,
based on the so called DCR concept. In the following, it is
shown that a DCR-based approach may offer a significant
accuracy improvement over conventional methods, both in
terms of cell terminal voltage and power losses estimation.

DCR has already been proposed in the literature to de-
scribe the power or current capability of a cell in high order
impedance-based models [17]–[19], but to the best of our
knowledge, it has not been proposed as a parametrization
method for low order impedance-models itself. As afore-
mentioned, an electrochemical battery is a highly non-linear
system. However, Electrochemical Impedance Spectroscopy
(EIS) analysis could be performed if quasi-linear conditions
are observed. Therefore, by using small AC excitation am-
plitude the current-voltage linearity may be preserved. But
this means that only small-signal impedance can be obtained
from EIS. Nevertheless, large-signal impedance is required for
highly accurate time-domain simulations. DCR measurements
are one of the existing methods used to calculate large-signal
impedance from small-signal impedance measurements [17]–
[19].

Conventional methods based on off-line current pulse char-
acterization techniques may either take into account too many
or too few electrochemical kinetic effects on the parametriza-
tion of the inner cell resistance, Rbat. This may lead, re-

1It should be noted that charge transfer and diffusion polarization are some-
times referred in the literature as activation polarization and concentration
polarization, respectively. Moreover, concentration polarization is also often
referred as mass transport. The concept mass transport usually refers to three
simultaneous phenomena: migration, diffusion and convection. However the
mass transport phenomenon is usually simplified as diffusion, since it usually
plays a dominant role in electrochemical kinetics.
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Fig. 3: Schematic representation of the voltage changes used
to calculate the DCR, the pure ohmic resistance and the
polarization resistance.

spectively, to overestimation or underestimation of the battery
power response when the model is subjected to dynamic
charging or discharging profiles. By drawing on a DCR-based
methodology, the influence of both diffusion polarization
effects and changing of OCV are virtually excluded on the
estimation of Rbat, resulting in an improved parametrization
which accounts practically for pure ohmic and charge trans-
fer effects on Rbat (Fig. 2). This may be beneficial, since
pure ohmic and charge transfer effects dominate the battery
dynamic power response in the range of interest in most
applications, including hybrid and battery electric vehicles
[18]–[21].

The paper is organized as follows. In Section II the tech-
niques used for experimental characterization and the methods
applied for model parametrization are discussed. In Section III
experimental data and parametrization results are shown for
commercial Li-ion batteries. In Section IV model validation
is presented based on a detailed comparison of different mod-
elling approaches. Finally, Section V gives the conclusions.

II. LINEAR STATIC BATTERY MODEL PARAMETRIZATION
METHODS

DCR measurement is proposed in this paper as an improved
approach to parametrize linear static battery models of Li-ion
batteries (Fig. 1), e.g. in the context of battery modelling in
energy optimization problems. A schematic representation of
the voltage changes used to calculate the DCR and the other
conventional current pulse characterization techniques is given
in Fig. 3.

Conventional current pulse characterization techniques con-
sist of applying a constant current pulse of certain amplitude
ΔIp to the battery and measuring the resulting change in the
terminal voltage, either during the pulse ΔVj or after the pulse
ΔV ′

j . Notice than j represents the sub-indexes employed in
Fig. 3. Then, the resistance is just obtained by applying Ohm’s
law, i.e. by dividing the change of voltage by the change of
current.

The characterization technique is so-called current injection
method if the voltage change is measured during the current
pulse Δtp. Alternatively, if the voltage change is measured
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Fig. 4: Voltage in time for two different Li-ion cells and
schematic representation of the calculation of the DCR volt-
ages ΔVDCR,1 and ΔVDCR,2 and their equivalent measure-
ment times Δtm,1 and Δtm,2.

after the current pulse, i.e. during the relaxation time Δtr ,
the technique is so-called current interruption method.

Typically, the values of the voltage changes measured with
the current injection method are slightly higher in comparison
to the values measured with the current interruption method.
Influence of the diffusion polarization is one of the causes
of the divergence of results, which could be mitigated if the
relaxation time Δtr of current interruption method is increased
until quasi-equilibrium state is achieved [22], [23]. The other
cause of this divergence is the change of OCV ΔVOCV caused
by SoC variation when a current injection method is applied.
Nevertheless, the magnitude of the OCV change depends on
the specific OCV vs SoC characteristic, as well as on the
current pulse amplitude ΔIp and length Δtp.

While on the subject of conventional approaches, two
parametrization methods are commonly proposed in the lit-
erature to estimate the value of the battery inner resistance
Rbat based on aforementioned current pulse characterization
techniques [9]–[16]. The first one consists of using the value
of the pure ohmic resistance R0, which corresponds to ratio
of the change of voltage and the amplitude of the current
pulse, measured either immediately after the beginning or the
end of a pulse, ΔV0 / ΔIp or ΔV ′

0 / ΔIp respectively. The
second one consists of using the value of the pure ohmic
resistance plus the polarization resistance, which corresponds
either to the change of voltage during certain measurement
time Δtm divided by the amplitude of the current pulse,
(R0 +R1) = (ΔV0 +ΔV1) / ΔIp, or to the change of
voltage during the relaxation time divided by the amplitude of
the current pulse, (R′

0 +R′
1) = (ΔV ′

0 +ΔV ′
1) / ΔIp. These

methodologies have been proposed in existing standards to
determine the battery power capability of electric vehicles,
considering both current injection and current interruption, and



using different pulse lengths or relaxation times [24].
However, as discussed earlier, conventional methods ei-

ther take into account too many or too few effects on the
parametrization of Rbat. In general, if the value of the pure
ohmic resistance may be used, R0 or R′

0, the battery dynamic
power response is underestimated, since charge transfer effects
are not considered. Inversely, if the value of pure ohmic
resistance plus the polarization resistance is used, (R0 +R1)
or (R′

0 +R′
1), the battery dynamic power response may be

overestimated, since in every case not only the charge transfer,
but also the diffusion effects are considered.

The DCR measurement technique consists of applying a
constant current pulse of certain amplitude ΔIp and certain
duration Δtp to the battery and measuring the resulting change
in the terminal voltage during the pulse. Then, the voltage
curve between ΔtDCR and 2ΔtDCR it is linearised and the
resulting line is continued up to the start of the current pulse as
shown in Fig. 2, Fig. 3 and Fig. 4. In this way the voltage drop
ΔVDCR is defined. Finally, the value of DCR is calculated as
the aforementioned change of voltage divided by the amplitude
of the current pulse, DCR = VDCR /ΔIp [17]–[19].

It should be noted that ΔtDCR may be selected differently
depending on the battery or its conditions, e.g. temperature or
ageing state. Of course, always considering for the duration
of the current pulse that Δtp ≥ 2ΔtDCR. However, a rule of
thumb is to choose a value for ΔtDCR that ensures that the
battery terminal voltage is almost linear between ΔtDCR and
2ΔtDCR [18], [19].

By using a DCR-based methodology, the influence of both
diffusion polarization effects and OCV changing are virtually
neglected (Fig. 2) [17]–[19]. Although, it should be noted that
the values of Rbat parametrized using a conventional method
and a DCR-based may overlap for a particular case (Fig.
11). However, in a broad sense, DCR-based parametrization
may represent a more robust and consistent assessment tool.
Particularly, if a current injection method is used, it may be
possible to find for a certain cell a measurement time Δtm for
calculation of ΔV1 that may result in parametrization values
for Rbat similar to the ones obtained using a DCR approach,
as shown in Fig. 11). However, if the same measurement
time Δtm is used to characterize a different cell, e.g. from
a different chemistry, it may result that the parametrization
values for Rbat may differ from the ones obtained using a
DCR approach.

This concept is illustrated in Fig. 4, which shows the voltage
in time for two cells from different manufacturers, formats and
cathode chemistries, when an 18 s current pulse is conducted
at 80 % SoC. The first one is an uncycled 53 Ah Li-ion pouch
cell produced by Kokam with a Nickel Manganese Cobalt
oxide (NMC) cathode. The second one is an uncycled 2.5
Ah Li-ion cylindrical cell produced by A123 systems with a
Nanophosphate LiFePO4 cathode. Experimental data for the
latter comes from [23]. The pulse current is 1 C (53 A) and
4 C (10 A) respectively. For this example ΔtDCR = 9 s is
considered. It can be observed that the measurement time for
calculation of change in the terminal voltage during a conven-
tional current injection test that may result in parametrization
values for Rbat similar to the ones obtained using a DCR

Fig. 5: Exemplary OCV test at 25 ◦C and 0.5 C.
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Fig. 6: Exemplary OCV vs. SoC characteristic estimated from
OCV test at 25 ◦C and 0.5 C.

approach, i.e. ΔV0 + ΔV1 ≈ ΔVDCR, is different for each
cell. For the NMC cathode cell Δtm,1 ≈ 2 s, while for the
LiFePO4 cathode cell Δtm,1 ≈ 4 s.

III. EXPERIMENTAL CHARACTERIZATION DATA AND
PARAMETRIZATION RESULTS

It should be noted that the values of the battery inner re-
sistance measured by current pulse characterization technique
are not only sensitive to the specifications of the methodology
applied, i.e. DCR measurement, current injection or current
interruption, pulse length (Δtp), pulse amplitude (ΔIp), relax-
ation time (Δtr) or DCR measurement time (ΔtDCR), but also
to factors like temperature, SoC or SoH. These dependencies
and their effects on the parametrization results are investigated
in this paper, based on experimental data from a commercial
Li-ion battery, with the exception of the influence of SoH:
calendar and cycling studies are beyond the scope of this paper
and will be considered in a future extension.

For illustrative purposes, exemplary experimental data from
current pulse characterization test conducted on an uncycled
Kokam 53 Ah SPLB 120216216 Li-ion NMC pouch cell are
displayed in Fig. 6 [11] and Fig. 7.

The current pulse test displayed in Fig. 6 is often referred
as OCV test, since it is usually conducted to obtain the OCV
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1). For comparison, DCR results from Fig.

10 at 0.5C are also displayed.

vs. SoC characteristic, shown in Fig. 5. In this case, the test
was conducted at 0.5 C (26.5 A) and 25 ◦C. Before the OCV
test begins, a full charge and discharge cycle was conducted
in order to calculate the charging and discharging capacity.
Then, the battery tester is programmed to fully charge and
discharge the cell in sequential steps of 5 % SoC, considering
a 2h relaxation time between consecutive pulses. From these
experimental data, besides the OCV vs SoC characteristic
(Fig. 5), it may be calculated the battery’s inner resistance
Rbat, according to the parametrization techniques described
in previous section (Fig. 7).

On the other hand, the current pulse tests displayed in
Fig. 8 are often referred as pulse power characterization tests,
since they are conventionally used to characterize the power
capability of a cell. Pulse power characterization tests are
intended to determine the internal resistance over the cells
usable voltage range using a current test profile that includes
both discharge and charge pulses at different SoC levels. In the
exemplary case shown in Fig. 8 consecutive steps of 5 % SOC
are considered, with a pulse length of 20 s and a relaxation
time after each pulse of 15 min, and current levels of 0.1 C,
0.25 C, 0.5 C and 1 C.

In Fig. 9 exemplary parametrization results from pulse
power characterization tests at 25 ◦C and 0.1 C are presented,
comparing a DCR approach with conventional current injec-
tion techniques, using 10 s and 20 s as measuring times for
ΔV1 and 10 s for ΔtDCR. Furthermore, in Fig. 10 DCR
parametrization results from pulse power characterization test
at 25 ◦C are shown for the whole range of discharge and
charge currents studied in Fig. 8. For the range of currents
studied, it can be observed in Fig. 10 a relatively small
variation of the value of DCR for a large SoC window, from
20 % to 80 % SoC, which means that a constant average value
of DCR may be used in dynamic discharge simulations over
a wide SoC range without large accumulative errors in cell
voltage or power losses estimation, as shown in next section.

In order to show the effect of the temperature on the DCR

(a) Overall view

(b) Detailed view

Fig. 8: Exemplary pulse power characterization test at 25 ◦C.

parametrization results, the same pulse power characterization
tests presented in Fig. 8 for 25 ◦C, have been conducted at
three other temperatures: 15, 35 and 45 ◦C. Fig. 12 displays
the DCR parametrization results for these temperatures, taking
into account the average value of the DCR over the same range
of discharge and charge currents studied in Fig. 8. As expected,
for higher temperatures a lower average DCR is calculated. It
should be noted that, similarly to Fig. 10, a relatively small
variation of the average value of DCR for a large SoC window,
from 20 % to 80 % SoC, is calculated for all the temperatures
under study.

This characteristic is becoming more evident at higher tem-
peratures and, conversely, less evident at lower temperatures.
These results suggest that further studies at lower temper-
atures could be conducted to gain more insight. The DCR
parameterization results presented in this paper show good
agreement with the results presented in [18] for a 40 Ah Li-
ion pouch cell produced by Kokam (Type SLPB 100216216H)
with Nickel Manganese Cobalt oxide (NMC) cathode material.
The interested reader can find in [18] also studies at higher C-
rates and lower temperatures, which complement the present
work from a qualitative point of view.
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IV. DCR MODEL VALIDATION

In this section, the performance of the linear static EECM
with DCR-based parametrization is compared with other bat-
tery models. Low and high order, linear and non-linear, static
and dynamic EECMs are considered, for the purposes of
performance evaluation and model validation.

In Fig. 14 the voltage profile of a first order non-linear
dynamic EECM (Fig. 13) together with four linear static
EECMs (considering Rbat as R′

0 + R′
1 and R′

0, DCR and
an optimal parametrization) is presented, with a dynamic
discharging profile obtained from a power demand determined
by simulation of a Battery Electric Vehicle, over a standard
US06 driving cycle.

With exception to the optimal parametrization, all models
are parametrized using aforementioned experimental data from
OCV test at 25 ◦C (Fig. 5 and Fig. 6), estimating the
value of the inner resistance Rbat as a DCR, a pure ohmic
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a DCR method.
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resistance (R′
0) or a pure ohmic plus polarization (R′

0 +R′
1),

considering average values of the discharge resistances over
an SoC window of 5-80 %, Δtr = 2 h and ΔtDCR = 10 s.
From the OCV test data, using the same current interruption
method, the pure ohmic resistance, the polarization resistance
and the capacitive element values are estimated for the first-
order non-linear dynamic (NLD) EECM. Moreover, regarding
the NLD model, a non-linear OCV vs. SoC characteristic is
also considered. Nevertheless, since an insignificant voltage
hysteresis effect is observed (Fig. 6) with respect to charge and
discharge processes, the average OCV vs SoC characteristic
is applied.

Furthermore, from this power profile, an optimal
parametrization for the linear static model is obtained.
Considering the change of voltage caused by the internal



 

 

 

 

 

  

 

Fig. 13: First order non-linear dynamic EECM of a single cell
of a Li-ion battery.
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namic discharging profile using different ECCMs.

impedance

ΔVRbat
(t) = vOCV (SoC)− vcell,NLD(t) (5)

by applying the current demanded by the driving cycle (for
the NLD model), a final identification problem can now be
posed as a simple linear least-squares problem:

ROPT = argmin
Rbat

N∑
k=0

(ΔVRbat
(tk)−Rbatibat(tk))

2 (6)

where ROPT is the internal impedance that provides a better
approximation between the non-linear dynamic and linear
static behaviours, in this specific application. N is the size
of the training data set. In this case, the parametrization is
obtained from a known voltage and current profiles (obtained
from the NLD model, the most accurate in this paper) instead
of using typical characterization tests. In other words, the opti-
mal ROPT value varies according to the proposed application.

In Fig. 15, the simulation results shown in Fig. 14 are
analysed from the point of view of cell voltage mean squared
error, max. voltage error and total cell power losses for each
of the three linear static EECMs implemented, using the first-
order NLD EECM as a reference. It should be noted that
an experimental dynamic discharge profile is not used as a
reference due to the complexities of measuring the power
losses, since a calorimeter may be required. According to
these results, a DCR-based approach may offer a significant
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Fig. 15: Cell voltage mean squared error, max. voltage error
and normalized total cell power losses for each of the three
linear static EECM, using the first-order NLD EECM as a
reference.

accuracy improvement over the other conventional methods
(R′

0 +R′
1 and R′

0), both in terms of cell terminal voltage and
power losses estimation. The total power losses estimated with
the DCR parametrization are only 14 % less than the losses
estimated with the NLD model, while the R′

0 parametrization
provides 39 % lower losses and the (R′

0+R′
1) parametrization

54 % higher losses. Furthermore, the mean squared error of
the voltage estimation using DCR parametrization is 31 %
and 30 % lower than the (R′

0 +R′
1) and R′

0 parametrizations,
respectively. Regarding the maximum voltage error, since
the inner resistance obtained with DCR parametrization is
higher than R′

0 the maximum voltage error is slightly higher
in the DCR case. In other words, in average the voltage
estimation results are closer to the NLD model with the DCR
parametrization, however some peak currents may provide
instantaneous errors slightly higher than the model with the
R′

0 parametrization.
In its turn, the optimal approach presents a more accurate

result in comparison to the reference parametrization (NLD
model), in relation to all the other methods. In terms of
mean squared error there, less 14 % of error is obtained in
comparison to the DCR model. In terms of total power losses
only 7 % of error is obtained relatively to the NLD model.
Nevertheless, for the same reason aforementioned to the other
models, the DCR model presents a smaller maximum voltage
error when compared to the optimal model.

It should be noted, however, that the optimal parametrization
is obtained from a known current and voltage profiles. In that
sense, for typical profiles, an optimal linear static model can be
generated presenting a simple, but relatively accurate model.
On the other hand, the DCR method proved, in this case, to be
more accurate than typical characterization methods for linear
static models without assumptions of the application profile.

For illustrative purposes, a constant current discharge step
at 1C, 25 ◦C and 50 % SoC is shown in Fig. 16. Experimental
battery voltage is compared with the estimations from differ-
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using different linear static models with different parametriza-
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ent linear static models, considering different parametrization
methods.

V. CONCLUSION

By drawing on a DCR-based methodology, the influence of
both diffusion polarization effects and changing of OCV are
virtually excluded on the estimation of the inner resistance,
resulting in an improved parametrization which accounts prac-
tically for pure ohmic and charge transfer effects. It was
demonstrated that this may be beneficial, since pure ohmic and
charge transfer effects dominate the battery dynamic power
response in the range of interest in most applications, including
hybrid and battery electric vehicles.

Moreover, it has been shown, using experimental data,
that the values of the battery inner resistance measured by
current pulse characterization technique are sensitive to the
specifications of the methodology applied and to factors like
temperature, in good agreement with previous results from the
literature.

With regard to the influence of the pulse current amplitude,
for the range of currents studied (-1 C to 1 C), a relatively
small variation of the value of DCR was observed for a large
SoC window, from 20 % to 80 % SoC. This means that
a constant average value of DCR may be used in dynamic
discharge simulations over a wide SoC range without large
accumulative errors in cell voltage or power losses estimation.

On the other hand, regarding the temperature effect, DCR
increases non-linearly with the reduction of temperature. This
suggests that, as expected, temperature is a factor that cannot
be neglected, whatever the parametrization method. It should
be noted that a relatively small variation of the average value
of DCR for a large SoC window, from 20 % to 80 %
SoC, is observed for all the temperatures under study (15,
25, 35 and 45 ◦C). This characteristic is more evident at
higher temperatures and, conversely, less evident at lower
temperatures, which suggest that special care should be taken

when modelling battery dynamic power response at lower
temperatures.

Finally, for purposes of performance evaluation and model
validation, the performance of the linear static EECM with
DCR-based parametrization is compared with other battery
models during a dynamic discharge simulation. Low and high
order, linear and non-linear, static and dynamic EECMs are
considered. Mean squared error, max voltage error and total
losses are used as performance metrics, using the NLD model
as a reference. The dynamic discharging profile is obtained
from a power demand determined by simulation of a Battery
Electric Vehicle, over a standard US06 driving cycle.

As anticipated, the DCR model achieved significant im-
provements in terms of cell terminal voltage and power
losses estimation in comparison with other conventional pulse
characterization methods, which tend to overestimate or un-
derestimate the battery dynamic power response.

Moreover, for evaluation purposes, an optimal internal re-
sistance is obtained for the linear static model using the NLD
model as a reference. An ordinary least-squares estimation
technique for linear regression is applied. The sum of square
residuals (change of voltage offsets) is minimized over the
realistic dynamic discharging profile. The performance of
the linear static circuit parametrized with optimal method is
slightly better than the DCR method in terms of mean squared
error and power losses.

However, it should be noted that a DCR method may not
present the limitations, complexity or infeasibility problems
of a statistical regression analysis. An optimal parametrization
requires a simulation with a complex battery model or a real
battery dynamic test in order to obtain the dynamic voltage
profile. Furthermore, sometimes the battery current demand
may be unknown, e.g. in energy management problems in
hybrid systems, since the power allocation is an output. Last
but not least, sometimes the current demand may come from
certain system-level demand, e.g. a driving cycle in e-mobility,
requiring a full-system model or field tests. These issues do not
affect the DCR method, which in its simplest form may only
require one short pulse characterization test within a relatively
wide range of SoCs and currents to provide a solution close
to the optimal.
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