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Reconstruction Algorithms in Undersampled AFM
Imaging

Thomas Arildsen, Member, IEEE, Christian Schou Oxvig, Student Member, IEEE, Patrick Steffen
Pedersen, Member, IEEE, Jan Østergaard, Senior Member, IEEE, and Torben Larsen, Senior Member, IEEE,

Abstract—This paper provides a study of spatial undersam-
pling in atomic force microscopy (AFM) imaging followed by
different image reconstruction techniques based on sparse ap-
proximation as well as interpolation. The main reasons for using
undersampling is that it reduces the path length and thereby
the scanning time as well as the amount of interaction between
the AFM probe and the specimen. It can easily be applied
on conventional AFM hardware. Due to undersampling, it is
necessary to subsequently process the acquired image in order
to reconstruct an approximation of the image. Based on real
AFM cell images, our simulations reveal that using a simple
raster scanning pattern in combination with conventional image
interpolation performs very well. Moreover, this combination
enables a reduction by a factor 10 of the scanning time while
retaining an average reconstruction quality around 36 dB PSNR
on the tested cell images.

Index Terms—atomic force microscopy, undersampling, image
reconstruction, sparse approximation, interpolation, compressed
sensing

I. INTRODUCTION

ATOMIC force microscopy (AFM) is a scanning probe
microscopy technique that offers several interesting pos-

sibilities in the imaging of biological materials such as cells.
Atomic force microscopy complements other microscopy tech-
niques such as optical microscopy or scanning electron mi-
croscopy (SEM) by enabling three-dimensional imaging of
cell surfaces and imaging cells and bio-molecules in more
natural environments than other techniques. This also enables
imaging of live cells [1]. Imaging biological material such
as live cells does, however, entail some challenges such as
the risk of damaging the cells due to interaction with the
microscope probe tip [2], [3].

Imaging with AFM equipment is a relatively time-
consuming process, taking on the order of seconds to minutes
or even higher to image a region of interest using commercial
AFM equipment [4], [5]. While this may be inconvenient to
the operator of AFM equipment, it can become an impediment
when imaging temporally evolving material and organisms,
i.e. the AFM equipment may simply not be able to scan the
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specimen sufficiently fast to be able to follow the process [6],
[7]. Several approaches to achieving higher-speed scanning in
AFM have been explored. These include approaches dealing
with the mechanical characteristics of the equipment, control
of the probe, or design of special sampling patterns that allow
faster movement of the probe [6], [8]–[10]. However, since it
is often necessary to probe the specimen with great caution,
particularly in the case of live cell imaging, efforts to scan
faster and yet interact as little/carefully with the specimen as
possible may well run counter to each other.

One way to combat this dilemma could be to use sparser
sampling patterns than the patterns typically used in AFM.
The typical way to sample the topography of a specimen in
AFM is to scan the probe across the surface in a dense raster
pattern [11]. This process can be sped up by using a sparser
sampling pattern, i.e. effectively letting the scan path cover
the surface less densely and thereby enabling a shorter and
thus faster scan path. This approach simultaneously causes the
probe tip to interact less with the specimen. Such an approach
can potentially solve the dilemma of careful interaction with
a fragile specimen vs. fast scanning. In exchange, this neces-
sitates reconstruction of the full surface topography (image)
from considerably fewer samples instead.

In this paper we survey a range of methods that can
be applied in order to achieve faster and/or less destructive
cell imaging using AFM.1 In particular, we compare two
different sampling patterns (raster and spiral) in combination
with a selection of image reconstruction techniques based
on sparse approximation and an interpolation technique used
as reference. For the comparison, we use seven AFM cell
image specimens. We identify useful combinations of scan-
ning patterns and reconstruction algorithms that provide good
reconstruction quality and are sufficiently fast w.r.t. scan time
as well as reconstruction time. A perhaps somewhat surprising
finding is that the naive approach of simply scanning the cell
specimen with a less dense raster pattern, effectively skipping
a fraction of the lines, and then combined with standard image
interpolation, leads to the best overall objective reconstruction
quality for a fixed undersampling ratio. It is worth noticing that
if obtaining a less dense raster scanning pattern is supported
by the AFM equipment, then this technique does not require

1The underlying code-base and images required for reproducing all results
in this article is freely available at:

• Code http://dx.doi.org/10.5281/zenodo.32959
• Results http://dx.doi.org/10.5281/zenodo.32958
• Images http://dx.doi.org/10.5281/zenodo.17573
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any hardware modification of the AFM equipment. The recon-
struction algorithm is then a purely software-based approach
that can be performed on a standard PC or enabled through a
firmware upgrade of the equipment. We also find that for the
seven AFM cell images considered in this study, interpolation
and total variation techniques work better with raster scanning
patterns, whereas sparse approximation techniques with DCT
dictionaries work better with spiral scanning patterns.

The paper is outlined as follows. In Section II we give an
overview of signal processing for atomic force microscopy,
introducing the basics of AFM equipment as well as the
necessary processing required to obtain useful images from
the equipment, possible impairments, and notation details.
In Section III we give an overview of image reconstruction
based on sparse approximation techniques and introduce a
reference method, interpolation, for comparison. Section IV
details our experiments regarding reconstruction of images in
AFM. Section V presents results from numerical experiments
with the presented reconstruction methods. Finally, Section VI
summarizes and concludes the paper.

II. NOTATION AND FRAMEWORK

A. Introduction to AFM
Atomic force microscopy (AFM) is one of the most ad-

vanced techniques for investigating and manipulating surfaces
on the atomic scale. By working on this scale, AFM pro-
vides magnification which is orders of magnitude beyond the
capabilities of optical, confocal, and even scanning electron
microscopy or transmission electron microscopy techniques
[12]. This is generally the case for scanning probe microscopy
(SPM) which encompasses the families of AFM and scanning
tunneling microscopy (STM). Whereas STM requires the
surface of interest to be electrically conductive, AFM does not
[11] and is therefore the technique of interest to the present
paper due to the potential application to live cell imaging.
However, many of the thoughts presented should be applicable
to SPM in general.

Being a state-of-the-art technique, AFM is used extensively
within nanoscale science and technology [13]. Partly because
the technique can be used on surfaces in both vacuum, air,
and liquids, there is a large variability in the applications [7].
A number of applications relate to materials science, some to
the study of biological processes, and some to the study of
biological materials [9]. Yet other applications use AFM for
surface manipulation including lithography, nanomanipulation,
and nanoassembly [14].

In the context of surface investigation, AFM is most com-
monly used to generate a 3D surface map of the object of
interest [6]. Loosely speaking, a probe is used to measure the
height of the surface while the probe and the surface are moved
relative to each other. Specifically, the vertical position of the
probe is controlled by a piezo which is itself controlled by a
feedback loop. This feedback loop keeps a particular measured
property constant, such as the deflection of the cantilever on
which the probe tip is located, in order to ensure that the
probe traces the surface. Independently of this control loop,
the probe and the surface are moved relative to each other by
the use of additional piezos [12].

B. Image acquisition

To prepare the AFM equipment for operation, the user must
perform an initial system setup which consists of a number of
steps. Some of these steps require the user to make decisions
based on the surface under investigation. These decisions
include selecting a cantilever, operating mode (contact mode,
acoustic AC mode, or magnetic AC mode), servo settings
or AC mode settings, and scanner settings. Although these
heavily affect the quality of the measurements of the surface,
an in-depth coverage of the initial system setup is beyond the
scope of the present paper. It is, however, worth mentioning
that the degree of interaction between the probe tip and sample
depends heavily on the chosen operating mode. In contact
mode, the probe tip is “dragged” across the surface and
thus typically applies a near-constant force to it [12]. In AC
mode on the other hand, the cantilever is oscillated and thus
only applies force to the surface a fraction of the time [15].
The interaction between probe tip and sample is particularly
important when dealing with soft materials such as biological
cells [16].

The setup of the AFM equipment includes a number of
steps related to the movement of the probe and the surface
relative to each other: i.e. the scanning path. Traditionally, a
raster scanning path is used [4], and this only requires the
user to decide which surface region to scan, how densely to
scan it, and how fast to scan it. If the raster scanning path
should not be used then the user is required to decide on
the actual scanning path, the movement speed of the probe,
and the sampling frequency. Additionally, when deciding on
a non-raster scanning path, the user is required to somehow
implement this scanning if it is not already available in the
AFM equipment.

The actual scanning path is subject to two major constraints:
1) The probe cannot easily or effectively “jump” from one
point on the surface to another. Therefore, the path must
be continuous. 2) The piezos have a band limited frequency
response. Therefore, when combined with a specific probe
movement speed, the path must have frequency contents which
are limited to that band in order to avoid distorting the
scanning path.

C. Acquisition impairments

The image acquisition process is subject to a number of
impairments. Some of these impairments may severely affect
the image quality when image reconstruction is introduced
[17]. To ensure successful image reconstruction, the impair-
ments must be considered. Fortunately, some of these can be
mitigated by careful setup of the AFM equipment whereas
others must be accounted for in the image reconstruction [11].
This section highlights some of the possible impairments but
should in no way be considered a complete list.

Some of the impairments relate to the object of interest. First
of all, when this object is put in place, the surface is likely to
be tilted since the user cannot likely ensure that the surface
is perfectly normal to the probe tip. This impairment should
be accounted for by the image reconstruction. Next, when
acquiring an image, the surface may be deformed [18] since
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the AFM equipment applies force to the object which may
consist of a soft material. This impairment can be mitigated by
careful setup of the AFM equipment but it inevitably distorts
the image slightly [6].

Some of the impairments relate to the physical parts of the
AFM equipment. The probe tip is affected by an area of the
surface rather than a single point because of the shape and
size of the probe [11]. Depending on the probe, the slope
of the surface, and the desired physical resolution, this may
distort the image slightly. The sensors used in state-of-the-art
AFM equipment are sufficiently accurate and precise to only
cause negligible impairments [9]. The piezos used to move the
sample and probe relative to each other are intrinsically subject
to non-linearity, hysteresis, and creep [14]. However, state-of-
the-art AFM equipment can operate in closed-loop mode in
order to mitigate these effects [8].

Some of the impairments relate to the control loops and the
applied signal processing. The probe is part of a cantilever
which is deflected when the probe tip is affected by the
sample surface. This deflection is measured and compared to
the desired deflection resulting in an error signal which is
used to control the piezo. However, due to the filters used,
the type of controller, and the physics of piezos, the piezo
does not instantaneously compensate for changes in cantilever
deflection which may distort the image [18]. This impairment
may be mitigated by reducing the probe movement speed.

Finally, there are also possible issues of stochastic measure-
ment noise. Several factors specific to the equipment contribute
to stochastic noise in AFM [19]. These are for example related
to the optical system that is used to control the deflection of
the cantilever.

D. Discretization

As described in Section II-A, imaging with AFM can be
seen as measuring the surface height of a specimen across
a continuous two-dimensional surface (topography). The end
goal we consider here is conveying this measured topography
visually. This typically entails displaying an image of the
measured surface as points on a uniform grid, e.g. a computer
screen. This can be done in various ways, some of which are
described in the following. In order to do that, we first establish
some notation and general principles here.

We consider a region Ω ⊂ R2 within which we wish
to image the topography of the continuous surface of the
specimen, denoted X . The surface of the specimen is sampled
along a scan path, on which the AFM probe, represented by
the sampling operator φ, collects m samples φ(X) ∈ Rm×1 at
discrete points on the surface X . From these samples, we wish
to reconstruct an h×w (pixels) image of the surface. We refer
to this image representation of the surface (with values located
on a uniform pixel grid over Ω) as a matrix, X ∈ Rh×w, or
as a vector, x ∈ Rhw×1, containing the stacked columns of
the matrix with the left-most column of X as the top entries
of x etc. The reconstruction of this image is correspondingly
denoted X̂ or x̂.

In the case of raster scanning as traditionally applied in
AFM, the sampled points can be chosen naturally to lie close

to a uniform grid that fits directly into an image interpretation.
In this case the sampled points φ(X) correspond directly to
the image X with the possible addition of noise and various
scanning artifacts E ∈ Rh×w as described in Section II-C:

φ(X) = X + E (1)

If one deviates from this traditional raster scanning and
sampling approach by either changing the scan pattern or using
non-uniform sampling, the acquired image samples do not
generally fall on a uniformly spaced grid corresponding to the
pixels of X. Having a uniformly spaced pixel grid is attractive
from a mathematical point of view, since the image can be
represented in a matrix form with an intuitive interpretation
of the physical locations of the sampling points. In this case,
we consider reconstruction X̂ of the hypothetical image X
from which measurements are obtained via an intermediate
interpolation from the measured points to the pixel grid. In
this spatially discretized setting, the obtained samples can be
seen as located at points on the uniform pixel grid as well
such that:

φ(X) = Φx (2)

The pattern of sampling points represented by the spatially
discrete matrix Φ is referred to as the sampling pattern.

The variables defined in this section form the basis of the
different reconstruction approaches presented in the following
sections.

III. SPARSE APPROXIMATION

Sparse regularization and/or approximation is a well-known
approach to solving ill-posed optimization problems, early
examples of which include [20]–[22]. The principle of com-
pressed sensing which has emerged quite recently has popu-
larized the sparse regularization principle [23], [24]. For an
introduction, see [25]–[27].

In this paper, we demonstrate a selection of reconstruction
algorithms based on sparse regularization. For this purpose,
we consider the following linear measurement model:

y = Aα (3)

The vector α ∈ Rn×1 is a sparse vector, i.e. it contains only
k � n non-zero entries, also expressed as ‖α‖0 = k in the
`0 pseudo-norm. The matrix A ∈ Rm×n is a sensing matrix
applied to the sparse vector to sample the measurements y ∈
Rm×1.

Typically, as is the case for the application to AFM proposed
here, a signal is not sparse in the domain we can observe it
in. The following more general model is therefore used:

y = Φx (4)

where:

x = Ψα (5)

Here x ∈ Rp×1 is the observable signal vector and Φ ∈ Rm×p
is a measurement matrix applied to sample the measurements.
The matrix Ψ ∈ Rp×n represents the dictionary, enabling a
sparse representation α of the observable signal x.
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If we consider the above formulations in the setting of
reconstructing an AFM image from samples scanned on a
specimen, y corresponds to the scanned samples of the image
x, a vector version of X. We wish to reconstruct an estimate
x̂ of the image from y. The fact that m < p ≤ n means
that (3), or equivalently (4) together with (5), constitutes an
under-determined linear equation system which we cannot
directly invert to obtain x̂. Sparse regularisation as used in, e.g.
compressed sensing enables solving (3) for α, and equivalently
for x through (5), by solving the following (non-convex)
optimization problem [23]:

α̂ = arg min
β
‖β‖0 s.t. y = Aβ (6)

Unfortunately (6) is an intractably difficult combinatorial
problem to solve exactly. However, compressed sensing theory
shows that (6) can be replaced by the following convex
relaxation of the problem [23], [26]:

α̂ = arg min
β
‖β‖1 s.t. y = Aβ (7)

The optimization problem in (7) can solve (3) exactly under
certain conditions [26], [28]. The convex relaxation in (7) is
one approach to approximating a solution to (6). However,
there exist a number of different approaches which we survey
a selection of in Section III-B.

The reconstruction method can be generalized to the case of
noisy measurements and/or signals that are not exactly sparse
but rather “compressible” in the sense that they are accurately
approximated by a few of the largest entries in α:

y = Φx + e (8)

The vector e ∈ Rm×1 represents noise in the acquired
measurements, e.g. the impairments described in Section II-C,
and/or the error resulting from sparsely approximating a
signal that is not strictly sparse. In this case, the following
optimization problem reconstructs the signal [26]:

α̂ = arg min
β
‖β‖1 s.t. ‖Aβ − y‖2 ≤ ε (9)

The parameter ε bounds the 2-norm of the error e.
The sparse representation model (5) is known as the sparse

synthesis model – for its ability to synthesize a signal x from
a sparse vector α. This model also has a counterpart: the co-
sparse analysis model [29]:

α = Ψ>x (10)

This model admits a sparse representation of the signal x after
multiplication by an analysis dictionary Ψ>. Note here that
good dictionaries for the analysis model are not necessarily
simply a transpose of a corresponding synthesis dictionary,
but we use this notation here in order not to complicate the
notation with additional symbols. The optimization problem
for reconstructing x from the analysis model, as a counterpart
to (9) can be stated as:

x̂ = arg min
x̃
‖Ψ>x̃‖1 s.t. ‖Φx̃ − y‖2 ≤ ε (11)

A number of theoretical conditions for compressed sensing
reconstruction to succeed can be found in the literature [26],

[30], but most of the theory relies on the measurement
matrix Φ having i.i.d. random entries. A random measurement
matrix is difficult to achieve when scanning a specimen in an
efficient manner in AFM and further, the continuous trajectory
typically used in AFM in this case violates the assumption of
i.i.d. entries. Therefore, the imaging techniques explored in
this paper are not strictly compressed sensing. Nevertheless,
we investigate some of the reconstruction algorithms known
especially from compressed sensing to assess the value of
reconstructing images in AFM by sparse approximation.

Previous work has shown that for particular AFM images
having much greater energy in the high-frequency domain than
in the low-frequency domain, sparse approximation techniques
generally perform better than (Delaunay) interpolation-based
techniques, whereas for low-frequency AFM images, excellent
performance can be obtained with Delaunay interpolation [31].

A. Measurement and Dictionaries

As mentioned in Section III, the sensing matrix A can be
considered as the product of a separate measurement matrix Φ
and (synthesis) dictionary matrix Ψ where the purpose of the
measurement matrix is to represent the process that physically
measures the sample. The purpose of the dictionary matrix is
to enable a sparse representation of the image x.

When considering separate measurement matrices Φ and
dictionaries Ψ, the matrices should be selected from incoher-
ent orthogonal bases Φ and Ψ. Coherence, µ, is a measure of
the similarity of the vectors Φ and Ψ [26]. A low coherence
is better. The measurement matrix Φ should consist of rows
selected uniformly at random from Φ while the columns of
the dictionary matrix Ψ should be the vectors from Ψ [26].
The preceding descriptions apply to the case of a dictionary Ψ
corresponding to an orthonormal basis [32], i.e. m = p in (5).
However, the more general case of over-complete dictionaries
where m < p is also possible [33].

An overview of the past and present directions in the
design of dictionaries is given in [34]. The possibilities range
from the fixed, general purpose, orthogonal dictionaries over
more adapted over-complete dictionaries [35], [36] to the
highly data- and application-specific dictionaries designed
using a Karhunen-Loeve transform [37] (also known as a PCA
transform [38]) or a learning approach [39], [40]. Although
any of these approaches may be applicable for AFM image
representation, here we only discuss fixed dictionaries such as
the discrete cosine transform (DCT)2 or the discrete wavelet
transform (DWT). These transforms are of particular interest
due to their simplicity, their celebrated applicability in general
compressive imaging [27], and the availability of efficient
implementations requiring only O(n log(n)) computations as
well as relaxed memory requirements due to an implicit
representation of the dictionary matrix [41].

The DCT is used in the JPEG coding standard [42] and
as such is known to be successful in sparsely representing

2Here we consider the DCT as a representative of the family of sinusoidal
transforms which also includes, e.g. the discrete Fourier transform (DFT). It
is our experience that the use of the DFT gives reconstructions comparable
to those based on the DCT.
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smooth images. However, in JPEG the DCT dictionary is
used on smaller patches of the image whereas we only apply
dictionaries to the full image in this study. In terms of its
applicability in AFM imaging, the DCT is the dictionary
used in two independent recent studies on the applicability of
compressed sensing in AFM [31] and SEM [43]. The DWT
is generally very successful in sparsely representing piece-
wise smooth images. Consequently, it is the transform chosen
in the JPEG2000 coding standard [44]. The DWT has been
successfully used in a number of compressive imaging studies,
see e.g. [45] and [46]. Note, however, that these studies use
dense sampling matrices with random entries and not the
sparse point sampling used in AFM.

The excellent sparse representation capabilities of the DCT
and DWT on natural images make them both good candidates
for use in reconstruction of undersampled AFM images. We
have, however, found that the DWT can be problematic when
used in combination with point sampling. As (4) shows, mea-
surements in compressed sensing are generally random linear
combinations of the entries of the observable signal. In AFM,
however, the physical properties of the probe tip only allow
the microscope to sample the specimen in discrete points,
i.e. each row in Φ contains only one 1-entry while the other
entries are 0, making this point sampling measurement matrix
extremely sparse. The DWT dictionary matrix is relatively
sparse compared to the DCT and it follows that their product
is likely to be sparse, where some columns can become all-
zero. Thus, the null-space of the product matrix is non-empty
and there exist sparse solutions which cannot be represented
by the particular pair of measurement and dictionary matrix.
Intuitively, the DWT basis functions are not able to smoothly
interpolate between points spaced too far apart due to being
very localized in the image domain. Hence, we may experience
low incoherence between the DWT and point sampling. This
is not the case for the DCT dictionary matrix, which is
dense and maximally incoherent with point sampling [26].
To demonstrate the difference in reconstruction capabilities
between DCT and DWT dictionaries, we include results of
experiments with both dictionary types in Section IV. As the
results show, the performance depends strongly on the type of
sampling pattern used.

B. Reconstruction Algorithms

In the following, we review a number of reconstruction
algorithms that can be used to reconstruct undersampled AFM
images by sparse approximation.

1) Convex Optimization: The classic approach to solving
sparse approximation problems described by (6) is using the
`1 norm convex optimization formulations introduced by (7)
and (9). The constrained convex formulation (9) is also com-
monly found in a regularized form:

α̂ = arg min
β

{
τ‖β‖1 +

1

2
‖Aβ − y‖22

}
(12)

Although (12) appears different from (9) at first glance, they
can produce identical solutions for given pairs of (ε, τ) [47].
These convex optimization formulations are also known as

the least absolute shrinkage and selection operator (LASSO)
or basis pursuit de-noising (BPDN) [48], [49].

Equations (7), (9), (12) are formulations of the problem to
solve. However, various different algorithms can be employed
to compute the actual solution [50], [51]. Some solvers for
this type of problems are implemented in for example PyUN-
LocBoX3 [52], SPGL14 [53], YALL15 [54], and TFOCS6.

Another convex optimization method following the ap-
proach in (11) is using total variation (TV) minimization [55].
Proposed for image denoising in the context of image pro-
cessing [56], TV is a measure that quantifies the variation
in some function. In image reconstruction, the TV measure
is used to minimize the variation in the reconstructed image.
That is, this approach takes advantage of the fact that natural
images tend to consist of relatively large smooth regions and
exploits this fact to fill in missing regions between the known
parts of the image. Anisotropic TV can be seen as analysis
co-sparse approximation with a discrete difference operator as
the analysis dictionary, see (10). The anisotropic TV operator
can be found in, e.g. [57]. As an example of analysis-based
sparse approximation, we apply a slightly different variant;
isotropic TV. This has also been applied to AFM image
reconstruction in [7]. A related application is found in [58]
where a slightly different but similar approach known as
heat equation in-painting is used. The isotropic TV convex
optimization problem can be posed as [59]:

x̂ = arg min
x

tv(x) s.t. ‖Φx − y‖2 ≤ ε (13)

In (13), we have used vector notation for the image x to sim-
plify the constraint. For the purposes of numerical computation
used in image processing, a discrete approximation of the TV
norm is used since the image is discretized to a pixel grid.
One definition of this discretization can be found in [59]:

tv(X) =

h−2∑
k=0

w−2∑
l=0

(∣∣X(k+1,l) −X(k,l)

∣∣2 +

∣∣X(k,l+1) −X(k,l)

∣∣2) 1
2

+

h−2∑
k=0

∣∣X(k+1,w−1) −X(k,w−1)
∣∣2

+

w−2∑
l=0

∣∣X(h−1,l+1) −X(h−1,l)
∣∣2 (14)

In (14), we have used matrix notation for the image X to
simplify indexing; X(k,l) indexes the (k, l)’th entry in X.
Equation (14) is the isotropic version of the discrete TV norm.

The problem (13) can be solved using different algorithms
such as split Bregman [60] or Douglas-Rachford splitting [52],
[61]. Implementations of algorithms solving TV optimization
can be found in PyUNLocBox, which can solve (13) as
described in [62]. TFOCS6 [63] also implements a solution.

2) Greedy Pursuits: An alternative to the convex optimiza-
tion based reconstruction algorithms is using the class of so-
called greedy reconstruction algorithms. The term greedy is

3Available at https://github.com/epfl-lts2/pyunlocbox.
4Available at http://www.cs.ubc.ca/labs/scl/spgl1.
5Available at http://yall1.blogs.rice.edu/.
6Available at http://cvxr.com/tfocs/.

https://github.com/epfl-lts2/pyunlocbox
http://www.cs.ubc.ca/labs/scl/spgl1
http://yall1.blogs.rice.edu/
http://cvxr.com/tfocs/
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used because these algorithms iteratively take decisions that
are locally optimal in each iteration [64].

Generally, an iteration of a greedy algorithm involves a
greedy selection of support elements (columns of A) followed
by a coefficient update (an update of α̂), see e.g. [64, Algo-
rithm 8.1]. The simplest examples are so-called greedy pur-
suits like Matching Pursuit (MP) [35] or Orthogonal Matching
Pursuit (OMP) [65] that only allow for a continued increase
of the support. Algorithms like Iterative Hard Thresholding
(IHT) [66] or Iterative Soft Thresholding (IST)7 [67] have an
ability to also prune elements from the support. For common
parameter choices, the IHT interchanges the optimization
criterion and the constraint in (9) and uses the `0 pseudo-norm
from (6) instead of the `1 relaxation:

α̂ = arg min
β
‖Aβ − y‖2 s.t. ‖β‖0 ≤ k (15)

In particular the IHT and IST algorithms have a simple
iterative form which can be written (with iteration index k)
as:

β(k+1) = Tµ

(
β(k) + κA>

(
y −Aβ(k)

))
(16)

The parameter κ is a step size. The function Tµ is a thresh-
olding operator applied entry-wise to each of the entries v of
a vector v. For IHT the hard thresholding operator [66] is:

Tµ (v) =

{
0 for |v| ≤ µ
v otherwise

(17)

For IST the soft thresholding operator [67] is:

Tµ (v) =

{
0 for |v| ≤ µ
sgn (v) (|v| − µ) otherwise

(18)

Even more advanced algorithms exist such as Subspace Pursuit
[68] or CoSaMP [69] that introduce a two-stage thresholding
scheme with an intermediate support element selection and
coefficient update.

Although some of the greedy algorithms can be shown to
have theoretical recovery guarantees that match those of the
`1 based convex relaxation methods [64], empirical evidence
suggests that they do not perform as well as `1 optimiza-
tion [70], [71]. The greedy algorithms are, however, worth
considering due to their low computational complexity. The
computational cost in an iteration of e.g., MP, IHT, or IST
is dominated by the computation of matrix-vector products
involving A and A>, thus, having complexity O(n2). If fast
transforms are available, as is the case when using e.g. the
DCT as described in Section III-A, the computational cost
is O(n log(n)). This has a significant impact on the time it
takes to do the reconstruction for large problem sizes such as
a 256× 256 = 65536 pixels AFM image.

3) Approximate Message Passing: Probabilistic Message
Passing (MP) algorithms based on graphical belief models
are known from Bayesian inference used in machine learning
[72]. This is an advanced method of reconstruction, which
takes into account prior information the user may have on

7IST can also solve a variant of the `1 minimization problem and as such
is not completely distinct from them.

signal characteristics [73]. It unfortunately suffers from severe
computational load and may also show poor convergence
properties if the algorithmic assumptions are not fulfilled
[74]. The Approximate Message Passing (AMP) algorithm
is derived as a first order approximation, which reduces
the computational burden significantly [72], [75]–[77]. AMP
exists in several variants allowing different signal priors [78],
inclusion of parameters as variables [79] etc. The following is
based on a reasonably simple AMP method using a Bayesian
framework for probabilities. Maleki and Baraniuk [80] showed
links between AMP and Iterative Soft Thresholding (IST)
in terms of identical convergence properties, and it has also
been shown that the AMP algorithm can solve the LASSO
(Least Absolute Shrinkage and Selection Operator) problem
formulated in (12) [79].

The Minimum Mean-Square Error (MMSE) signal recon-
struction estimate for xn can be found from a marginal
Bayesian mean of the posterior marginal estimate as [81]:

x̂MMSE
n =

∫
x∗
xn ℘X|Y (xn|y) dxn (19)

where ℘X|Y (xn|y) is the conditioned posterior pdf (probabil-
ity density function), and x∗ is the space of xn. To compute the
MMSE estimate in (19) we need to determine the conditioned
posterior probability ℘X|Y (xn|y), which can be done via
Bayes’ rule [81]:

℘X|Y (x|y) =
℘Y |X(y|x)℘X(x)

℘Y (y)
(20)

=
℘Y |X(y|x)℘X(x)∫

x∗ ℘Y |X(y|x)℘X(x) dx
(21)

For the sparse input signal x we assume all components to be
i.i.d. Bernoulli-Gaussian with marginal pdf:

℘X(xn) = ρN (xn; µx, σ
2
x) + (1− ρ) δdirac(xn) (22)

where ρ ∈ [0; 1], δdirac(·) is the Dirac δ-function [82], and the
general Gaussian function is:

N (xn; µx, σ
2
x) =

1√
2π σx

exp

(
−(xn − µx)2

2σ2
x

)
(23)

The noise in (8) is modeled as additive white Gaussian noise
with a pdf given by:

℘E(en) = N (en; 0, σ2
e ) (24)

The Message Passing (MP) is then included to describe the
steps:

α → z = Aα → y = z + e = Aα + e (25)

remembering that x = Φα. When ℘X(x) is unknown, the ex-
pression above represents an assumption of the pdf. Other pdfs
may be used such as Laplace and Bernoulli-Gaussian Mixture
models [79]. The output can be based on any separable
distribution. In the special case of a Laplace pdf, the algorithm
can be reduced to a simple thresholding algorithm similar
to (16) with an additional correction term in the argument
to the threshold operator (18). The algorithmic complexity of
the AMP algorithm based on Bernoulli-Gaussian input prior
and Gaussian output prior is O(mn).
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4) Reference Method: Interpolation: Interpolation using
irregularly spaced samples is a widely studied topic and
used in diverse disciplines such as signal processing [83],
[84], computational geometry [85], and geoscience [86]. Here
The computationally simplest approaches to interpolation are
nearest neighbor interpolation, where the nearest known pixels
are simply copied to the unknown pixel locations, and linear
interpolation, where nearby pixels are linearly combined to
provide the values for the missing pixels. The weights used
in the linear combination are often empirically chosen such
that an average of the neighboring pixels is obtained or they
depend upon the distance between the pixels as is the case
with Kriging linear interpolation [86]. The weights can also
be analytically chosen to satisfy e.g., well-established sam-
pling theorems in shift-invariant spaces such as non-uniform
interpolation with b-splines [87] and sinc kernels [88]. Another
common approach is to use Delaunay triangularization, where
the surface area is subdivided into non-overlapping triangles.
The vertices of the triangles are assigned the measured points,
and any point within a triangle can be obtained by (non)-
linear interpolation methods such as linear, cubic, and nearest-
neighbor interpolation between its three vertices [85]. In this
study we use the latter interpolation method as a reference to
compare the sparse approximation methods against.

IV. EXPERIMENTS

In order to give an overview of the possibilities of image re-
construction from sparsely sampled images we have conducted
an extensive set of experiments to showcase the capabilities
of different reconstruction approaches presented in Section III.
The experiments cover basic variants of the involved recon-
struction algorithms, i.e., no attempts were made to exploit
special structure in the images or apply dictionary learning etc.
It is therefore also likely that specialization of the algorithms
may offer further reconstruction quality improvements or mit-
igation of some of the impairments described in Section II-C.

A. Quality Indicators

In order to assess the reconstruction quality in the exper-
iments, we apply two standardized image quality indicators.
The first is peak signal-to-noise ratio (PSNR):

PSNR = 10 log10

 P 2∑h−1
k=0

∑w−1
l=0

(
X(k,l) − X̂(k,l)

)2

(26)

The value P is the maximum possible value of a pixel in
X, i.e. P = 1 according to the numeric representation of the
images described in Section IV-C.

The second metric is the structural similarity (SSIM) index
which we use according to the definition in [89]. In particular,
we use: window size 7, K1 = 0.01, K2 = 0.03, C3 = C2

2 ,
and α = β = γ = 1, cf. [89, Eq. (13)].

All reconstructed images are scaled to have pixel values in
the range [0, 1] prior to application of the PSNR and SSIM
indicators.

The color map referred to as “cool-warm” in [90] (exem-
plified in Figure 1a) is used for visualizing the ground truth
images in Figure 2 as well as the reconstructed images. We
have found through perceptual evaluation of the ground truth
images that this color map is better for discerning image details
otherwise lost in the color map traditionally applied in AFM
imaging which is exemplified in Figure 1b.

(a) “Cool-warm” color map.

(b) Traditional AFM color map.

Fig. 1. Color maps for visualization of images.

B. Sampling Pattern

We investigate reconstruction performance under varying
density of the applied sampling pattern. The density of the
sampling pattern is expressed in terms of an undersampling
ratio defined as follows: the undersampling ratio is measured
with respect to the length of the scan path as this can reason-
ably be assumed proportional to the amount of time required
to scan the image. We take as reference scan path length the
length of the dense raster pattern used to scan the original
images in Figure 2. This reference length is approximated as:

Lref = 2w h (27)

That is, the length of each horizontal line w times the number
of lines h, expressed in pixels. The multiplication by 2
stems from the fact that the probe is scanned both back and
forth once in each direction for each line counted. This in
principle results in two images; one composed of the left-to-
right-scanned samples and one composed of the right-to-left-
scanned samples. Only one of these images is used as they are
usually equivalent (but not completely identical) for practical
purposes. The undersampling ratio δ is finally calculated as

δ =
L

Lref
(28)

The length L is the length of the applied sampling pattern
in units of pixels. In reconstruction experiments involving the
spiral sampling pattern, we have simulated a scan path that
scans beyond the square region of the original image until
the spiral pattern fills the corners of the square as can be
seen in Figure 2h. In calculating the resulting undersampling
ratio, we also include the parts of the spiral scan path outside
the square image region for fairness of comparison. This is
done because the AFM equipment would have to traverse
these unused regions outside the image region in order not
to introduce scanning artifacts by deviating from the smooth
curve of the spiral path. Note that (28) is not equal to the
undersampling ratio measured in image pixels and (28) reflects
the fact that we wish to focus on the potential time savings in
applying sparse sampling patterns in AFM.
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(a) Chinese hamster ovary cells. (b) Chinese hamster ovary cells. (c) Human bladder carcinoma
cells.

(d) Human bladder carcinoma
cells.

(e) Chinese hamster ovary cells. (f) Chinese hamster ovary cells. (g) Chinese hamster ovary cells. (h) Sampling pattern example.

Fig. 2. (a)–(g) The seven ground truth images used in reconstruction experiments here shown before de-tilting; (h) shows an example of the spiral sampling
pattern with δ = 0.1.

C. Image Material
As examples of cell images we have selected the seven

images shown in Figure 2. The images have originally been
scanned for a size of 512× 512 pixels, but have been sub-
sequently decimated to 256× 256 pixels to reduce the com-
putational complexity of the reconstruction8. The images are
stored and processed as double precision (64-bit) floating point
values in the interval [0, 1]. Images (a), (c), (e), and (f) have
been acquired in acoustic AC mode; images (b), (d), and (g)
have been acquired in contact mode. The images have been
acquired on Keysight Technologies ILM6000 and 7500 AFM
equipment. The original image files are available along with
this paper9.

We demonstrate the performance of the reconstruction al-
gorithms on images sampled using raster-, respectively, spiral-
shaped scanning paths. In the experiments, we did not have
access to images scanned along a spiral scan path. For this
reason, the measurements used in the reconstruction experi-
ments were constructed as follows: the original images were
acquired using a dense raster scan path with one line per line
of pixels in the resulting image; spiral-scanned measurements
were simulated by picking pixels from the original images in
a spiral-shaped pattern as illustrated in Figure 2h; for fairness
of comparison, the raster-scanned measurements used in the
experiments were similarly picked as horizontal lines–joined
at the ends by vertical segments–of pixels from the original

8Most of the tested algorithms can actually handle images of size
512× 512, but the Bernoulli-Gaussian AMP algorithm described in Sec-
tion III-B3 was unable to handle larger images on the available hardware
due to memory requirements.

9http://dx.doi.org/10.5281/zenodo.17573

images. The undersampling ratio defined in Section IV-A is
varied among the following values:

δ ∈ {0.1 + n · 0.025 | n = 0, 1, . . . , 8} (29)

In the reconstruction experiments, the images have been de-
tilted prior to reconstruction. This is done by least-squares-
fitting a plane through the available measurements according
to the applied sampling pattern. The fitted plane is then
subtracted from the measurements. When evaluating PSNR or
SSIM of the reconstructed images, the reconstructed images
are compared to the de-tilted original.

There was not sufficient information available regarding the
physical experimental set-up used in producing the images in
Figure 2 to analyze and estimate the amount of measurement
noise in the images as described in, e.g. [19]. When available,
such estimates of measurement noise should be included
appropriately in the reconstruction algorithms. For example,
in the cases of (13) and (9) the estimated noise variance can
be used to determine ε.

D. Algorithm Implementations

For each of the sampling patterns (raster or spiral) and
each of the undersampling ratios, we reconstruct each of the
seven images using the following reconstruction algorithms:
`1-minimization (Section III-B1), AMP – with Laplace prior
and with Bernoulli-Gaussian prior (Section III-B3), IST and
IHT (Section III-B2), TV minimization (Section III-B1), cubic
interpolation via Delaunay triangulation (Section III-B4). The
simulation code has been implemented in Python, which is a
popular, open and suitable ecosystem for scientific computing

http://dx.doi.org/10.5281/zenodo.17573
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(b) Raster sampling pattern

Fig. 3. Comparison of reconstruction PSNR, SSIM, and run-time across the tested reconstruction algorithms, at 256× 256 pixels.

[91], [92]. Python also supports the ideas of reproducible
research which are considered important in the present simu-
lation rich context [93], [94]. The complete Python code used
to conduct the reconstruction experiments is available along
with its results10. Interaction with the data files from the AFM
equipment, generation of sampling patterns, measurement and
dictionary matrices (for the algorithms utilizing the latter) as
well as evaluation of quality indicators and visualization of
reconstruction results are handled through the Magni software
package11 described in [95]. Some of the applied reconstruc-
tion algorithms are provided as part of the Magni package
while others are available in other packages; see details in the
following:

1) `1-minimization For reconstruction via `1 minimization,
we solved (9). Reconstructions using `1-minimization
were performed using an orthogonal DCT dictionary
as well as over-complete DCT dictionaries. The over-
complete dictionaries applied 2 and 3 times oversam-
pling along each dimension of the frequency domain.
This amounts to a total of 4 and 9 times oversam-
pling, respectively. The over-complete DCT dictionaries
were implemented by applying zero-padding in the

10http://dx.doi.org/10.5281/zenodo.32959 and . . . /zenodo.32958.
11http://dx.doi.org/10.5278/VBN/MISC/Magni

image domain. Additionally, reconstructions using `1-
minimization were performed using orthogonal DWT
dictionaries with three different types of wavelets:
Meyer, Daubechies, and symlets. All three wavelet
types were used in their longest available form in the
PyWavelets toolbox for Python12. Wavelets with the
longest available filters were chosen to mitigate possible
problems with measurement-dictionary coherence and
non-empty null-space discussed in Section III-A.
The solver iterates until the constraint in (9) is met or a
limit of 2000 iterations has been reached. Other settings
in the solver may influence the stopping conditions;
these have been left at their standard values.

2) Approximate Message Passing For reconstruction via
AMP, we have implemented the algorithm in Python for
a Laplace as well as a Bernoulli-Gaussian (BG) prior.
The code is included in the software accompanying this
paper. The algorithms are iterated until they reach an
upper limit of 300 iterations or if the residual:

‖y −A α̂‖2 < ε‖y‖2, ε = 10−3 (30)

Our current implementation of Bernoulli-Gaussian AMP
(BG-AMP) cannot handle images in 256 × 256 pix-

12https://github.com/PyWavelets/pywt

http://dx.doi.org/10.5281/zenodo.32959
http://dx.doi.org/10.5281/zenodo.32958
http://dx.doi.org/10.5278/VBN/MISC/Magni
https://github.com/PyWavelets/pywt
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(a) Spiral sampling pattern
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(b) Raster sampling pattern

Fig. 4. Comparison of reconstruction PSNR, SSIM, and run-time across the tested reconstruction algorithms, at 128 × 128. This figure serves to compare
BG-AMP to the other algorithms.

els due to severe memory requirements. Therefore our
experiments with this particular algorithm have been
conducted with the images in Figure 2 decimated to
128 × 128 pixels. All experiments with the other al-
gorithms have additionally been repeated at this image
size for the purpose of comparison with this algorithm.
Reconstructions using AMP were only performed using
an orthogonal DCT dictionary.

3) Iterative Soft and Hard Thresholding For reconstruction
via IST as well as IHT, we have implemented these
algorithms in Python. The code is included in the
software accompanying this paper. The algorithms are
iterated until they reach an upper limit of 300 iterations
or meet the condition in (30).
Reconstructions using IHT and IST were only performed
using an orthogonal DCT dictionary.

4) Total Variation For reconstruction via TV minimization,
we solved (13) using Douglas-Rachford splitting. We
used the solver implemented in the PyUNLocBox pack-
age for Python, referenced in Section III-B1. The solver
iterates until the constraint in (13) is met or a limit of
2000 iterations has been reached. Other settings in the
solver may influence the stopping conditions; these have

been left at their standard values.
5) Interpolation For reconstruction via interpolation, we

used cubic Bezier polynomial interpolation over trian-
gles formed by triangulating the available measurements
Φx as implemented in the scipy.interpolate
Python module [96].

For the convex optimization-based reconstruction approaches
(items 1 and 4 above) we have repeated the reconstructions
over a wide range of the regularization parameter ε and se-
lected the reconstructions with highest PSNR/SSIM, averaged
over all images for each algorithm and undersampling ratio
δ. Similarly for the IHT and IST algorithms, we repeated the
reconstructions over a wide range of the sparsity parameter k
and selected the reconstructions with highest PSNR/SSIM, av-
eraged over all images for each algorithm and undersampling
ratio δ. This was done in order to provide a fair basis for
comparison between the different algorithms since the mea-
surement noise is unknown and thus unavailable to estimate
ε, as explained in Section IV-C. Also, the images are not truly
sparse – merely well approximated as such. There is thus no
true parameter k available and this parameter is very problem-
dependent. This choice of regularization parameters is not
feasible in practice since the original image is unavailable for
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PSNR: 13.34 dB / SSIM: 0.08

(a) Image 2a: IHT, spiral.

PSNR: 17.36 dB / SSIM: 0.31

(b) Image 2b: IST, spiral.

PSNR: 20.02 dB / SSIM: 0.41

(c) Image 2f: `1-min., raster.

PSNR: 15.50 dB / SSIM: 0.20

(d) Image 2g: Laplace AMP, raster.

Fig. 5. Examples of low-quality reconstructions at δ = 0.1. Images
reconstructed from measurements of the ground truth images 2 (a), (b), (f),
and (g). 256× 256 pixels.

evaluating the reconstruction quality. It was however chosen
in order to compare the mentioned algorithms on an equal
footing.

For each reconstruction experiment we have measured the
reconstruction time as a practical indicator of the run-time
complexity. Reconstruction time can of course vary depending
on the specific algorithm and the implementation of it used to
reconstruct the image. Our reconstruction results could thus
possibly be reproduced with different measured run-times.
However, the measured reconstruction times provide a useful
indicator of what is practically achievable.

V. RESULTS

For each of the reconstruction approaches, the performance
in terms of both PSNR and SSIM at 256 × 256 pixels is
plotted in Figure 3 along with reconstruction time against the
tested undersampling ratios, δ. All three panels display results
from the reconstructions resulting in the best PSNR among
the tested regularization parameters. Figure 3a shows results
for the spiral sampling pattern and 3b shows results for the
raster sampling pattern, cf. Section IV-B.

As expected, reconstructed image quality in terms of PSNR
as well as SSIM decreases as δ decreases. At the low un-
dersampling end, δ = 0.1, this results in reconstructions of
very low PSNR/SSIM, a few examples of which are shown in
Figure 5.

Figure 3 shows that interpolation and TV minimization
reconstruct the images best among the tested algorithms,
both in terms of PSNR and SSIM. As shown in Figure 3b,

interpolation results in the highest PSNR as well as SSIM
averaged over the seven ground truth images, for the raster
sampling pattern. TV reconstruction with the raster pattern
results in slightly lower PSNR than interpolation, 0.6 dB on
average. The spiral sampling pattern results in lower PSNR
for both interpolation and TV minimization, 4.9 dB worse on
average for interpolation while only 1.7 dB worse for TV. This
also means that reconstruction by TV minimization results in
2.5 dB higher PSNR than interpolation for the spiral sampling
pattern.

Reconstruction by `1-minimization with DCT dictionaries
and the spiral sampling pattern results in the highest PSNR
performance after TV optimization, where 2×2 and 3×3 over-
complete DCT result in PSNR performance close to that of
TV optimization. For the spiral sampling pattern, interpolation
only performs comparable to `1-minimization with orthogonal
DCT dictionary. The `1-minimization with DWT dictionary
performs substantially worse than for DCT dictionary with
the spiral sampling pattern. Here the Meyer wavelet is slightly
better than the symlet, which is again slightly better than the
Daubechies wavelet. Laplace AMP exhibits a trend in PSNR
performance that deviates from that of the other algorithms,
deteriorating severely for δ > 0.2. This is not intuitive as the
algorithms have more information available for higher δ. This
is likely due to unfavorable configuration of this algorithm’s
parameters. IST performs substantially worse than the above
algorithms for δ < 0.2 but comparable to `1-minimization
with DWT dictionary for δ ≥ 0.2. Finally, IHT reconstructs
at the lowest PSNR among all of the algorithms at more than
10 dB below `1-minimization with DWT dictionary.

The raster sampling pattern performs much worse than the
spiral sampling pattern for all of the DCT dictionary-based
methods (`1-minimization with DCT dictionaries, Laplace
AMP, IHT and IST). IHT, IST, and Laplace AMP with the
raster sampling pattern benefit very little from increased δ. The
described tendencies in PSNR figures are reflected similarly
in the SSIM figures. On the other hand, `1-minimization with
DWT dictionaries results in PSNR as well as SSIM figures that
are very close the corresponding figures for the spiral sam-
pling pattern. Finally, both TV minimization and interpolation
perform similar and best among all of the studied algorithms
for the raster sampling pattern. PSNR of the latter two ranges
from approximately 35 dB at δ = 0.1 to approximately 45 dB
at δ = 0.3.

As mentioned in Section IV-D, reconstruction experiments
using Bernoulli-Gaussian AMP have only been performed on
images at 128 × 128 pixels. Figure 4 displays results of the
same experiments as in Figure 3 at 128 × 128 pixels for
comparison to BG-AMP. Data plotted in Figure 4 stems from
the reconstructions resulting in the highest PSNR among the
tested regularization parameters13. The performance of BG-
AMP in terms of PSNR and SSIM lies between that of IHT
and IST for the spiral sampling pattern and even slightly
below IHT for the raster sampling pattern. Laplace AMP
was observed to perform substantially better than BG-AMP

13The corresponding regularization parameter values are not necessarily the
same as the values resulting in Figure 3.
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PSNR: 35.87 dB / SSIM: 0.97

(a) Interp., spiral, δ = 0.1.

PSNR: 32.18 dB / SSIM: 0.96

(b) TV, spiral, δ = 0.1.

PSNR: 36.49 dB / SSIM: 0.94

(c) Laplace AMP, spiral, δ = 0.15.

PSNR: 30.49 dB / SSIM: 0.89

(d) IST, spiral, δ = 0.225.

Fig. 6. Examples of reconstructions for the lowest δ yielding SSIM > 0.9.
All images reconstructed based on measurements of the image in Figure 2d.
256× 256 pixels.

in terms of both PSNR and SSIM. A likely reason for this is
that the DCT coefficients of the images have been observed
to follow a probability distribution resembling the Laplace
distribution rather than the Bernoulli-Gaussian. The remaining
algorithms exhibit the same trends as for the 256×256 pixels
images in Figure 3, except for Laplace AMP which has a much
less outspoken tendency to degrade for larger values of δ than
for the 256× 256 pixels images.

The different reconstruction algorithms require different
amounts of samples to reconstruct images satisfactorily. As
examples of reconstructions of reasonable quality, we display
an image reconstruction for each of the algorithms for the
lowest δ that achieves a SSIM > 0.9 in Figures 6 and 7.
These images represent reconstructions of somewhat degraded
quality compared to the original where reconstruction artifacts
typical of the tested reconstruction algorithms are evident. IHT
is left out in Figures 6 and 7 since it reconstructs the image
at SSIM < 0.9. BG-AMP is likewise left out since it has
only been run for images at 128 × 128 pixels. Interpolation
(Figure 6a) tends to produce artifacts that appear as if small
regions of the image are smeared radially outwards from the
center. Figure 6b demonstrates how TV reconstruction tends
to produce reconstructions of piece-wise constant value – here
particularly concentrated around the lines of the raster sam-
pling pattern. The sparse approximation methods (Figures 6c-
6d and 7a-7f) tend to leave traces of the sampling pattern in
the reconstructed image, which is particularly visible in the
reconstructions with DWT dictionaries: Figures 7d-7f.

To exemplify the best performance of the tested algorithms,

PSNR: 35.08 dB / SSIM: 0.96

(a) `1-min. DCT, spiral, δ = 0.15.

PSNR: 41.67 dB / SSIM: 0.97

(b) `1-min. DCT (2 × 2), spiral,
δ = 0.1.

PSNR: 41.88 dB / SSIM: 0.97

(c) `1-min. DCT (3 × 3), spiral,
δ = 0.1.

PSNR: 31.29 dB / SSIM: 0.91

(d) `1-min. DWT (Daub.), spiral,
δ = 0.125.

PSNR: 29.43 dB / SSIM: 0.91

(e) `1-min. DWT (Meyer), spiral,
δ = 0.1.

PSNR: 29.43 dB / SSIM: 0.91

(f) `1-min. DWT (symlet), spiral,
δ = 0.1.

Fig. 7. Examples of reconstructions for the lowest δ yielding SSIM > 0.9.
All images reconstructed based on measurements of the image in Figure 2d.
256× 256 pixels.

the best reconstruction in terms of PSNR of the image in
Figure 2a is shown for each algorithm in Figure 8. All
of the algorithms reconstruct the image at a legible quality
but preserve finer details with varying success; interpolation
and TV result in the best reconstruction quality both in
terms of PSNR and SSIM (Figures 8g and 8h) while the
`1 minimization algorithms with DCT dictionaries perform
slightly worse (Figures 8a-8c). `1 minimization algorithms
with DWT dictionaries (Figures 8d-8f) perform somewhat
worse than with DCT dictionaries, producing visible edge
artifacts in the reconstructed images. IHT (Figure 8k) is the
only algorithm among these specific examples which leaves
clearly visible sampling pattern artifacts in the reconstructed
image and results in low quality.

The results indicate that reconstruction methods favoring
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PSNR: 38.60 dB / SSIM: 0.95

(a) `1-min. DCT, spiral, δ = 0.3.

PSNR: 39.44 dB / SSIM: 0.95

(b) `1-min. DCT (2 × 2), raster,
δ = 0.3.

PSNR: 39.57 dB / SSIM: 0.96

(c) `1-min. DCT (3 × 3), raster,
δ = 0.3.

PSNR: 31.90 dB / SSIM: 0.92

(d) `1-min. DWT (Daub.), spiral,
δ = 0.3.

PSNR: 35.28 dB / SSIM: 0.93

(e) `1-min. DWT (Meyer), raster,
δ = 0.3.

PSNR: 34.75 dB / SSIM: 0.93

(f) `1-min. DWT (symlet), raster,
δ = 0.3.

PSNR: 42.93 dB / SSIM: 0.98

(g) Interp., raster, δ = 0.25.

PSNR: 42.15 dB / SSIM: 0.98

(h) TV, raster, δ = 0.3.

PSNR: 35.68 dB / SSIM: 0.90

(i) Laplace AMP, spiral, δ =
0.225.

PSNR: 37.45 dB / SSIM: 0.94

(j) IST, spiral, δ = 0.3.

PSNR: 24.83 dB / SSIM: 0.67

(k) IHT, spiral, δ = 0.3.

Fig. 8. Examples of reconstructions with the highest PSNR for each algorithm. All images reconstructed based on measurements of the image in Figure 2a.
256× 256 pixels.

image smoothness (interpolation and TV) work slightly better
than methods based on sparse approximation with DCT or
DWT dictionaries. It is particularly favorable for interpolation
that this method was also the fastest to compute among
the tested algorithms: approximately 0.3 s-1 s depending on
δ (Figure 3, right panel).

Although BG-AMP was demonstrated to work particularly
poorly in the examples studied here, this type of algorithm
has potential. As the Laplace variant demonstrated, selecting
a more appropriate prior (Laplace) distribution of the im-
age transform coefficients can result in better reconstruction.
Furthermore, this family of algorithms can be adapted more
specifically to different measurement noise distributions than
for example the `1 minimization approaches and may be able
to address the impairments described in Section II-C.

We stress here that the sparse approximation reconstruction

algorithms were selected to show an overview of the basic
form of some popular algorithms. These sparse approximation
algorithms can be specialized further to for example take
advantage of image structure [97], [98], dictionary learning
[40], or sparsity (`1) in an ensemble of several different
dictionaries can be combined [99]. In summary, there is
potential for further advances in AFM image reconstruction
using sparse approximation methods.

VI. CONCLUSION

We have proposed to reduce the critical scanning time
and probe-specimen interaction by AFM measurement via
undersampling achieved through the use of a sparse sampling
pattern. In the present study we investigated the raster sam-
pling pattern as well as an undersampling spiral pattern; both
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of varying densities. We studied the performance of a num-
ber of image reconstruction algorithms applied to measured
AFM images of cell material via numerical experiments and
evaluated their reconstruction performance in terms of PSNR
and SSIM. We compared the central algorithms on a best-
case basis over a range of different regularization parameters
in order to reduce the effect of the choice of regularization
parameters on the reconstruction results.

The studied algorithms include sparse approximation meth-
ods with discrete cosine transform and discrete wavelet trans-
form dictionaries as well as total variation. These algorithms
were compared to a reference method – cubic interpolation.
The experimental results showed that most of the basic forms
of sparse approximation algorithms studied could not quite
match the reference interpolation method in terms of PSNR
and SSIM. Only total variation minimization resulted in com-
parable PSNR and SSIM. Furthermore, interpolation was the
fastest method at 0.3 s-1 s depending on undersampling ratio.
Based on the tested algorithms and images, it was found that
the scan time or probe-specimen interaction can be reduced
by a factor of 10 compared to dense raster scanning while
retaining a reconstruction PSNR ' 36 dB, or by a factor of
4 for a reconstruction PSNR ' 44 dB. These reductions in
scan time / probe-specimen interaction are attainable on any
existing AFM hardware capable of varying the line density of
a horizontal-line raster pattern.
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