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Abc-frame complex-coefficient filter and controller based current
harmonic elimination strategy for three-phase grid connected
inverter

Xiaoqiang GUO1, Josep M. GUERRERO2

Abstract Current quality is one of the most important

issues for operating three-phase grid-connected inverter in

distributed generation systems. In practice, the grid current

quality is degraded in case of non-ideal utility voltage. A

new control strategy is proposed for the three-phase grid-

connected inverter. Different from the traditional method,

our proposal utilizes the unique abc-frame complex-coef-

ficient filter and controller to achieve the balanced, sinu-

soidal grid current. The main feature of the proposed

method is simple and easy to implement without any frame

transformation. The theoretical analysis and experimental

test are presented. The experimental results verify the

effectiveness of the proposed control strategy.

Keywords Grid-connected inverter, Current control,

Complex-coefficient filter, Complex-coefficient controller

1 Introduction

With expected long term rising fossil fuel prices and

declining prices of photovoltaic (PV) cells and modules,

PV power systems continue to grow around the world and

become one of the least cost options of renewable elec-

tricity [1]. With high penetration of PV systems into the

grid, the impact of PV systems on the grid becomes more

and more significant [2]. One of the most important issues

is the power quality from grid-connected inverters [3–5].

The grid-connected inverter may inject harmonics and thus

pollute the grid. IEEE Std. 929-2000 specified that the total

harmonic distortion of the injected grid current must be less

than 5% [6]. Therefore, it is important to regulate the grid-

connected inverter to achieve the sinusoidal current

injection.

Many interesting control proposals have been reported

in the past decades. A method to improve the inverter

output current by using the capacitor current feedforward

disturbance rejection was proposed in [7]. Reference [8]

presented a method via the grid feed forward and the multi-

harmonic resonant control for the current quality

improvement. Another interesting method in [9] achieved

the harmonic cancellation for grid-connected inverters by

randomizing a tuning parameter of the current controller.

Note that the abovementioned methods are mainly for

single-phase grid-connected inverters. For three-phase

grid-connected inverters, further requirements should be

considered. The grid current should follow the fundamental

positive sequence component of the grid voltage with a

preset current value. That’s why so many phase-locked

loops have been proposed in recent years [10–17]. In [10],

a method for extracting the fundamental frequency posi-

tive-sequence voltage was proposed based on the simple

mathematical transformations. Another interesting method
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in [11] utilized the decoupled double synchronous refer-

ence frame phase-locked loop. An improvement in [12]

used an adaptive synchronous reference frame phase-

locked loop. A multiple reference frame based phase-

locked loop was reported in [13] to extract the fundamental

positive sequence component of the grid voltage. Also,

multiple reference frame based PI control was used to

maintain a balanced set of three-phase sinusoidal currents.

However, the method required many reference frame

transformations and increased the computational burden.

Therefore, the phase-locked loop and control strategy

without any frame transformations needs further

investigation.

The objective of this paper is to present a new abc frame

complex-coefficient filter and controller to improve the

current quality of the three-phase grid-connected inverter.

This paper is organized as follows. Section 2 presents the

control strategy including the detailed implementation of

the abc frame complex-coefficient filter and controller. The

experimental verification of the proposed method is pre-

sented in Section 3. Finally, the conclusion is provided in

Section 4.

2 Proposed control strategy

The schematic diagram of a three-phase grid-connected

inverter is illustrated in Fig. 1, where an LCL filter is used

to attenuate the high-frequency harmonics due to switching

[18, 19]. The control objective is to inject sinusoidal cur-

rents into the grid, which complies with the relevant IEEE

Standard [6].

In practice, the grid voltage is polluted with harmonics,

which can be mathematically expressed as (1), where Uþ
M

and x0 are the amplitude and angular frequency of fun-

damental positive sequence component of three-phase grid

voltage respectively; n is the harmonic order; UN and uN

are the amplitude and phase of harmonic component of grid

voltage respectively.
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In this case, the grid current should follow the

fundamental positive sequence component of three-phase

grid voltage. The current reference is defined as follows:
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Fig. 1 Schematic diagram of three-phase grid-connected inverter
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Fig. 2 Proposed estimation method
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From (2), it can be observed that the fundamental

positive sequence component of grid voltage should be

estimated for the current reference generation, which could

be achieved by a new method proposed in Fig. 2. The basic

idea of the proposed method is to eliminate the

fundamental negative sequence component and attenuate

the harmonic components of the grid voltage with the

complex-coefficient filters. Different from the method in

[20], the proposed method is simple and based on abc

frame with no need of any frame transformation. In this

way, the fast and accurate estimation of the fundamental

positive sequence component can be achieved.

The following mathematical equations can be obtained

from Fig. 2, where i = a, b, or c. xC is the cutoff fre-

quency, and xC ¼ 0:707x0 in this paper.

Ûþ
i ðsÞ ¼

xC

s� jx0 þ xC

½UiðsÞ � Û�
i ðsÞ� ð3Þ

Û�
i ðsÞ ¼

xC

sþ jx0 þ xC

½UiðsÞ � Ûþ
i ðsÞ� ð4Þ

With (3) and (4), the transfer function of the estimated

fundamental positive sequence component can be

expressed as:

Ûþ
i ðsÞ ¼

xCðsþ jx0Þ
s2 þ 2xCsþ x2

0

UiðsÞ ¼ FðsÞUiðsÞ ð5Þ

where the magnitude of F(s) is:

FðsÞj j ¼ xCðxþ x0Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

0 � x2Þ2 þ ð2xCxÞ2
q ð6Þ

From (5) and (6), it can be concluded that the fundamental

negative sequence component is eliminated and harmonic

components are attenuated. While the fundamental positive

sequence component of three-phase grid voltage remains

unchanged without any attenuation or phase shift.

Fig. 3a shows the implementation of the proposed

method. It should be noted that the complex coefficient

j can be smartly implemented in abc frame. And the cor-

responding method is shown in Fig. 3b.

In summary, the fundamental-frequency positive

sequence component of three-phase grid voltage can be

obtained with the proposed method in Fig. 3b. And then

the current reference can be easily obtained from (2).

In order to ensure that the grid current tracks the current

reference, a closed-loop control strategy is generally used.

The single-line diagram of the control structure for three-

phase grid-connected inverter is shown in Fig. 4, where

C(s) is the current controller, K is the pulse width modu-
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Fig. 3 Detailed implementation of the proposed method
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lation (PWM) gain, R2 is the resistor used for the passive

damping [19], and Ug is the grid voltage.

The grid current can be derived from Fig. 4 as:

I2ðsÞ ¼ RðsÞI�2ðsÞ �
UgðsÞ
YðsÞ

¼ KCðsÞNðsÞ
1þ KCðsÞNðsÞ I

�
2ðsÞ �

UgðsÞ
1

HðsÞNðsÞ þ
KCðsÞ
HðsÞ

ð7Þ

where NðsÞ ¼ ðL2sþR2Þ
L1L2R2Cs3þL1L2s2þR2ðL1þL2Þs; HðsÞ ¼ L1Cs

2þ
1.

The control objective is that the grid current tracks the

current reference, which means R(s) = 1 and YðsÞ ¼ 1.

From the viewpoint of superposition theorem, I2ðsÞ ¼
I�2ðsÞ.

To achieve the abovementioned control objective, a new

abc-frame complex coefficient controller is proposed as

shown in (8) and Fig. 5, where xxis the angular frequency,

and can be adjusted according to the specified requirements.

CðsÞ ¼ NðsÞ
ðs� jxxÞDðsÞ

ð8Þ

Substituting (8) into (7), it can be concluded that

R(s) = 1 and YðsÞ ¼ 1 when xx matches the frequency of

the current reference or grid voltage. In this way, both the

perfect tracking of the current reference and disturbance

rejection of grid voltage harmonic can be achieved. It

should be noted that the harmonic amplitude of the grid

voltage tends to be lower as the harmonic order increases.

Therefore, only the low-order harmonics are considered,

e.g., xx ¼ x0;�x0;�x5;x7.

To further simplify the controller, assume D(s) = 1 and

N(s) = kx. Also a proportional term can be integrated into

the controller. The above-mentioned complex-coefficient

filters and controller are implemented with the third order

integrator in a discrete-time form [20].
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where u and y are the input and output of integrator

respectively; and Ts is the sample period.

The digital forms of the filters and controllers are pre-
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a ðn� 1Þ þ 2Ûþ
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Û�
b ðnÞ ¼ Û�
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Fig. 6 shows the proposed control structure of three-

phase grid-connected inverter. Firstly, the grid voltages are

sampled via Hall sensors. With the method in Fig. 3b, the

fundamental positive sequence component of grid voltage

can be obtained. And the current reference is available with

(2). (Secondly, the grid current is sampled, then minus the

current reference.) The current error passes the controller in

(8) to get the modulation signal. Finally, the symmetrical

PWM (SYPWM) [21] is used to generate the switching
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Fig. 6 Systematic control structure of the grid-connected inverter
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Fig. 7 Experimental waveform of grid voltage
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signals. In this way, the three-phase balanced and sinu-

soidal current can be achieved, which complies with IEEE

Std. 929-2000.

3 Experimental results

The proposed control strategy is experimentally evalu-

ated using a three-phase grid-connected inverter. The abc-

frame complex-coefficient filter and controller are digitally

implemented using a 32-bit fixed-point 150 MHz

TMS320F2812 DSP. The experimental parameters are as

follows:the dc bus voltage is 250 V; the switching fre-

quency is 10 kHz; L1 = 3 mH; L2 = 1.5 mH; and C = 9.4

uF. A resistor of 10 X is paralleled with L2 for damping.

The experimental waveform of grid voltage is shown in

Fig. 7. The THDh and unbalance ratio of the grid voltage is

about 5% and 30%, respectively.

Fig. 8 shows experimental results in xx ¼ x0; �x0.

The modulation signal is unbalanced to cancel the impact

of unbalanced grid voltage for achieving balanced three-

phase currents, as show in Fig. 8b. However, the grid

current is distorted due to grid voltage harmonics. From

FFT analysis in Fig. 8c, it can be observed that the domi-

nant harmonics are 5th and 7th components.

Fig. 9 shows the experimental results in case of

xx ¼ x0;�x0;�x5;x7. In contrast with the experimental

results in Fig. 8, the 5th and 7th current harmonics are

eliminated. Therefore, as shown in Fig. 9b, both balanced

and sinusoidal three-phase currents are achieved, which

verifies the effectiveness of the proposed strategy.

4 Conclusion

This paper has presented a new control strategy for

three-phase grid-connected inverter. The theoretical anal-

ysis and experimental results reveal that the current har-

monics can be reduced and current quality is improved

with the proposed solution. Also, the proposed strategy is

simple and easy to implement without any frame trans-

formation. Therefore, it is attractive for the current quality

improvement of three-phase grid connected inverter in

distributed generation systems.
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