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A Nonlinear Attitude Estimator for Attitude and Heading Reference Systems
Based on MEMS Sensors

Yunlong Wang1† Mohsen Soltani1 and Dil Muhammad Akbar Hussain1

1Department of Energy Technology, Aalborg University, Esbjerg, Denmark
(E-mail: way@et.aau.dk, sms@et.aau.dk, akh@et.aau.dk)

Abstract: In this paper, a nonlinear attitude estimator is designed for an Attitude Heading and Reference System (AHRS)
based on Micro Electro-Mechanical Systems (MEMS) sensors. The design process of the attitude estimator is stated
with detail, and the equilibrium point of the estimator error model is proved to be asymptotically stable using LaSalle’s
invariance set theorem through limitation of the range of scalar element of quaternion without affecting practical use. Also,
a new Lyapunov candidate function, satisfying continuously differentiable positive definite requirement, is presented to
avoid the problems in previous research works. Moreover, the estimation of MEMS gyroscope bias is also inclueded in this
estimator. The designed nonlinear attitude estimator is firstly tested in simulation environment and then implemented in
an AHRS hardware for further experiments. Finally, the attitude estimation results from the designed AHRS are compared
with a high-precision commercial AHRS to validate its estimation performance.

Keywords: Nonlinear estimator, attitude estimation, MEMS sensor

1. INTRODUCTION

An Attitude Heading and Reference System (AHRS)
based on Micro Electro-Mechanical Systems (MEMS)
sensors, such as gyroscope, accelerometer, and magne-
tometer, are playing an increasingly important role in sev-
eral kinds of attitude control system, such as Unmanned
Aerial Vehicle (UAV) [1-3], Unmanned underwater vehi-
cles (UUV) [4, 5]. The reason is that the MEMS sensors
for AHRS are becoming much cheaper and smaller as
the quick advantages of MEMS technology, which makes
them quite suitable for applications requiring low cost
and small size. However, relatively large measurement
noise, null bias are the disadvantages of MEMS sensors.
Moreover, the MEMS accelerometer can easily be af-
fected by the vehicle acceleration and the MEMS magne-
tometer can be disturbed by the ferromagnetic materials
around installation position. To obtain an accurate atti-
tude estimation from measurements of MEMS sensors,
an attitude estimator is needed.

Many kinds of attitude estimator have been designed,
ranging from linear estimators to nonlinear estimators.
The attitude estimator using standard linear Kalman fil-
ter theory can be found in [6, 7]. A much simpler kind of
attitude estimator based on linear theory is linear comple-
mentary filter [8, 9], which greatly reduces the calculation
time needed, compared to Kalman filter having many ma-
trix calculation. To cope with nonlinear problems, the at-
titude estimator based on Extended Kalman Filter (EKF)
is devised [10] through linearizing the nonlinear model
by Taylor method. Especially, Multiplicative Extended
Kalman Filter (MEKF) [11, 12] is a proven attitude esti-
mation method and is widely used in low-cost AHRS. In
[13], the theory based on Unscented Kalman Filter (UKF)
is used on attitude estimation for faster convergence. The
particle filter for attitude estimation is developed in [14]
for systems with strong nonlinearity, where even EKF
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and UKF cannot generate acceptable estimation results.
In [14], attitude estimators with the star camera measure-
ments is developed. Recently, there are many nonlinear
attitude estimators [15-18], which are designed based on
nonlinear theory, such as Lyapunov method. In [19], the
nonlinear complementary filter is designed, which boasts
computational efficiency, easily tuned parameters, and a
proof of global asymptotic stability can be found in [20].
The stability proof in [19] assumed that the reference vec-
tors are constant, which has been relaxed by [21] to in-
clude time-varying reference vectors.

In previous research works [17, 18, 22], the sgn(·)
function is used in the injection term of estimator. How-
ever, it is the sgn(·) function that causes estimator error
dynamics not satisfying Lipschitz continuity condition.
Satisfying Lipschitz continuity is the prerequisite of a dy-
namics system for stability analysis using Lyapunov the-
ory or LaSalle’s invariant set theorem [23]. In [19], the
sgn(·) function is avoided, but the absolute function |s̃|
is used in Lyapunov candidate function. It is well known
that |s̃| does not have derivation in s̃ = 0, so we cannot
get derivation of Lyapunov candidate function in the do-
main including s̃ = 0. Moreover, s̃ = 0 is in the domain
of Lyapunov candidate function in [19].

In this paper, a kind of nonlinear attitude estima-
tor is designed and stability analysis is completed using
LaSalle’s invariance theorem, to solve the problems men-
tioned above. The design process and stability analysis
are stated with detail. Moreover, the designed attitude
estimator is tested in both simulation environment and
hardware implementation to validate its estimation per-
formance.

This paper is organized as follows. In Section 2,
the notation and definition used is introduced. The pro-
cess of designing the nonlinear attitude estimator is ex-
plained with detail in Section 3. In Section 4, the process
of obtaining observed quaternion through Gauss-Newton
method is explained with detail. And in Section 5, the ex-



periments and results of testing designed algorithm both
in simulation and hardware environment is presented. Fi-
nally, Section 6 gives the conclusion and discussses fu-
ture works.

2. NOTATION AND DEFINITIOIN
The following three different kinds of coordinate sys-

tems are used in this paper.
1. {n}, the North-East-Down reference system and is
considered as the inertial coordinate system in marine re-
search area.
2. {b}, the body-fixed reference frame.
3. {E}, attitude estimator reference frame. Mostly, there
is a difference between the estimated attitude and true at-
titude of {b} relative to {n}. {E} is formed by the esti-
mated attitude.

Quaternion is wildly used in the area of attitude esti-
mation, as it possesses plenty of advantages, such as free
singularity when pitch reaches ±90 deg. Moreover, it
is especially suitable to be implemented in Micro Con-
troller Unit(MCU), such as ARM chip, as it requires lit-
tle computational resources compared to sinusoidal func-
tion. Quaternion consists of one real part η and three
imaginary parts given by a vector ε = [ε1, ε2, ε3]T , and
is expressed as

q = [η, εT ]T = [η, ε1, ε2, ε3]T

A unit quaternion is used to denote rotation and satisfies
qTq = 1, that is, ‖q‖2 = η2 + ε21 + ε22 + ε23 = 1. Ac-
cording to Euler’s theorem on rotation, a vector in one
reference frame can be transformed to another reference
frame by a simple rotation, that is, by rotation θ about a
unit vector v = [v1, v2, v3]T . This rotation can be defined
as a unit quaternion

q =
[

cos( θ2 ), sin( θ2 )v1, sin( θ2 )v2, sin( θ2 )v3
]T

(1)

Or as an rotation matrix

R(q) = I3×3 + 2ηS(ε) + 2S2(ε) (2)

=

 −2ε2
2 − 2ε3

2 + 1 −2 η ε3 + 2 ε2 ε1
2 η ε3 + 2 ε2 ε1 −2 ε1

2 − 2 ε3
2 + 1

−2 η ε2 + 2 ε3 ε1 2 η ε1 + 2 ε3 ε2

2 η ε2 + 2 ε3 ε1
−2 η ε1 + 2 ε3 ε2
−2 ε1

2 − 2 ε2
2 + 1

 (3)

where R(q) ∈ SO(3), and

S (ε) =


0 −ε3 ε2

ε3 0 −ε1
−ε2 ε1 0


The transformation between different frames are illus-

trated in Fig. 1 using rotation matrix.
In Fig. 1, q̂ = [η̂, ε̂T ]T , is the estimated unit quater-

nion obtained from attitude estimator. qt = [ηt, ε
T
t ]T

is the true unit quaternion which represents the rotation
from {b} to {n}. q̃ = [η̃, ε̃T ]T is the quaternion error
between q̂ and qt and is calculated as

q̃ = q̂−1 ⊗ qt

=

[
η̂ηt + ε̂Tεt

−ηtε̂ + η̂εt − S(ε̂)εt

] (4)

where ⊗ denotes quaternion multiplication. Note that all
the quaternions used are unit quaternions and are normal-
ized after calculation by q = q

‖q‖ . For unit quaternion,
we have q−1 = q∗ = [η,−εT ]T , where q∗ is the conju-
gate of q. R(qt),R(q̃),R(q̂) ∈ SO(3) are the rotation
matrix corresponding to qt, q̃, q̂ respectively.

The kinematic equation for a quaternion is

q̇ =

[
η̇
ε̇

]
=

1

2
q ⊗

[
0

ωbb/n

]
= Tq(q) · ωbb/n (5)

where ωbb/n denotes the rotation rate of {b} relative to
{n}, decomposed in {b}. And,

Tq(q) =


−ε1 −ε2 −ε3
η −ε3 ε2

ε3 η −ε1
−ε2 ε1 η

 (6)

is used to apply matrix multiplication, instead of
quaternion multiplication, for calculation convenience.

The quaternion has to be converted into Euler angles
for other system to use. This conversion is achieved by
[24]

ϕ = atan2(2(ε̂2 · ε̂3 + ε̂1 · η̂), η̂2 + ε̂23 − ε̂22 − ε̂21)

θ = −tan−1(
2(ε̂1 · ε̂3 − ε̂2 · η̂)√

1− 2(ε̂1 · ε̂3 − ε̂2 · η̂)
2

) (7)

ψ = atan2(2(ε̂1 · ε̂2 + ε̂3 · η̂), η̂2 + ε̂21 − ε̂22 − ε̂23)

where η̂, ε̂1, ε̂2, and ε̂3 are elements of latest estimated
quaternion from nonlinear attitude estimator. φ, θ, ψ are
the roll, pitch, and yaw respectively.

3. NONLINEAR ESTIMATOR DESIGN
In this section, the process of designing nonlinear atti-

tude estimator is stated with detail.

{b} {E} {n}
ˆ( )TR q

ˆ( )R q( )R q

( )TR q

( )T
tR q

( )tR q

Fig. 1 Transformation between different frames using ro-
tation matrix



3.1. Sensor model
The MEMS sensors, specifically gyroscope, ac-

celerometer and magnetometer, are typically used to con-
stitute an AHRS.

MEMS gyroscope measures angular velocity of {b}
relative to {n}, expressed in {b}. The model of MEMS
gyroscope is

ωbm = ωbb/n + bbgyro + W b
gyro ∈ R3 (8)

where ωbm ∈ {b} denotes the rotation rate measurements
of gyroscope. ωbb/n is the true rotation rate. bbgyro ∈ {b}
denotes a constant gyroscope bias. W b

gyro ∈ {b} is zero-
mean Gauss white noise.

MEMS accelerometer measures instantaneous linear
acceleration {b} minus the gravity acceleration gn0 ∈
{n}, expressed in {b}. The model of MEMS accelerom-
eter is

abm = RT (qt)(v̇
b
m/n − gn0 ) + bbacc + W b

acc ∈ R3 (9)

where abm ∈ {b} denotes the measurements from ac-
celerometer. v̇bm/n ∈ {b} is the instantaneous linear ac-
celeration of {b} relative to {n}. bbacc is the bias term,
and W b

acc ∈ {b} is zero-mean Gauss white noise.
MEMS magnetometer measures the magnetic field in

{n}, expressed in b and the model is

mb
m = RT (qt)m

n
m + bbmag + W b

mag ∈ R3 (10)

where mb
m ∈ {b} is the measurements of magnetometer.

mn
m ∈ {n} denotes the magnetic field of earth. bbmag ∈

{b} is the bias term and W b
mag ∈ {b} is zero-mean Gauss

white noise.
In the models above, bbgyro is estimated in attitude

estimator and will be stated in the following contents.
bbacc, b

b
mag are removed by calibration for varying tem-

peratures. W b
acc,W

b
mag are removed by low-pass filter.

Due to the term v̇bm/n in Eq. (9), AHRS based on ac-
celerometers cannot work in high dynamic situations for
a long time, where significant changing acceleration will
seriously affect measurement accuracy of pitch and roll.

3.2. Dynamic Model of Nonlinear Attitude Estimator
The attitude dynamics model can be found by combin-

ing Eqs. (5) and (8), then

q̇ = Tq(q)(ωbm − bbgyro −W b
gyro)

ḃbgyro = 0
(11)

The following nonlinear attitude estimator model is
used.

˙̂q = Tq(q̂)[ωbm − b̂bgyro + Kp · ε̃ · η̃]

˙̂
b
b

gyro = −1

2
Ki · ε̃ · η̃

(12)

where Kp,Ki ∈ R3×3 and Kp > 0,Ki > 0, are diago-
nal matrices, whose element values are constants param-
eters. ε̃ · η̃ are calculated from Eq. (4). As the true quater-
nion, qt, is impossible to be known, the quaternion, qy ,

obtained from measurements of accelerometer and mag-
netometer through Gauss-Newton method, is used in Eq.
(4).

The schematic diagram of designed nonlinear attitude
estimator Eq. (12) are illustrated in Fig. 2.

In Fig. 2, the measurements from accelerometer and
magnetometer are fused using Gauss-Newton method to
get qy , which is then used, together with q̂ to calculated
ε̃ · η̃. As there exists measurement noise, W b

acc,W
b
mag in

abm,m
b
m, low-pass filter is used to remove W b

acc,W
b
mag

from abm,m
b
m before they are used in Gauss-Newton

method. The details of using Gauss-Newton method to
get qy can be found in Section 4. The method of con-
verting quaternion into Euler angles can be found in Eq.
(7).

The attitude estimator designed in [24],[22],[17], is
similar to Eq. (12), and is put below.

˙̂q = Tq(q̂)[ωbm − b̂bgyro + Kp · ε̃ · sgn(η̃)]

˙̂
b
b

gyro = −1

2
Ki · ε̃ · sgn(η̃)

(13)

By comparison, it can be found that term ε̃ · sgn(η̃) is
used in Eq. (13) instead of ε̃ · η̃. It is the function sgn(η̃)
that makes estimator error model Eq. (19) do not satisfy
the requirement of Lipschitz continuity [23]ch4 for using
Lyapunov method or LaSalle’s invariance principle. So,
the term ε̃·sgn(η̃) is changed into ε̃·η̃ for using LaSalle’s
invariance principle to analyse the stability of estimator
model, which will be stated in the following contents.

3.3. Stability Analysis
Assuming W b

gyro = 0, the estimator error model, con-
sisting of two parts, quaternion part and bias part, is ob-
tained from Eqs. (11), (12), and (4), whose process is
stated below.

From Eq. (4), we can get

q̃ =

[
η̂η + ε̂Tε

−ηε̂ + η̂ε− S(ε̂)ε

]
(14)

Gyroscope

ˆ( )qT qSum 1

S

Quaternion 
to Euler 
angles






m
b

Low pass 
filter
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Fig. 2 Schematic diagram of nonlinear attitude estimator



=


η̂ η + ε̂1 ε1 + ε̂2 ε2 + ε̂3 ε3

η̂ ε1 − η ε̂1 − ε̂2 ε3 + ε̂3 ε2

η̂ ε2 − η ε̂2 + ε̂1 ε3 − ε̂3 ε1
η̂ ε3 − η ε̂3 − ε̂1 ε2 + ε̂2 ε1

 (15)

From Eq. (15), we can get

˙̃q =
[

˙̃η ˙̃ε
T
]T

= M(η, η̇, η̂, ˙̂η, ε, ε̇, ε̂, ˙̂ε) (16)

where M(·) ∈ R4×1 is so large that it will not be put
here. After putting the terms η̇, ˙̂η, ε̇, ˙̂ε obtained from Eqs.
(11) and (12), into M(·) and some tedious calculation,
the quaternion part of estimator error model can be ob-
tained and is

˙̃q =

[
˙̃η
˙̃ε

]
=

[
1
2 ε̃
T [b̃ + Kp · ε̃ · η̃]

− 1
2 [η̃ · I + S(ε̃)] · [b̃ + Kp · ε̃ · η̃]

]
(17)

The bias part of estimator model is got through b̃ =
bbgyro − b̂bgyro, then

˙̃
b = ḃgyro − ˙̂

bgyro

=
1

2
Ki · η̃ · ε̃ (18)

Finally, put Eqs. (17) and (18) together, the estimator
error model is ˙̃η

˙̃ε
˙̃
b

 =

 1
2 ε̃
T [b̃ + Kp · ε̃ · η̃]

− 1
2 [η̃ · I + S(ε̃)] · [b̃ + Kp · ε̃ · η̃]

1
2Ki · ε̃ · η̃

 (19)

By setting the right part of Eq. (19) to be zero, together
with η̃2 + ε̃2 = 1 as ‖q̃‖ = 1 , the equilibrium points
of estimator error model can be obtained and is, q̃0 =
[η̃0, ε̃

T
0 ]T = [±1 0 0 0]T .

The Lynapunov candidate function used is

V =
1

2
b̃T ·K−1i · b̃ + (

1

2
− 1

2
η̃2) (20)

It can be easily verified that V is a continuously dif-
ferentiable positive definite function in the domain of es-
timator error model.

Then, we have

V̇ =
1

2

(
˙̃b
T

K−1i b̃ + b̃TK−1i
˙̃b

)
− η̃ ˙̃η (21)

=
1

2
η̃ε̃T b̃− η̃ · 1

2
εT
(
b̃ + Kpε̃η̃

)
(22)

= −1

2
η̃2ε̃TKpε̃ ≤ 0 (23)

From Eq. (1), it can be known that η̃0 = ±1 means
θ = 0 or 2π. So, it is reasonable to limit the rotation
angle between two reference frames in (−2π, 2π). Then,
η̃ ∈ (−1, 1] and the equilibrium point of estimator error
model Eq. (19) is only q̃0 = [1, 0, 0, 0]T .

Next, LaSalle’s invariance set theorem is applied to
prove that the equilibrium point q̃0 of Eq. (19) is locally
asymptotically stable.

Firstly, the neighbourhood of q̃0 is defined as,

D =
{(
η̃, ε̃, b̃

)
| − 1 < η̃ ≤ 1, η̃2 + ε̃2 = 1,

η̃ ∈ R, ε̃ ∈ R3, b̃ ∈ R3
}

(24)

From the above analysis, it is easily found that, in
D, the Lyapunov function V : D → R is a contin-
uously differentiable positive definite function, contain-
ing the equilibrium point q̃0, and V̇ ≤ 0 in D. Define
S = {(η̃, ε̃, b̃) ∈ D|V̇ = 0} and we can find that only
q̃0 stay identically in D. According to Corollary 4.1 in
[23], q̃0 is asymptotically stable. Furthermore, D is the
domain of attraction of q̃0.

4. OBSERVED QUATERNION
In this section, the observed quaternion qy is obtained

from measurements of accelerometer and magnetometer
through Gauss-Newton method [7, 8].

First of all, the reference vectors of accelerometer and
magnetometer are introduced. When AHRS is put in zero
orientation, the measurements of accelerometer and mag-
netometer can be read from sensor registers, the normal-
ization of which are taken as the reference of accelerom-
eter and magnetometer respectively. Note that the zero
orientation is when the x − y plane of AHRS is in the
horizontal plane, the direction of z axis of AHRS is the
same as that of acceleration of gravity, and the direction
of x axis of AHRS is the same as that of horizontal com-
ponent of geomagnetic field. Then, the reference vec-
tor is ar = [0 0 1]T for accelerometer, and is mr =
[mxr 0 mzr]

T for magnetometer, where mxr,mzr are
constants and are the normalized measurements of mag-
netometer when AHRS is in zero orientation. The reason
that myr = 0 is the x axis of AHRS points to the direc-
tion of geomagnetic field.

After getting reference vectors of accelerometer and
magnetometer, the rotation models of accelerometer and
magnetometer are expressed as

ar = R(q) · abm (25)
mr = R(q) ·mb

m (26)

where abm,m
b
m are the current reading from accelerom-

eter and magnetometer.
The observed quaternion, qy , is obtained by minimiz-

ing the following error equations using Gauss-Newton
method.

Eam(qy)6×1 =

[
Ea,3×1
Em,3×1

]
=

[
R(qy) 03×3
03×3 R(qy)

] [
abm
bbm

]
−
[

ar
mr

]
(27)

Note that the four elements of qy form R(qy), which
can be found in Eq. (2).



The cost function is

S =
1

2
‖Eam(qy)‖2 (28)

where ‖·‖ is the L2 norm.
qy is found through recursion. In iteration k + 1,

through Taylor expansion method, we can get

Eam(qy(k + 1)) = Eam(qy(k) + ∆qy)

= Eam(qy(k)) + J ·∆qy (29)

where ∆qy = qy(k + 1)− qy(k), J is the Jacobian ma-
trix, and is

J =
∂Eam(qy)

∂qy

∣∣∣∣
qy=qy(k)

Then,

S =
1

2
‖Eam(qy(k + 1))‖2

=
1

2
(Eam(qy(k + 1)))T · (Eam(qy(k + 1)))

=
1

2
(Eam(qy(k)) + J ·∆qy)T

·(Eam(qy(k)) + J ·∆qy)

=
1

2
Eam(qy(k))TEam(qy(k))

+
1

2
(qy(k + 1)− qy(k))T · JT · J

·(qy(k + 1)− qy(k))

+Eam(qy(k))T · J · (qy(k + 1)− qy(k)) (30)

Then,

∂S

∂qy(k + 1)
= JT ·J ·(qy(k+1)−qy(k))+JT ·Eam(qy(k))

By setting ∂S
∂qy(k+1) = 0, the update of qy is obtained

qy(k + 1) = qy(k)− (JT · J)−1 · JT ·Eam(qy(k))

qy(k + 1) =
qy(k + 1)

‖qy(k + 1)‖
(31)

Note that, qy has to be normalized after each update
step to make it be a unit quaternion for rotation repre-
sentation. The convergence of qy , using Gauss-Newton
method, can be found in Fig. 3.

5. SIMULATION AND HARDWARE
IMPLEMENTATION

To validate the performance of designed nonlinear at-
titude estimator, it is firstly tested in simulation environ-
ment and then implemented in AHRS hardware for fur-
ther test.

The simulation system of nonlinear attitude estima-
tor is built in Simulink and mainly consists of two parts,
one is the algorithm itself which are stated with detail in
previous sections, and the other one is about generating
MEMS sensor measurements, whose schematic diagram
is shown in Fig. 4.

In Fig. 4, sinusoidal functions are used as the sig-
nals of rotation rate of {b} relative to {n}, which are
then overlapped with zero-mean Gauss white noise and
added with the gyroscope biases to finally form the mea-
surements of gyroscope. p, q, r ∈ {b} need to be trans-
formed into {n} through Tnb (ϕ, θ, ψ), before being in-
tegrated to get ϕ, θ, ψ ∈ {n}. The accelerator refer-
ence vector [0, 0, 1]T and magnetometer reference vec-
tor [mx, 0,mz]T are the normalized values of measure-
ments of accelerometer and magnetometer respectively
when they are in zero orientation, that is, ϕ = 0, θ =
0, ψ = 0. These reference vectors are in {n} and are
transformed into {b}, which are then overlapped with
zero-mean Gauss white noise to get the measurements of
accelerometer and magnetometer respectively. The spe-
cific value of matrices, Tnb (ϕ, θ, ψ) and Rbn(ϕ, θ, ψ) can
be found in [24]ch2 and are different from the terms in
Eqs. (2) and (6), where quaternion is used, but here it is
the Euler angles that are used. The variances of measure-
ments of MEMS sensors for generating zero-mean Gauss
white noise are obtained through recording sensor mea-
surements from AHRS hardware. The running frequency
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Fig. 6 Simulation results of yaw

of the simulation system is 1 KHz, and the amplitude of
sinusoidal function, representing the rotation rate of roll,
pith and yaw is 3 deg/s. The periods of sinusoidal func-
tions of roll, pith and yaw are 10 s, 10 s, and 5 s respec-
tively.

The bias of gyroscope is set to be 1.0 deg/s during sim-
ulation, and the estimated bias is gradually converged to
the true value, as shown in Fig. 5.

To avoid too many figures, only the estimation result
of yaw is present, as shown in Fig. 6, which is similar
to that of roll and pitch. In Fig. 6, the blue line repre-
sents the yaw obtained from measurements of accelerom-
eter and magnetometer directly by using Gauss-Newton
method. Although low-pass filter is used to filter out the
high-frequency noise in measurements of accelerometer
and magnetometer, the vibration of yaw result, obtained
directly from measurements of accelerometer and mag-
netometer, can clearly be seen from the blue curve in
Fig. 6. Meanwhile, the red curve in Fig. 6, representing
the yaw result from nonlinear attitude estimator fusing
measurements of three MEMS sensors together, is much
smoother, compared to the blue curve.

After successful simulation test, the designed algo-

Fig. 7 (a) Designed PCB of AHRS, (b) AHRS hardware

Fig. 8 Placement of designed AHRS and commercial
AHRS

rithm is further tested in designed AHRS hardware,
whose hardware picture is shown in Fig. 7

The Printed Circuit Board (PCB) of designed AHRS
is depicted in Fig. 7(a). To decrease the size of AHRS
hardware, this PCB is designed to be with 4 layers. The
final size of AHRS hardware is about 33*60 mm, which
is only a little larger than a coin, as shown in Fig. 7(b).
The main electronic components in AHRS hardware are
ARM chip, MEMS gyrosocpe, accelerometer and mag-
netometer.

The designed AHRS is mounted together with a high-
precision commercial AHRS to compare the real-time
running results between them, as shown in Fig. 8. The
precision of commercial AHRS is 0.05 deg for roll and
pitch, and 0.5 deg for yaw when using magnetometer or
0.05 deg for yaw when using dual antenna GPS to correct
yaw error in gyroscope.

The comparison results of roll, pitch and yaw between
designed AHRS and commercial AHRS are shown in Fig.
9, Fig. 10, Fig. 11, respectively.

From Fig. 9 to Fig. 11, it can be seen that the
designed nonlinear attitude estimator can track the true
attitude from commercial AHRS and the stability of
designed nonlinear attitude estimator is also validated
through hardware experiments. The estimation error of
roll and pitch are within 0.2 deg during static stage or
stage with slow rotation speed. The errors of roll and
pitch are within 0.5 deg during stage with high rotation
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speed, 15 deg/s exactly. The estimation error of yaw is
relatively large, compared to that of roll and pitch, and is
within 0.5 deg during static stage. During rotation stage,

the error of yaw are within 2.0 deg. The reason yaw ac-
curacy is relatively lower is that the magnetometer is not
easy to be calibrated and can be easily affected by the
ferromagnetic materials in laboratory.

6. CONCLUSIONS AND FUTURE
WORKS

A nonlinear attitude estimator is designed based on
previous research works for an MEMS sensors based
AHRS. The process of design is explained with detail and
the stability of nonlinear attitude estimator is proved us-
ing LaSalle’s invariance set theorem in the condition of
limiting the range of the scalar element of error quater-
nion. Also, a new kind of Lyapunov candidate function,
satisfying continuously differentiable positive definite re-
quirement, is presented to avoid the problems in previous
research works. The process of getting observed quater-
nion is explained with detail. The designed algorithm
is tested under simulation and hardware environments to
validate its estimation performance. From the simulation
results, it is shown that the MEMS gyroscope bias can be
correctly estimated. From the results of hardware tests,
it is shown that the algorithm is stable during different
stages and can estimate the true attitude from commer-
cial AHRS. The estimation accuracy is 0.5 deg for roll
and pitch, 2.0 deg for yaw in all testing scenarios.

There is still potential in designed AHRS for higher es-
timation accuracy, which needs further researches in cali-
bration of MEMS sensors, especially magnetometer, as it
can be easily affected by ferromagnetic materials around.
Another point that will be improved is the increase of
algorithm cycle frequency. Further optimization works
will be done to increase its cycle frequency from current
1KHz to 2KHz to increase attitude estimation accuracy.
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