Equal loudness level contours below 1 kHz

Lydolf, Morten; Møller, Henrik

Published in:
Journal of the Acoustical Society of America

Publication date:
1996

Document Version
Other version

Link to publication from Aalborg University

Citation for published version (APA):

Air versus bone conduction loudness balance testing was performed at the frequencies 0.25, 0.5, 0.75, 1.2, and 4 kHz in three groups of subjects: normal-hearing subjects, subjects with pure sensorineural hearing loss, and subjects with mixed hearing loss. The subjects were fitted with earphones (Koss portPro) and a percutaneous bone transducer (HC-380) or an audiometric transducer (B71). Narrow-band noise was presented interchangeably between the earphones and the bone transducer. Balance testing was performed at each frequency and at different levels (30–80 dB HL in 10-dB steps) in the following manner: The sound pressure from the earphones was fixed and the subject under test adjusted the output level from the bone transducer for equal loudness similar to the procedure used in the conventional ABLB test. Preliminary results and their interpretation will be presented.


The current international standard of the equal-loudness level contours specified in ISO 226 is found to involve large errors, especially for frequencies below 1 kHz. In the past 10 years, a series of experiments has been conducted for full revision of ISO 226 in ISO/TC 43. At the final stage of this project, the new equal-loudness level contours should be drawn from available data points. To do this, the use of an appropriate model for loudness perception is actually useful. A loudness function is proposed by combining that proposed by Lochner and Burger to express the steepness near threshold with the two-stage model proposed by Attneave to consider the loudness-comparison process. Equal-loudness levels are then estimated according to the following procedure. (1) Parameters of the loudness function are estimated from the experimental data by the nonlinear least-squares method. (2) The estimated parameters are smoothed along the frequency axis with B-spline functions. (3) The equal-loudness level contours are calculated by using estimated parameters and the threshold of the hearing curve. Through this procedure, the new equal-loudness level contours are determined from the experimental data obtained hitherto.

3PP12. Temporal integration mechanisms for complex tones consisting of unresolved harmonics. Louise J. White (Dept. of Experimental Psych., Univ. of Sussex, Brighton BN1 9QG, UK)

There is a large effect of duration on fundamental frequency (F0) discrimination for complex tones consisting of harmonics unresolved by the peripheral auditory system [C. J. Plack and R. P. Carlyon, J. Acoust. Soc. Am. 98, 1355–1364 (1995)]. The present experiment investigated the mechanisms underlying this effect by measuring F0 discrimination for complex tones of unresolved harmonics with continuous durations between 20 and 160 ms and for pairs of 20-ms unresolved complexes separated by a silent interval of between 5 and 80 ms. For the continuous signals, d' increased by a factor of 2.4 between the 20-ms signal and the 40-ms signal. For the paired signals, d' increased relative to the 20-ms signal by a factor between 1.2 and 1.6 independent of the silent interval duration. This increase is similar to that predicted by signal detection theory. These data support the hypothesis that the pitch mechanism for unresolved harmonics can use a long integration window for continuous signals but reverts to a “multiple looks” mechanism, involving the efficient combination of discrete short-duration samples, when there is some discontinuity in the signal. [Work supported by MRC (UK).]