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Abstract—The majority of the industrial motor drive 

systems are equipped with the conventional line-

commutated front-end rectifiers, and being one of the 

main sources of harmonics in the power line. While a 

parallel combination of these drive units elevates current 

quality issues, a proper arrangement of them can lead to 

the cancellation of specific harmonics. This paper 

proposes a new cost-effective harmonic mitigation 

solution for multi-drive systems using a predictive pulse 

pattern current modulation control strategy. The proposed 

technique applies suitable interaction among parallel 

drive units at the rectification stage to synthesize 

sinusoidal input currents. The input voltage sensing is 

avoided in order to minimize the number of required 

sensors, and the grid synchronization also has been 

implemented based on a common Phase-Locked-Loop 

(PLL) using the DC-link capacitor voltage ripple. 

Experimental results validate the effectiveness of the 

proposed strategy. 
 

Index Terms—Harmonic mitigation, predictive current 

control, motor drive, three-phase AC-DC power 

converters.  

I. INTRODUCTION 

NHERENT switching behavior of power electronics 

converters has being witnessed as one of the main reasons 

for power quality issues. Over the years, vast of harmonic 

mitigation techniques have been developed and applied in 

conjunction with the power converters [1]-[4]. Although recent 

technological progresses in both power semiconductor and 

Digital Signal Processor (DSP) industries have changed the 

perception of using the active methods, the total cost and 

complexity are still the main obstacles in employing the prior-

art active harmonic mitigation techniques.  

Additionally, passive filtering methods are in effect in many 

applications [5]-[7]. Despite the fact that they are simple and 

cost-effective at low power, they are bulky, worsen the system 

dynamic, and may introduce resonance in the entire power 

system [7]-[8]. Nevertheless, coping with international 
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standards which are continuously getting more stringent will 

eventually rule out their effectiveness.  

Currently, according to IEC 610003-2&12 Standards [9], 

current harmonics and the Total Harmonic Distortion (THDi) 

values generated by power electronics systems should be 

controlled below certain limits. The limits depend on the 

device specification and short circuit ratio (Rsce) of the system. 

Three-phase power electronics systems with a new 

specification (according to IEC 61000-3-12 [9], Tables 4 and 

5) can even generate more harmonic currents to improve 

power quality of grids at medium voltage levels. For example, 

for  Rsce = 120 and based on Table 4 in IEC61000-3-12, THDi 

and the fifth current harmonic should be below 48% and 40%, 

respectively [9]. 

Nowadays, many industrial drives are equipped with three-

phase line-commuted rectifiers such as diode-rectifier and 

Silicon-Controlled Rectifiers (SCR) with passive filtering due 

to their simplicity and cost-effectiveness. SCRs have 

revolutionized the course of power electronics technology 

since the invention of the thyristor on 1957. After the energy 

crisis of 1973, development of Adjustable Speed Drive (ASD) 

systems is rapidly growing by employing SCR based 

converters [10]. SCR has been used in many topologies for 

drive systems such as Current Source Inverter (CSI) and Load-

Commutated Inverter (LCI) at both front-end and rear-end. 

Also SCR can be arranged to provide soft starting function 

[11]-[12].  

As one of the major global electricity consumers, industrial 

drives are gaining considerable attention due to their high level 

of input current harmonics generation. Hence, the applied 

harmonic reduction filtering, mainly based on AC or DC 

inductor, needs to be improved [7], [8], [13], [14]. This 

problem becomes significant, when a large number of 

frequency converters are connected to the Point of Common 

Coupling (PCC).  

In many applications, it is a common practice to employ 

parallel-connected drive units (e.g., multi-pump arrangement) 

as it is exemplified in Fig. 1. In this situation the application 

demand is met using multiple modestly sized motor units 

rather than one single large unit. Hence, depending on the 

applied control strategy such as multi-follower or multi-master 

the load can be shared among the drive units evenly or 

unevenly, respectively [15], [16]. The configuration can satisfy 

partial load conditions more efficiently by keeping majority of 

the units in standby mode. Furthermore, in order to have a 
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smooth starting and decreasing stress on the electrical and 

mechanical parts, multi-drive configurations are commonly in 

use. In other words, the multi-drive arrangement can improve 

the system redundancy [15], [16].  

Although multi-drive configuration has many advantages, 

but as stated above, the combination of their nonlinear 

characteristics can yet deteriorate the grid current quality. 

However, by implementing a suitable interaction among the 

rectification stages, it is possible to synthesize sinusoidal input 

currents with a high quality [17].  

This paper thus tackles the aforementioned problems by 

introducing electronically phase-shifted input currents at each 

SCR unit. Moreover, a pulse pattern current modulation 

scheme is employed at the DC-link to further improve the 

input current quality by mitigating specific low order 

harmonics. Fig. 1 illustrates a multi-drive system arrangement, 

where the pulse pattern current modulation is implemented by 

placing a DC-DC converter at the DC-link following the 

electronic inductor concept [1], [2], [18]-[22]. The basic idea 

of electronic inductor is to replace the bulky DC-side inductor 

with a relatively small inductor which by incorporation of a 

DC-DC converter it emulates the behavior of an ideal infinite 

inductor. Furthermore, the performance of the current 

controller in tracking the preprogrammed switching angles can 

significantly affect the harmonic mitigation capability of the 

system. In order to achieve a simple but fast tracking 

performance, a predictive valley current control (i.e., 

deadbeat) method has been adopted [23], [24]. Besides its fast 

dynamic and simplicity, the deadbeat current control has some 

limitations, especially when it is applied to a SCR unit. In this 

paper those issues with a possible solution have been 

addressed. Finally, the current modulator is synchronized with 

the grid based on a common Phase-Locked-Loop (PLL) 

applied to the output voltage ripple. The proposed concept 

illustrates that the synchronization can be obtained without 

using any additional sensor and only based on the DC-link 

capacitor voltage ripple rather than sensing grid voltages. 

It is significantly important to highlight that there is no 

single solution for any power electronics applications and 

there are many factors such as quality, reliability, cost and 

regulations which can affect the system design and topology. 

One of the main aims in this study was to apply an active 

filtering method as an intermediate circuit to the three-phase 

line-commutated rectifier systems. This way, no major 

modifications is required for the systems which are equipped 

with the three-phase line-commutated rectifier. Therefore, the 

proposed current modulation strategy is applied to a single-

switch boost topology (i.e., DC-DC converter) operating in 

Continuous Conduction Mode (CCM). Notably, medium and 

high power drives have SCR circuits in their rectifier side in 

order to control the inrush current which is a very reliable and 

a robust solution. These drives have been used in industry for 

many years. Therefore the utilization of SCRs for the proposed 

topology has no extra cost while they can be used to improve 

the overall system performance. Considering this situation the 

proposed method counterpart harmonic mitigation methods 

with boost capability which are applied to the conventional 

rectifier systems are Δ-rectifier and boost converter operating 

in Discontinuous Conduction Mode (DCM) [1]. The Δ-

rectifier principle is based on phase-modular Power Factor 

Correction (PFC), meaning that three-phase diode rectifiers 

with boost converter at their DC-links are applied to each 

phase. Its advantage is ability to significantly improve the 

input current quality; however the main drawback of this 

topology is the presence of high number of power switches, 

high complexity and lower efficiency comparing with a single-

switch boost converter. The DCM single-switch boost 

converter requires three inductors at the AC-side of the diode 

rectifier. More importantly this topology suffers from the large 

EMI (Electromagnetic Interference) filtering effort (i.e., due to 

the DCM operation) and for effective harmonic mitigation its 

output voltage should be boosted above 1 kV (i.e., for grid 

phase voltages of 220 or 230 Vrms) [1].  

This paper is structured as follows. Section II describes the 

proposed harmonic mitigation strategy using a pulse pattern 

current modulation at the DC-link. A modified version of the 

predictive valley current control method considering the SCR 

requirement is introduced in Section III. Section IV is 

dedicated to the proposed grid synchronization technique by 

analyzing the DC-link capacitor voltage ripple. In Section V, 

experimental results are presented to substantiate the 

effectiveness of the proposed strategy. Finally, conclusions are 

drawn in Section VI. 

II. PROPOSED HARMONIC MITIGATION FORMULATION 

A. Multilevel Phase-Shifted Currents  

Fig. 2 demonstrates a possible configuration of pulse pattern 

phased-shifted currents for five parallel-connected motor drive 

systems. As it can be seen in Fig. 2, a multi-level grid current 

(ig) has been constructed based on a proper combination of the 

controlled rectifier (i.e., SCR) input currents for an improved 

current quality [25], [26]. Here, following Fig. 1, each current 

waveform isd represents the input current of the corresponding 

 

Fig. 1.  Schematic of a multi-drive system applying a pulse pattern 
current modulation strategy at DC link employing a DC-DC converter. 
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Fig. 2.  Typical waveforms of the phase-a currents in a multi-drive 
system (i.e., d = 5 units) with the proposed harmonic mitigation 
methodology. 

d
th

 motor drive unit applying different firing angles (αfd) 

starting with αf1 = 0
o
 at the first unit. Notably, the same pulse 

pattern is applied to each DC-DC converter (see Fig. 2). 

However, in reality the pulse pattern switching angles and the 

firing angle (αfd) of each unit could be different. The situation 

highly depends on the application requirements, such as: 

 Number of the connected motor drive systems (d) 

 Input current Total Harmonic Distortion (THDi) 

 Input current displacement factor (cos(φ)) 

 Eliminating specific harmonic order/s 

 Load profile of each motor drive unit 

Taking into account the above requirements, multitude 

transcendental equations with unknown variables can be 

formed, which will result in a set of complicated nonlinear 

equations. However, the requirement can be easily met by 

applying an optimization algorithm, which will be addressed in 

part C of this section. 

B. Pulse Pattern Modulation 

In order to better understand the essence of the applied 

harmonic mitigation method, the harmonic distribution of the 

current modulation method need to be analyzed. The current 

modulation method is based on the calculation of a pre-

programmed switching pattern for the DC-link current to 

achieve elimination of those specific harmonics in the grid 

currents [19], [20]. In this approach, a DC-link current 

modulation scheme isd is generated by adding or subtracting 

the phase-displaced current levels. Fig. 3 illustrates the 

principle of this modulation scheme (isd = u0 + u1 − u2), where 

the modulation patterns are synchronized in respect to the grid 

phase voltage (e.g., vaN) for simplicity.  

As it is shown in Fig. 3, the new modulation signal isd 

consists of flat signals u0, u1, and u2 with a conduction angle of 

β0 (120
o
), β1, and β2, a phase-shift of α0, α1, and α2 and a 

magnitude of m0, m1, and m2, correspondingly. Hence, 

following the Fourier series, the harmonic components of the 

flat modulation signals (i.e., u0, u1, and u2) can be expressed 

as, 
 

                     ( ) cos( ) sin( )h h h

i i iu t a h t b h t                 (1) 

 

in which, i  = 0, 1, 2, and h = 1, 3, 5, 7, … is the harmonic 

order, ω the fundamental grid angular frequency, h

ia and 

h

ib are the Fourier coefficients that are given by,  
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Subsequently, according to the superposition principle and 

Fig. 3, the harmonic components ( ( )h

sdi t ) of the modulation 

signal (i.e., isd) can be obtained as, 
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As a result, the h-order harmonic magnitude ( h

sdI ) of the 

resultant DC-link modulation scheme can be expressed as, 

 

                  
1/2

2 2

0 1 2 0 1 2

h h h h h h h

sdI a a a b b b      
  

 (4) 

Hereafter, it is possible to achieve harmonic cancellation by 

solving 0h

sdI  (h ≠ 1) and 1

sdI M with M being the desired 

modulation index. However, it should be noted that up to two 

low-order harmonics (e.g, h = 7 and h = 13) in a single drive 

system can be cancelled out using the current modulation 

Fig. 3.  Conceptual illustrations of the applied modulation (isd = u0 + 
u1 − u2) scheme for harmonic elimination (d: number of the parallel-
connected drive units). 
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technique, since the following conditions should hold, 
 

                            
0 1 2

1 2 0

0 1 2 0

120

2 60

60

o

o

o

  

  

   

   


  
    

 (5) 

 

Applying these conditions will guarantee that the input 

currents in a three-phase system are free of even and tripled-

order harmonics. It is worth mentioning that the shortcoming 

of considering these conditions for the employed current 

modulation technique is the inability of targeting both 5
th

 and 

7
th

 order harmonics for cancellation at the same time. The 

solution for eliminating the 5
th

 order harmonic ( 5 0sdI  ) 

assuming a firing angle αf = 0 (α0 = 30
o
) is achievable when 

60
o
<α1<90

o
 while applying same situation the solution for 

eliminating the 7
th

 order harmonic is obtainable when 

34
o
<α1<60

o
. This clearly shows that the solution for the 5

th
 and 

7
th

 order harmonics does not have any overlap. 

Yet, it can be observed in Fig. 2 that applying multiple 

signals with adjustable firing angles in the new modulation 

scheme can obtain further reduction of certain harmonics 

beyond the solely two low-order harmonics (e.g., h = 7 and h = 

13). In that case, the resultant total harmonics of the grid 

current ( , ( )h

g abci t ) for d parallel-connected drives will become, 

 

                               
, ,

1

( ) ( )
d

h h

g abc sj abc

j

i t i t


  (6) 

C. Optimizing the Modulation 

The above analysis illustrates the impact on the input 

current harmonics by selecting proper modulation parameters 

(e.g., mi, αi and αfd) for the modulation scheme. A suitable 

solution with high flexibility (i.e., application requirements) 

can be obtained through an optimization process. The 

following demonstrates the harmonic optimization solution 

considering the maximum allowable harmonic level defined by 

the application or by the grid code. In other words, instead of 

fully nullifying the distortions, the harmonics could be reduced 

to acceptable levels by adding suitable constraints (Lh). Then, 

an optimization problem (Objh) that searches a set of αi, mi and 

αfd values over the allowable intervals can be defined as [27], 
 

                             

1

1 1

1

i i

g

h

g

h h

g

THD i THD

Obj M I L

I
Obj L

I

Obj THD L

   



 

  

 (7) 

 

Following (7), an objective function Fobj has to be formed to 

minimize the error. The objective function plays an important 

role in leading the optimization algorithm to a suitable solution 

set and is calculated as, 
 

   
22

. .
i i iobj h h h THD THD THDF w Obj L w Obj L    

  
  (8) 

implying that, Fobj is formed based on a squared error with 

more flexibility by adding constant weight values (wh) to each 

squared error function in order to prioritize different objectives 

(e.g. THDi). 

Notably, apart from the optimization constraint Lh, the 

conditions on switching angles (5) has to be included as well 

in order to ensure a proper rectification operation. 

It should be noted that, the performance of harmonic 

reduction is dependent on the loading conditions (i.e., output 

power ratio) of drive units. For instance, in the case of two 

drive units, the maximum harmonic reduction can be attained 

when both rectifier units draw equal level of current from the 

grid. The reason behind this issue is the dependency of the 

SCR unit rectified voltage on the firing angle. Considering the 

firing angle of the first unit equal to zero αf = 0 (e.g., using 

diode rectifier), the average rectified voltage of both units can 

be given as, 

  2 1rec _ rec _ fV V cos    (9) 

where Vrec_1 and Vrec_2 are the average rectified voltages of the 

first unit (e.g., diode rectifier) and second unit (SCR), 

respectively. Therefore, as the firing angle increases the 

average voltage reduces and in return the boost converter draw 

more current in order to adjust the output voltage at a constant 

value. Now, ignoring the power losses on the DC-DC 

converters at the DC-link, following can be obtained: 
 

                        
2 22 2 2

1 1 1 1 1

rec _ Lo o o

o o o rec _ L

V IP V I

P V I V I
                          (10) 

 

 

with Po1 and Po2 being the output power of the first and second 

units, and Io1 and Io2 being the average output current of each 

rectifier. Substituting (9) in (10) gives the condition which 

makes both rectifiers draw equal current levels (i.e., IL1 = IL2) 
 

  2

1

o
f

o

P
cos

P
   (11) 

 

Therefore, as long as the above condition holds, the 

maximum harmonic elimination can be obtained. However, 

depending on the application each drive unit may run at 

different power conditions. Generally, the multi-drive 

applications can be divided into two different types. The First 

type is the one where the load is shared between multiple 

drives such as multi-pump applications [16]. In this situation 

normally the load is equally shared between the drives (i.e., 

multi-follower control [16]) and therefore the harmonic 

reduction performance of the system will not be affected 

significantly. In the second type, the drives operate 

independently and having different loading conditions at each 

rectifier units, resulting in unequal input current levels and 

consequently incomplete cancellation of the harmonics of 

interest. Therefore, to achieve the maximum harmonic 

reduction, the loading condition of (11) should be included in 

the optimization process (7) which leads to different optimized 

parameters for each operating points and can be applied using 

a lookup table. Notably, applying different parameters 

corresponding with their operating points require having a 

communication between drive units. In Section V, the 
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harmonic performance of the system is simulated when drives 

have different loading conditions. 
  

III. PREDICTIVE CURRENT CONTROL 

Fig. 4 illustrates the control structure of the implemented 

setup for multi-parallel connected rectifier systems, where 

resistive loads have been considered instead of motors as load. 

In order to control the DC-link current shape and magnitude 

following the applied modulation scheme a boost converter 

topology has been selected as the DC-DC converter in Fig. 1. 

The adopted boost converter can not only perform the desired 

current modulation scheme, but has also the advantage of 

boosting the output DC voltage to a suitable level, when it is 

fed into an inverter. Furthermore, the Proportional Integrator 

(PI) controller parameters need to be selected in order to have 

a suitable dynamic response by looking into the boost 

converter transfer function and the loading conditions. This 

has been well studied in the literature [28], [29]. 

The performance of the system in harmonic mitigation can 

significantly be affected by the current controller tracking 

capability. Hence, a fast current controller such as hysteresis 

controller is a good candidate for such applications. However, 

beyond its simplicity, digital implementation of hysteresis 

controller requires high sampling frequency [30]. Moreover, it 

has a variable switching frequency nature. Alternatively, a 

predictive current control strategy with a fixed switching 

frequency can be employed. Vast development of predictive 

current control strategies emphasizes the high performance 

possibilities of this control technique [23], [24], [30]-[33]. In 

this paper, a simple predictive valley current control is 

employed to effectively follow the pre-calculated switching 

angles for harmonic elimination. 

A. Valley Current Control 

The predictive valley current control strategy is a well-

known control strategy, which has been applied for multitude 

applications (e.g. power factor correction circuits) [23], [24]. 

The controller uses trailing edge modulation and it is based on 

the sampled inductor current, output voltage and input 

rectified voltage. Following Fig. 4 and assuming that vrec_d[n-

1] ≈ vrec_d[n], finding the sampled inductor current as a 

function of the previous sampled value can be expressed as 

[23],   

 

_ [ 1] [n] [n 1]
[ 1] [ 1] 2

rec d od od
Ld Ld

dc sw dc sw dc sw

v n v D v D
i n i n

L f L f L f

   
     

 (12) 

 
denoting n as the sample number, d as the rectifier unit number 

(drive), 1D D   as the duty cycle, [ 1]Ldi n as the sampled 

inductor current ( [ ]Ldi n ) and [ 1]Ldi n as the current reference 

( * [ ]Ldi n ), which is equal to the voltage controller output 

multiplied with the applied modulation signal (umsd). The 

predicted duty cycle now can be found by rearranging (12) as, 

 

_*
[ 1]

[ 1] 2 [n] [ ] [ ] 2
rec ddc sw

d d Ld Ld

od od

v nL f
D n D i n i n

v v


       

 (13)  

B. Compensation 

The calculated control law in (13) has been made on an 

assumption that the rectified voltage is slowly varying 

compared to the sampling time so that it can be considered 

constant between two samples [23], [24]. However, this 

assumption cannot hold when it comes to the rectified voltage 

of the SCR unit. Fig. 5 illustrates the rectified voltage of a 

SCR unit for different values of firing angle (αf). As it can be 

seen when αf > 0
o
 there is a sudden change in the vrec_2[n-1] 

and vrec_2[n] at the point of commutation. Therefore, applying 

(13) in this condition will result in an unstable situation, as at 

the point of commutation the two consecutive rectified voltage 

samples cannot be considered to be constant. The AC ripple 

(∆vrec_d) of the rectified voltage which increases 

correspondingly with the increase of firing angle suddenly 

appears across the inductor forcing the current to ramp up (i.e., 

spikes appear) that deteriorates the current. The imposed 

voltage change can be expressed as, 
 

                    
_ 6 sin( )rec d Ph fdv V                               (14) 

 

 

  Fig. 6 exemplifies the inductor current (iLd) when the firing 

angle is selected as αf = 30
o
, where the commutation happens 

at the [n-1]
th 

sample. As it can be seen, applying (13) results in 

an unstable situation (dashed-line). Which is due to inherent 

two-sample delay presented in the control law (13), and 

therefore the duty cycle at the [n-1]
th

 sample (Dd[n]) will not 

include the effect of the rectified voltage change for the next 

two samples. It is at the Dd[n+2] where the increased rectified 

voltage has been included in the predicted duty cycle, which 

results in an increase of turn-off time. However, since the 

imposed change is quite large, the controller cannot maintain 

 

Fig. 4.  Block diagram of the overall control structure implemented for 
the multi-rectifier system using predictive current control. 
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its performance in the next two samples. Notably, for the 

smaller firing angles, the inductor current can reach the 

reference current in a fewer sampling points.  

Following the above discussion, the sudden voltage change 

at the commutation point cannot be treated as a random small 

perturbation. Therefore, prior-art compensation techniques are 

not applicable especially for large firing angles. One solution 

is to apply a variable switching frequency current control 

method such as hysteresis control. In order to prevent from a 

variable switching frequency with a high sampling rate, this 

paper aims at employing a simple modified version of the 

valley predictive control.  

The proposed solution is based on enabling the controller to 

observe two samples ahead of the rectified voltage. Therefore, 

by using an estimation of the rectified voltage (vrec_estd) and 

considering that the two consecutive rectified voltage samples 

are not equal the control law in (13) can be rewritten as, 
 

*

_ _

[ 1] 2 [n] [ ] [ ]

( [ ] [ 1])

dc sw
d d Ld Ld

od

rec estd rec estd

od

L f
D n D i n i n

v

v n v n

v

      

 


         (15) 

Fig. 6 also illustrates the compensated inductor current 

(bold line) applying (15). As it can be seen, at the [n-1]
th

 

sample the controller is adapted with the voltage change by 

reducing the turn-on time. The estimated voltage vrec_estd can be 

made based on the calculated phase angle for the PLL. 

Employing a PLL is mandatory since the modulated current 

has to be synchronized with the grid. Therefore the estimated 

rectified voltage is generated within the controller as,  

_ ( )

6 sin( ) sin( ) 0

6 sin( 120 ) sin( 120 ) 0

6 sin 120 ) sin( 120 ) 0

rec estd

Ph fd

o o

Ph fd

o o

Ph fd

v t

V if

V if

V if

  

  

  



    



    


    

              

                                    (16) 

with  

30o       

 

where Vph is the Root-Mean-Square (RMS) value of the grid 

phase voltage, θ is the  PLL calculated angular frequency and 

θ́ is the compensated angular frequency. In (16)  is the 

shifted samples, which is given as, 

 

                                     
360o

g

sw

f
n

f



                           (17) 

 
 

with fg being the grid frequency, fsw being the sampling 

frequency (here also switching frequency) and n being the 

number of the shifting samples. 

IV. GRID SYNCHRONIZATION USING OUTPUT VOLTAGE 

RIPPLE  

The modulated current of each unit has to be synchronized 

with the grid voltage. Generally, the grid synchronization in 

three-phase systems is performed by employing a PLL system 

based on the synchronous reference frame [34]-[36]. This 

requires three voltage sensors to measure three-phase voltages. 

In this paper, in order to come with a cost-effective system, no 

additional sensor has been employed for the grid 

synchronization. The proposed method is based on measuring 

the output voltage of the DC-DC converter, which as discussed 

in the previous section has a voltage sensor for the voltage 

control objective. Hence, in order to illustrate the proposed 

synchronization concept, the voltage ripple across the DC-link 

capacitor is firstly analyzed. 

A. DC-Link Capacitor Voltage Ripple 

Here, the ripple voltage calculation has been conducted 

based on calculating the input instantaneous power as, 
 

                           1,

1,b

1,c

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

h h h h

in a b c

h h

a aN s a

h h

b bN s

h h

c cN s

p t p t p t p t

p t v t i t

p t v t i t

p t v t i t

  

 



 

 (18) 

 

For simplicity, the input power is calculated for the first 

rectifier unit by setting α0 = 30
o
 (αf = 0

o
, e.g., diode rectifier). 

Doing so gives a simplified form of (3) as, 

 

Fig. 5.  Rectified voltage (vrec_d) of a SCR unit for two firing angles of 
0

o
 and 30

o
 degrees. 

 

Fig. 6. Inductor current and sampling instant using predictive current 
control with and without compensation at firing angle 30

o
. 
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 (19) 

 

with  
1

h

si being the modulated input current for the rectifier 

system, and
0

hc being the Fourier coefficient that can be 

calculated by, 
 

     0 0 1 1 1 2

4
cos 30 cos cosh oc m h m h m h

h
 


   
 

  

 (20) 
 

The phase voltages with an initial phase of θv and Vph as the 

RMS value of the grid phase voltage are, 
      

( ) 2 sin( ), ( ) 2 sin( 120 )

( ) 2 sin( 120 )

o

aN ph v bN ph v

o

cN ph v

v t V t v t V t
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 (21) 

When using trigonometric identities, the total instantaneous 

input power ( ( )h

inp t ) can be given as, 
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 (22) 
 

Now finding the input instantaneous power for the first five 

harmonic orders (h = 1, 5, 7, 11, 13) gives, 
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 (23) 

 

Considering the above equations and defining a new 

harmonic order (k = 6, 12, 18, …) shows that each load current 

harmonic k produces harmonics k-1 and k+1 on the input 

current. Therefore, (22) can be rewritten as, 
 

           
0 1 2

cos ( )3 6
( ) 2

1

vk k

in ph

k t
p t V m c

k

 



 
  

 

 (24) 

 

with
1

kc being the Fourier coefficients that can be calculated as, 
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 (25) 

Equation (24) depicts that the input instantaneous power is 

the sum of an active power plus a pulsating power with the 

frequency starting from six times of the line frequency.  

In order to estimate the output voltage ripple, the 

instantaneous output power can be calculated as [37], 

 

   ( ) o o
o o o o dc o o o o dc o

dv dv
p t V v I C V v V I C V

dt dt
        

 (26) 

 

Notably, the power associated with the ripple voltage and 

ripple current is neglected. Assuming a lossless system with a 

high switching frequency, the instantaneous input power is 

approximately equal to the output power,  

   

                          
0

3 6
o o o in phP V I P V m


     

(27) 
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Solving the above equation gives the ripple voltage, 

    

                1

2

0

sin ( )2
( )

( 1)

k
vo

o

dc o

k tP c
v t

k C V m k

 







 (28) 

 

The above equation shows that the fundamental frequency 

of the output voltage ripple is six times of the line frequency 

including the initial phase voltage (θv). Notably, (28) can be 

used in sizing the DC-link capacitor considering the desired 

output ripple voltage. 

B. Applying Phase-Locked-Loop (PLL) using the Ripple 
Voltage 

It is known that the output ripple voltage of (28) contains 

information regarding the line frequency and initial phase. 

Thus, a PLL using the ripple voltage can extract the 

information for synchronization. In this paper, since it is 

assumed that the multi-drive configurations are placed close to 

each other so only a PLL on the first unit senses the output 

voltage. Then, it will generate a synchronization signal for the 

rest of the units. 

Fig. 7 shows the structure of the implemented PLL. As it 

can be seen, the PLL at the first unit is based on a Second 

Order Generalized Integrator (SOGI) [34]-[36]. The SOGI 

generates a clean sinusoidal signal with the same frequency 

and phase of the input voltage. The generated sinusoidal 

waveform before feeding to the PLL block is changed to a 

pulse waveform with the amplitude between 0 and 1 using a 

comparator. The reason behind this is because it can easily be 

sent to other digital-controlled units for the synchronization. 

Secondly, the PLL parameters can simply be tuned as the input 

voltage amplitude is normalized to be 1 [36]. Here, ωc is the 

initial angular frequency (2πfg) and Kf is the filtering factor. 

The PI controller of the PLL can be set as a function of the 

settling time as [36],  
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9.2 2.3
,

PLLd PLLd PLLdp i p

s s

K K K
t t 

                (29) 

where ts is the settling time and ξ is the damping factor. 

V. RESULTS 

In order to verify the effectiveness of the proposed 

harmonic mitigation method along with the applied current 

modulation scheme, different experiments and simulations 

have been conducted. As stated before, since the firing angle 

of the first rectifier unit is always zero αf = 0 (α0 = 30
o
), a 

three-phase diode rectifier which resembles a SCR unit with αf 

= 0 has been selected. The multi-rectifier system parameters 

are listed in Table I. The grid impedance has been set using a 

grid simulator. In practice, to avoid SCR unit failure and 

reduce the overvoltage to a reasonable limit an RC snubber 

branch is connected across each thyristor. However, the 

presence of the snubber circuit causes significant current 

spikes. In order to damp the current spikes, small AC-side 

inductors are placed in series prior to the SCR unit. Fig. 8 

shows the prototype of the multi-rectifier units following the 

system structure shown in Fig. 4 with the employed module as 

summarized in Table II. In order to obtain different objectives 

a MATLAB function – “fmincon” has been used for 

optimization of the angles. 

Firstly, to better understand the concept of the proposed 

harmonic mitigation technique, two low-order harmonics of 7
th

 

and 11
th

 have been targeted in a rectifier system by setting the 

corresponding limits in (7) equal to zero. The measured input 

currents along with the harmonics distribution are shown in 

Fig. 9. The presence of the grid impedance can be explained as 

the main reason that the targeted harmonic orders are not fully 

nullified. As it can be seen, the 7
th

 and 11
th

 harmonics are 

significantly reduced while in return the 5
th

 harmonic is 

increased. If the same current shape is applied to another 

rectifier unit connected in parallel but with a phase shift of αf = 

36
o
 it will generate the 5

th
 harmonic with 180

o
 (5x36

o
) phase 

shift in respect to the first unit. Therefore, the first three low 

order harmonics of 5
th

, 7
th

, and 11
th

 will be reduced. Fig. 10 

shows the experimental results for two parallel-connected units 

where the THDig of the grid current is reduced to 10.5%.  

In order to demonstrate the effect of the applied 

compensation method discussed in Section III.B, the same 

situation as mentioned above was applied but without any 

compensation. As it can be seen in Fig. 11, since the predictive 

controller cannot see the sudden voltage change at the point of 

commutation, the current has a high rise which deteriorate the 

current harmonic distribution (THDig = 35.6%). 

Nevertheless, reducing the first three or four low order 

harmonics is generally demanded, but depending on the 

application requirement or grid code recommendations, 

different harmonic distributions would be required. In order to 

further examine the proposed harmonic mitigation technique, 

the 5
th

, 7
th

, 11
th

, and 13
th

 order harmonics of the input current 

 

Fig. 7.  Structure of the implemented PLL for grid synchronization in 
the multi-system configuration based on only sensing the output 
voltage ripple. 

 

Fig. 8.  Photograph of the implemented prototype for two parallel 
three-phase rectifier units, each equipped with a boost converter at 
the DC-link side. 

TABLE I 
PARAMETERS OF THE MULTI-RECTIFIER SYSTEM (FIG. 4)  

Symbol Parameter Value 

vg,abc Grid phase voltage 220 Vrms 

fg Grid frequency 50 Hz 

Zg (Lg, Rg) Grid impedance 0.1 mH, 0.01 Ω 

Ldc DC link inductor 2 mH 

Cdc DC link capacitor 470 µF 

Vo Output voltage 700 Vdc 

Kp, Ki PI controller (Boost converter) 0.01, 0.1 

Kf, ts, ξ PLL parameters  0.8, 0.2 s, 2  

fsw Switching frequency 25 kHz 

Po_total Total output power ≈5.5 kW 

 

 

TABLE II 
EMPLOYED MODULES IN THE IMPLEMENTED PROTOTYPE (FIG. 8)  

Module Part-Number Qty 

Three-phase diode rectifier SKD30 1 

Three-phase SCR SKKT 106/16 3 

IGBT-diode SK60GAL125 2 

IGBT gate drive Skyper 32-pro 2 

SCR triggering circuit RT380T 1 

Current measurement HX-15 2 

Voltage measurement LV25-P 2 

SCR snubber branch Rsnub = 100 Ω, Csnub = 0.1 µF 6 

SCR AC-side filter Lfscr = 180 µH 3 

Controller TMS320F28335 2 
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(ig) have been targeted to be less than 5% using the 

optimization given in (7) and (8). As Fig. 12(a) illustrates, 

although the first four low order harmonics are controlled to be 

below 5%, the overall THDig = 11% has been slightly 

increased in comparison with Fig. 10. Moreover, Fig. 12(b) 

shows the measured rectified and output voltages of both units. 

Notably, the amplitude of the output voltage ripple can be 

adjusted according to (29). 

Figs. 10 and 12(a) illustrate the possibility to improve the 

grid current quality for different objectives. However, 

selecting the firing angle of above 30
o
 will result in having a 

Power Factor (PF) of less than 0.95. In order to further 

demonstrate the flexibility of the proposed approach, another 

test has been carried out where PF in addition to THDig has 

been included in the optimization process. Fig. 13 presents the 

results, which show that increasing the PF has adversely 

affected the THDig. Although, a trade-off among different 

demands is inevitable, this effect can be reduced by increasing 

the number of connected drive units. However, this is out of 

the scope of this paper. 

In general, the experimental results have illustrated that with 

the compensation method, the controller can maintain its 

performance even when the firing angle increases. The results 

have shown that the inductor current ramps down for a small 

portion of the time. In fact, the predictive controller observes 

more than two samples ahead of the input voltage, and 

therefore it starts to increase the turn-off time slightly sooner 

that it should be. This is due to the presence of small errors 

always appearing as a result of discretization. Increasing the 

sampling frequency can resolve this issue as it increases the 

estimated voltage resolution. Nevertheless, the measured 

 

Fig. 9.  Experimental results (phase a) of a rectifier unit with the 
proposed compensated predictive current modulation control at Po ≈ 
3 kW, targeting at eliminating 7

th
 and 11

th
 harmonic orders: grid 

phase voltage vaN [300 V/div], diode rectifier input currents is1,abc 
[5A/div] and Fast Fourier Transform (FFT) analysis of the diode 
rectifier input current is1,a [300 mA/div]. 

 

Fig. 10.  Experimental results (phase a) of the multi-rectifier system 
with the proposed compensated predictive current modulation control 

targeting at minimizing 5
th

, 7
th

 and 11
th

 harmonic orders: grid 

current ig,a [10 A/div], grid phase voltage vaN [200 V/div], diode 
rectifier input current is1,a [10A/div], SCR unit input current is2a [10 
A/div], and Fast Fourier Transform (FFT) analysis of the grid current 
[200 mA/div]. 
  

 

 

Fig. 11.  Experimental results without including the compensation 
in the predictive controller for the case targeting at minimizing 5

th
, 7

th
 

and 11
th

 harmonic orders: grid current ig [10 A/div], grid phase voltage 
vaN [300 V/div], diode rectifier input current is1,a [10 A/div], SCR unit 
input current is2,a [5 A/div], and Fast Fourier Transform (FFT) analysis 
of the grid current [600 mA/div]. 
  

 

Fig. 12.  Experimental results of the multi-drive system with the 
proposed compensated predictive current modulation control 

targeting at minimizing 5
th

, 7
th

, 11
th

 and 13
th

 harmonic orders: (a) 

grid current ig [10 A/div], grid phase voltage vaN [200 V/div], diode 
rectifier input current isa1 [10 A/div], SCR unit input current isa2 [10 
A/div], and Fast Fourier Transform (FFT) analysis of the grid current 
[200 mA/div] and (b) rectified and output voltages of both units.  
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harmonic distribution have depicted that with the proposed 

compensation method, the desirable objectives can be 

achieved. Table III further summarizes the detailed harmonic 

contents of the conducted test results along with their 

corresponding phase-shift angle and pre-calculated parameters 

for the applied current modulation at the DC-link. 

Finally, as it is mentioned in Section II, the loading 

condition of drive units can affect the harmonic performance 

of the system. Here, the second case of harmonic reduction 

(Fig. 12(a)) is considered. Assuming that the each drive unit 

can be operated from 50% up to 100% of its rated power, the 

power ratio between the rectifier units Po1/Po2 can change in 

the range of 0.5 to 2. Fig. 14 illustrates the obtained simulation 

results. As it can be seen, two different situations are 

considered. First, the optimized parameters are applied under 

ideal condition (both units draw equal level of currents) as in 

Table III. Secondly, the parameters are optimized regarding to 

each operating point (i.e., power ratio). As it can be seen from 

Fig. 14, the maximum THDig of 18.25% is obtained when the 

phase-shifted unit (second unit) is operating at higher power 

level and the minimum THDig is obtained when both units 

draw equal current level from the grid (Po1/Po2 ≈ 1.3). Notably, 

the output power increase of the first unit does not 

significantly affect the THDig. Moreover, for applications 

where the load is equally shared between units (Po1/Po2 = 1) 

THDig is slightly changed (0.6%). Finally, the effect of 

applying optimized parameters at each operating point (i.e., 

including (11) in the optimization process) is illustrated as 

well. For instance, applying optimization for each operating 

point can effectively improve the THDig of 18.25% (when 

Po1/Po2 = 0.5) down to 15.4%. Therefore, for the applications 

where the power is not equally shared among the drives pre-

programmed optimized parameters can be included as a 

lookup table and applied to each drive unit. Notably, for this 

case having a communication between drives is mandatory.  

 

VI. CONCLUSION 

This paper has proposed a new harmonic mitigation 

methodology suitable for multi- drive systems. It has been 

shown that by phase-shifting rectifiers input currents along 

with a pulse pattern current modulation scheme at the DC-link 

can improve the input current quality significantly. A modified 

predictive current controller in tracking pre-estimated 

switching angles have been carried out in this paper. In 

addition, a cost-effective system is implemented, which avoids 

sensing the input voltage and line voltage for the predictive 

controller and the PLL, respectively. The experimental results 

have verified that the proposed method can effectively reduce 

low order harmonics. Moreover, the flexibility of the proposed 

concept can be extended by increasing the number of 

connected units and modulating the DC-link current with a 

higher number of levels.  
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