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Reliability-Driven Assessment of GaN HEMTs and
Si IGBTs in 3L-ANPC PV Inverters

Emre Gurpinar, Student Member, IEEE, Yongheng Yang, Member, IEEE,
Francesco Iannuzzo, Senior Member, IEEE, Alberto Castellazzi, Frede Blaabjerg, Fellow, IEEE

Abstract—In this paper, thermal loading of the state-of-the-art
GaN HEMTs and traditional Si IGBTs in 3L-ANPC PV inverters
is presented considering real-field long-term mission profiles (i.e.,
ambient temperature and solar irradiance). A comparison of Si
IGBT against GaN HEMT with three different possibilities: 1)
with TIM at 10 kHz, 2) without TIM at 10 kHz, and 3) with
TIM at 300 kHz has been performed. The assessment results
indicate lower thermal stress with GaN HEMT devices at 10
kHz in comparison to Si IGBT. At high switching frequencies,
the results show significant system level cost savings can be
achieved without compromise of operating efficiency with GaN
HEMTs. Both simulations and experimental tests are provided
to demonstrate the thermal loading analysis approach. More
important, the proposed analysis and comparison approach can
be used for lifetime and reliability analysis of wide-bandgap
devices.

Index Terms—Wide bandgap (WBG) power devices, gallium-
nitride (GaN), thermal loading analysis, reliability, three-level
active neutral point clamped (3L-ANPC) converter, photovoltaic
(PV) systems

I. INTRODUCTION

RENEWABLE power generation is one of the main focus
areas of highly efficient power electronic systems due to

the increasing demand for clean power resources. Photovoltaic
(PV) energy is a key renewable energy resource along with
hydro and wind, and as of 2013, the global installed PV
capacity has been over 138 GW with a potential of 160
TWh energy generation every year. In addition to the current-
installed capacity, the worst case scenario for annual PV
installation until 2018 is expected to be around 35 GW [1].
Even with the worst case scenario, there is a strong demand for
energy generation with PV systems, where power electronic
converters are vital components for realisation of this demand.
Basically, the power electronic converters provide two main
tasks for PV systems: 1) maximisation of energy utilisation by
means of Maximum Power Point Tracking (MPPT) control;
2) integration with an AC grid by converting the generated
electricity from DC to AC (i.e., using DC-AC inverters) in
a grid-friendly manner. That is to say, a certain amount
of demands to PV systems should be taken into account
in the planning, design, and operation phases. For instance,
different converter topologies and system structures based on
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single- and double-staged conversion systems are published
and reviewed in literature [2]–[4], whereas aforementioned
power electronics converters are widely utilized.

For maximisation of energy generation and minimisation of
system payback time, efficiency of power electronic converters
in PV applications is always one of the key parameters along
with reliability and lifetime in those applications. Therefore,
efficiency improvement of power electronic systems has been
an important aspect of research in renewable energy. Trans-
formerless inverter topologies have been proposed that intro-
duce additional power switches for maintaining high efficiency
while minimizing the leakage ground current without presence
of the galvanic isolation between PV panels and the grid [5],
[6] . Along with new transformerless topologies, emerging
wide-bandgap (WBG) devices such as SiC Schottky diodes,
SiC JFETs, SiC MOSFETs and GaN HEMTs have been
introduced to PV converters due to superior properties of WBG
materials [7]. Application of WBG devices in DC/DC con-
verters and DC/AC inverters for PV systems has been widely
discussed in the literature. Various converters with different
application conditions show the potential of achieving very
high efficiencies with WBG devices under a wide operating
range.

For example, the performance of SiC JFET devices for
PV applications has been discussed in details in [8]–[10] A
number of experimental test results show a peak efficiency of
98.8% and in [8], the Highly Efficient and Reliable Inverter
Concept (HERIC) converter with SiC devices has achieved
a 99% peak efficiency. As demonstrated in [9], the overall
losses in a PV inverter can be halved by just replacing
conventional Si IGBTs with SiC JFETs, and thus efficiency
can be improved. Although SiC JFETs had promising re-
sults, the gate drive complexity and normally-on characteristic
of the devices were the main obstacles for applications in
commercial products [11]. Alternatively, SiC MOSFETs have
been introduced at 600 V and 1200 V blocking class range
for renewable applications from different manufacturers, and
the performances of these devices in various topologies are
discussed in [12X][14X] [12]–[14]. Similar to the results with
SiC JFETs, replacing Si IGBTs with SiC MOSFETs can bring
up to 1% efficiency gain for the same switching frequency.
In [13], the performance of SiC MOSFETs and Si IGBTs at
600 V class has been presented, where it shows that the SiC
MOSFETs under different ambient temperatures can operate
without malfunctions. In addition, all SiC-based 3-level T-
type inverters can achieve peak efficiency 98.3% at 16 kHz
switching frequency.
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Recent findings show that the WBG power devices suitable
for grid connected applications are normally-off GaN HEMTs
at a blocking class of 600 V. Such GaN normally-off HEMTs
have been introduced by Panasonic at 600 V and GaN Sys-
tems at 650 V. There are several practical applications with
those WBG devices. For instance, in [15], GaN HEMTs are
implemented in a DC/DC converter for the MPPT control
in PV applications, and the converter operated with a peak
efficiency of 98.59% at 48 kHz switching frequency. Further-
more, the same devices have been used in other applications
such as resonant LLC DC/DC converters, three phase inverters
and synchronous buck converters. Those cases have shown
the high switching and conduction performance of the GaN
HEMT devices in different operating conditions [16]–[20].
Specifically, in [17], GaN devices are demonstrated on a three
phase inverter with 99.3% efficiency at 900 W output power
and 16 kHz switching frequency. Finally, GaN HEMTs are
demonstrated along with 1200 V SiC MOSFETs in single-
phase PV applications in [19], [20], where the converter has
achieved 99.2% peak efficiency at 1.4 kW output power and 16
kHz switching frequency. The presented converter proves the
stable operation of WBG devices under wide load, switching
frequency and ambient temperature conditions. Furthermore,
normally-on GaN HEMTs at 600 V voltage class with and
without cascode structures are discussed in [21] and [22]
for hard-switching topologies. Performance improvement in
a synchronous buck topology is presented in [20X] and it
is shown that smaller reverse recovery charge and output
capacitance of GaN HEMTs lead to reduction in turn-on
losses and up to 2% efficiency improvement in comparison
to Si MOSFET. The current collapse phenomena for 600 V
normally-on GaN HEMT is presented in [22]. Although the
device is statically rated at 600 V, the experimental results
are presented up to 50-60 V due to increase in on-state
voltage drop during dynamic testing. Nevertheless, the above
literature survey shows that WBG based power converters can
deliver very high efficiency at switching frequencies that is
not possible with conventional Si-based power devices.

In addition to high efficiency, high reliability is required
for PV inverters in order to extend lifetime of the system
and therefore energy generation [23], and as a consequence to
reduce the cost of energy. Commercial PV inverters are gen-
erally offered with a 25 year performance warranty, and also
considered as the most vulnerable components in a PV system
[24]. It is known from field data that a majority of the failure
mechanisms for PV inverters are related to mean temperature
variations and temperature swings [25]; therefore long-term
mission-profile plays a key role in reliability and assessment
of thermal performance of the inverter [26], [27]. During
design process, real-field operating conditions (e.g., ambient
temperature and solar irradiance) have to be considered for
reliability-oriented approaches, as different conditions may
unevenly stress the components within the system. Emerging
SiC and GaN power devices have different electrical and
thermal properties from Si devices due to inherent differences
in material, chip size and packaging properties [28]. Therefore,
it is essential to evaluate the long-term performance of the
system for better understanding the benefits as well as the

drawbacks of using WBG devices in PV systems. In such a
way, the applications of WBG devices can further be paved
away.

In this paper, a reliability-oriented comparison of conven-
tional Si IGBTs with state-of-the-art GaN HEMTs for 3L-
ANPC PV systems is thus presented. In Section II, converter
topology, modulation strategy and power device properties
are presented, followed by a mission-profile oriented analysis
in terms of thermal loading and reliability estimation of the
considered power electronic converters. Simulation results of
the converter based on GaN and Si devices are presented
in Section III regarding efficiency, annual energy generation,
loss distribution and thermal loading. Finally, experimental
results of the GaN-based prototype (i.e., 3L-ANPC inverter) at
different load conditions are presented before the conclusion.

II. 3L-ANPC INVERTER AND PV SYSTEM

A. ANPC Topology and Modulation Scheme

Active neutral point clamped (ANPC) inverter is a member
of half-bridge neutral point clamped inverter family and it was
introduced in [29] as an alternative to neutral point clamped
(NPC) inverter [30] for improved loss balancing and better
utilization of semiconductor chip areas in the inverter. Re-
placing diodes in NPC inverters with active switches provides
additional zero states, and at the same time different modula-
tion strategies can be applied with a flexible utilization of the
redundant switching states. The topology has been discussed
thoroughly for industrial drive applications in literature [31]–
[33]. The schematic of the studied converter for a double-stage
three-phase grid-connected PV system is presented in Fig. 1.
As it can be observed, each leg of the 3L-ANPC inverter is
formed by 6 active switches (S1-S18 of three legs) in order to
achieve a three-level phase output voltage with respect to the
neutral point N, and the power devices (S1-S18) are rated at
half of the DC link voltage VDC . Consequently, it is possible
to use GaN HEMT devices at 600 V class for three-phase
grid-connected applications, where the DC link voltage is
within a range of 650-1000 V. In this configuration, a DC-DC
converter between the PV strings and the 3L-ANPC inverter is
adopted in order to flexibly maximize the energy production
(i.e., MPPT control) as well as to extend the operating hours
of the PV systems (e.g., in the case of weak solar irradiance).
The power delivered by the DC/DC converter is then fed to
the 3L-ANPC inverter, while the DC-link voltage is usually
maintained as constant by controlling the inverter. Normally,
for the PV system, it should inject high-quality grid currents at
unity power factor operation, and thus the modulation schemes
applied to the 3L-ANPC inverter should be specially designed.

Different modulation strategies can be implemented for the
3L-ANPC inverter in order to achieve a balanced switching
loss distribution or doubling of the effective switching fre-
quency at the output [34]. Solutions proposed in [31]–[33],
[35] are limited to the use of Si devices and were optimised
for IGBTs as well as for MOSFETs. A modulation strategy
based on reverse conduction capability of SiC MOSFETs has
been introduced in [12] for a single-phase leg, as further shown
in Fig. 2. It can be seen from the driving signals that there are
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Fig. 2: Switching sequences for leg-A of the 3L-ANPC inverter
[12].

four operating states: 1) positive voltage, 2) zero state positive
current, 3) zero state negative current and 4) negative voltage.
Specifically, taking leg-A shown in Fig. 1 as an example, the
positive voltage is applied to the output of the phase leg by
turning-on S1 and S3 and the output current flows through
the two devices in series. During the positive active-state, S4

ensures an equal DC link voltage sharing between S5 and S6

without conducting any current. The transition from positive
active-state to zero-state is accomplished by switching S1 off,
and then simultaneously switching S2 and S5 on, and thus
the current is divided in two parallel paths: S2 − S3 and
S4−S5. Same commutation scheme is used for complementary
switches during the negative active-state and the zero-state.
This modulation method ensures low conduction losses at
zero-states, and the outer switches (S1 and S6) are exposed to
switching losses at unity power factor. In a Si-based converter,
IGBTs with antiparallel diodes can be employed; while in GaN
based converter, only HEMTs will be sufficient because of the
reverse conduction capability of HEMT devices. Therefore,
although the number of active devices in Si and GaN will be
the same, the number of total switches will be half in GaN
based inverter due to the absence of antiparallel diodes, leading
to reduced converter volume as well as heatsink size.

B. System and 3L-ANPC Parameters

The PV system and converter parameters considered in
this study are presented in Table I. As the DC/DC converter
between PV strings and the 3L-ANPC inverter that is shown
in Fig. 1 is responsible from the MPPT control, it is assumed
that the conversion efficiency of 99% can be achieved by
the MPPT control of the converter in the following. Recent

TABLE I: Converter and System Parameters

Parameter Value

Input DC Link Voltage (VDC ) 800 V
Input Power (Pin) @ 25 oC, 1000 W/m2 6 kW
Switching Frequency (fsw) 10 kHz - 300 kHz
DC Link Capacitor (CDC1

− CDC2
) 1500 µF

Output Filter Inductor (Lf ) 3.6 mH
Output Filter Capacitor (Cf ) 2.35 µF
Output Filter Capacitor (Lg) 4 mH
Grid Phase-to-Phase Voltage (Vph−ph) 400 Vrms
PV Module BP 365
PV String Configuration 46 module each - 2 strings
DC/DC (MPPT) Efficiency (ηMPPT ) 99 %

advances in SiC MOSFETs show that efficiency higher than
99% is feasible for DC/DC converters in PV applications
[36]. Two parallel-connected PV strings, formed by 46 PV
modules, are considered to deliver 6 kW power at the standard
test conditions (i.e., 25 oC ambient temperature and 1000
W/m2 solar irradiance). The input power Pin can go up to
11 kW at -25 oC and 1500 W/m2 theoretically, and therefore
the total rating of the converter is selected as 15 kW in
order to operate at a wide range of ambient temperature and
solar irradiance. The inverter is operated at 10 kHz switching
frequency for Si IGBTs; while at 10 kHz and 300 kHz for
GaN HEMT devices for evaluation of the performance of GaN
HEMT based inverter at low and high switching frequencies
in comparison to the Si IGBT based inverter. Selection of 300
kHz for high frequency application of the GaN HEMTs is
determined by the operation point of the converter, where the
junction temperature of most stressed devices is close to their
limits, and the efficiency is still higher than the Si IGBT based
converter. Additionally, it is shown in [37] that by moving 10
kHz to 300 kHz, 70 % reduction in EMC filter volume can
be achieved for GaN HEMTs.

C. 650V GaN HEMT and 600V Si IGBT

As previously discussed, the GaN HEMT devices have
superior switching properties in comparison to Si IGBTs or
Si MOSFETs. At the 600 V blocking class, super-junction
(SJ) Si MOSFETs can be an alternative to WBG devices,
where a unipolar current conduction must be employed due
to the poor body-diode characteristic of SJ devices [38], [39].
Since the 3L-ANPC inverter requires bipolar current condition;
the comparison is limited to IGBT in Si-based devices in this
study. Device properties of the selected GaN HEMT and Si
IGBT are presented in Table II. Both devices are at the 600
V blocking class and suitable for full bridge topologies with
400 V DC link or multi-level topologies with 800 V DC
link with the grid voltage of 230 Vrms. As it can be seen
in Table 2, the Si IGBT continuous current rating is almost
equal to rating of GaN HEMT device at 100 oC, and therefore
a fair comparison can be conducted between the two device
technologies. Si IGBT switching losses are expected to be
higher than GaN HEMTs. Regarding on-state losses, the GaN
HEMT has better conduction performance in comparison to Si
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TABLE II: Converter and System Parameters

GaN Systems Infineon
GaN E-HEMT Si IGBT
GS66508T IKP20N60H3

Drain-Source Voltage (VDS ) 650 V 600 V
Continuous Drain Current (IDS ) 23 A @ 100 oC 20 A @ 100 oC
Drain-Source On-State Resistance (RDSON

) 55 mΩ @ 25 oC N/A
129 mΩ @ 100 oC

Collector-Emitter Saturation Voltage (VCESat
) N/A 1.95 V @ 25 oC

2.5 V @ 100 oC
Input Capacitance (Ciss) 200 pF 1100 pF
Output Capacitance (Coss) 67 pF 70 pF
Reverse Transfer (Crss) 2 pF 32 pF
Gate Charge (Qg) 6.5 nC 120 nC
Min. Gate Threshold Voltage (Vth) 1.6 V 4.1 V
Maximum Junction Temperature (Tj ) 150 oC 175 oC
Reverse Recovery Charge (Qrr) 0 µC 0.39 µC
Package Stray Inductance (Lσ) 0.4 nH 7 nH
Device Package GaNPX TO220-3

IGBT at lower case temperatures. The on-state performances
of two technologies are presented in Table II. It can be seen
that, the variation of on-state performance of GaN HEMT is
more sensitive to junction temperature increase in comparison
to Si IGBT. Furthermore, it is shown in Table II that the device
capacitance and reverse recovery characteristics of the GaN
HEMTs are excellent in comparison to those of the Si IGBTs
in the switching dynamics. This switching loss difference
has an impact on the device loss distribution, which will be
presented in simulations (Section III), as only two devices out
of six in the 3L-ANPC leg are subject to switching losses.

In addition to the electrical parameters in Table II, it
should be noted that the GaN HEMT device is packaged in
a novel structure called GaNPX . The package integrates and
encapsulates the GaN HEMT die into a very thin (0.45mm
total thickness) high temperature fibreglass matrix. Copper
micro vias are used for vertical connections to facilitate heat
transfer from top side and electrical connections from the
bottom side of the package. The GaNPX technology eliminates
bond wires and solders joints, and achieves extremely low
stray inductance [40]. As indicated in Table ??, the stray
inductance of the GaN HEMT package has 17.5 times less
stray inductance per device than that of the Si IGBT package,
relying on manufacturer information. This is a key aspect for
drawing the maximum benefit from the WBG power devices.
Also, by using thick redistribution layer and copper on top of
the die, competitive thermal impedance can be ensured.

Nevertheless, the thermal loading of the power electronic
devices is still the major lifetime affecting factor, which is
an essential part for reliability analysis. Hence, a thermal
model of a single device is presented in Fig. 3. The device
thermal network consists of thermal impedances between
device junction and device case (Zth(jc)), case and heat sink
(Zth(ch)), and heat sink and ambient (Zth(ha)). Based on
manufacturer datasheets and SPICE models, Foster network
parameters for junction-to-case impedance are presented in
Table III. Obtained Foster network parameters are transferred
to the Cauer network in the simulation environment for
accurate thermal modelling. In the case of the GaN device,
due its comparatively small dimensions, a satisfactory thermal
description was achieved with only one RC group, whereas 3

Tj Tc

Ploss(1)
Th

Ta

Rth1 Rth2

Cth1

Rth3

Cth2

Rth4

Cth4

Tj Tc

Cth3

Zth(jc) Zth(ch) Zth(ha)

Foster Network

Fig. 3: Thermal model of a single power device, where the RC
layer number is related to the device packaging technology as
indicated in Table III.

groups have been used for the larger device and package types.
Notably, the device thermal model is implemented along with
the electrical model (see Fig. 1) in order to obtain the thermal
performance with respect to converter instantaneous loading
conditions, which are highly dependent on the solar and ambi-
ent temperature profiles and in return affect the semiconductor
switch properties. One important aspect to consider for GaN
HEMTs is the insulation of thermal pad of the device from
heat sink where common heat sink is used for the inverter
and DC/DC converter. As the thermal pad of GaN HEMTs is
directly connected to the substrate and source of the device
internally, electrical isolation has to be provided in common
heatsink applications. The thermal pad area of GaN HEMT
is 20.5 mm2 and with a commercial thermally-conductive
insulator, which has 3.5 W/m.K thermal conductivity, 0.3
mm thickness and 4 kV breakdown voltage [41]. Thus, an
additional thermal resistance of 4 oK/W is added to Zth(ch)

in Fig. 3. The additional thermal resistance from the insulator
increases the junction temperature of devices significantly due
to the thermal pad size even at low switching frequencies.
For Si IGBTs, thermally-conductive insulator with 0.57 oK/W
thermal resistance and 4 kV breakdown voltage is considered
for isolation of discrete devices from common heat sink [42].
The common heat sink for the devices is modelled as a simple
RC circuit. There are two reasons for this simplification: 1)
The analysis in this study focuses on the thermal profile
analysis of steady-state device junction temperature and the
heat sink will not have significant effect on thermal loading
comparison, 2) Simplification of heat sink model lead to
acceleration of long-term mission profile simulations. Junction
temperature comparisons with and without insulator will be
presented over an annual mission profile by simulations in
Section III.

D. Mission-Profile Based Simulation

It is necessary to evaluate the performance of power elec-
tronic systems in long-term operation along with short-term
operation, as the long-term operation profiles can have signif-
icant impact on efficiency, reliability and lifetime of the entire
system [25]. For short-term evaluation, time-based simulation
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TABLE III: Thermal parameters for Si IGBT, Si Diode and
GaN HEMT.

Impedance Zth(j−c)
i 1 2 3 4

Si IGBT Rthi [oK/W] 0.07041042 0.3070851 0.3198984 0.1871538
τi [s] 0.000096 0.00068 0.01084623 0.06925485

Si Diode Rthi [oK/W] 0.4398 0.6662 0.4734 0.3169
τi [s] 0.00013 0.0011 0.0071 0.04629

GaN HEMT Rthi [oK/W] 0.05 - - -
τi [s] 0.00025 - - -

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sept

So
la

r 
Ir

ra
di

an
ce

 [
W

/m
2 ]

0

200

400

600

800

1000

1200

1400

(a)

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sept

A
m

bi
en

t T
em

pe
ra

tu
re

 [
o C

]

-20

-10

0

10

20

30

40

(b)

Fig. 4: An annual mission profile used in this paper: (a) solar
irradiance and (b) ambient temperature profile in Aalborg.

tools or prototype based experiments can be conducted to
assess the performance but both of these approaches are not
suitable for long-term evaluation due to constraints of time,
computational and financial resources. Therefore an efficient
method is required to evaluate the long-term performance (see
Figs. 5 and 7) [25], [26]. The long term PV mission profile
consists of solar irradiance level (Si) and ambient temperature
(Ta). In this study, a real-field annual PV mission profile
data (i.e., solar irradiance level and ambient temperature) in
Aalborg is considered. The measured annual solar irradiance
and ambient temperature data are presented in Fig. 4.

Realisation of the long-term mission profile based analysis
is presented in Fig. 5. The first step of this analysis is to obtain
the maximum power (Pm) operation points with respect to the
PV module output voltage (vpv) for the PV string specified
in Table I, based on the measured different solar irradiance
(Si) and ambient temperature (Ta). Then maximum power
and operation voltage is fed into the short-term simulation
model in order to obtain power loss (Ptot) and temperature
profile (Tj) for each switching device in correspondence to

Output:
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Fig. 5: Realisation of the long-term mission profile based
analysis approach.
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Fig. 6: PV panel output power with respect to solar irradiance
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an individual operation point (e.g., Pm = 6 kW, Vpv = 400 V
for the case of 25 oC and 1000 W/m2). The maximum output
power of the PV panel with respect to solar irradiance and
ambient temperature is presented in Fig. ??. The losses and
temperature performance are finally curve-fitted with respect to
the entire solar irradiance and ambient temperature spectrums
in such a way to link a specific mission profile with the power
electronic converter (electrical behaviour). It should be pointed
out here that the MPPT control (dc-dc converter) efficiency has
been assumed to 99%, since the focus of this paper is not on
the MPPT control.

The detailed structure of the multi-disciplinary analysis
method can be seen in Fig. 7. Short-term simulation model
consists of two domains: thermal model and electrical model,
which are linked via power device model. Electrical parame-
ters affecting conduction and switching losses are fed to the
power device model along with junction temperature from the
thermal model in order to calculate power device losses with
respect to pre-defined switching and conduction performance
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Fig. 7: Multi-disciplinary analysis method.

data. Then, the calculated power loss is fed to thermal model
in order to recalculate the junction temperature and to the
electrical model for calculation of the total converter losses.
This bidirectional data exchange between different simulation
domains provide results that can be used for better under-
standing the thermal and electrical performance, enabling the
multi-disciplinary evaluation of the implemented modulation
scheme, power devices and converter topologies. Power device
data can be obtained from detailed device datasheets that
provide switching and conduction loss performance or double
pulse tests.

III. SIMULATION RESULTS

The simulations based on the approach explained in details
in the previous section are carried out on a single phase
3L-ANPC inverter with the assumption of a balanced three
phase grid system and operation. In this case, the analysis

results can be extended to the three-phase 3L ANPC converter
shown in Fig. 1. Input power, total conduction losses and
total switching losses are recorded for converter performance
evaluation according to the multi-disciplinary approach. In
addition to this, power losses, mean and maximum junction
temperatures for each device are recorded for device in order to
evaluate the loss distribution, thermal stress and behaviour of
each power switch in a single 3L-ANPC leg. In the beginning
of this section, overall inverter performance is presented
including inverter loss breakdown, annual power loss and
cumulative energy loss for IGBT and GaN based scenarios.
These results are followed by the thermal stress comparison
of each power device including the power loss distribution,
mean junction temperature and junction temperature variation
for most stressed devices in the specific configuration.
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A. Overall Power Loss and Energy Generation

The annual power loss and cumulative energy loss of three-
phase 3L-ANPC inverter with Si IGBTs at 10 kHz, and
with GaN HEMTs at 10 kHz and 300 kHz are presented
in Fig. 8. As it is expected from the results presented in
literature, the GaN-based 3L-ANPC inverter has a higher
efficiency, and therefore less power losses throughout the
year in comparison to those of the Si IGBT based 3L-ANPC
inverter. The cumulative energy loss for the Si IGBT based
inverter is around 64.1 kWh, and in contrast, for the GaN-
based inverter at 10 kHz and 300 kHz is 16.8 kWh and 63.9
kWh, respectively. At the switching frequency of 300 kHz,
although the GaN HEMTs are switched 30 times more than
Si IGBTs, the associated additional energy losses due to the
increased switching frequency is 74% of the total energy losses
of the Si IGBT based inverter. The average electricity price
in Denmark for household consumers is 0.304 e/kWh [43].
Without considering thermal benefits of reduced converter
losses, if the feed-in tariff is assumed to be same as the
utility tariff, it can be concluded that the GaN HEMT based
inverter at 10 kHz will bring additional e 30.73 to the owner
in comparison to the Si IGBT based inverter. At 300 kHz, the
GaN HEMT based inverter will not bring significant operation
income to the owner, whereas will provide reduction in initial
system cost saving due to the reduction in cooling and output
filtering requirements [20].

Conduction and switching loss breakdown of the Si and
GaN based inverter phase leg are presented in Fig. 9. with
respect to four different ambient temperatures and at maximum
solar irradiance for the given ambient temperature profile.
At 10 kHz switching frequency, the conduction losses are
dominating the overall converter losses for the Si IGBTs.
Meanwhile, the losses reduce with respect to the temperature
increase due to the reduction in the input power and relatively
small temperature dependence of conduction performance of
Si IGBTs at low collector current levels as shown in Table
II, despite the fact that switching losses increase according to
ambient temperature. On the other hand, the switching losses
of the GaN HEMT based inverter leg is negligible at 10 kHz
and the total losses are dominated by the conduction losses.
The switching losses increase as the switching frequency is
moved from 10 kHz to 300 kHz in Fig. 9 (b) and (c), but
the overall losses of the phase leg is close to Si IGBT based
inverters, as it is shown in Fig. 9 (a).

As the size of heat sink volume is inversely proportional to
required thermal resistance Zth(ch) [20], [37], the heat sink
volume of the GaN HEMT based inverter at 300 kHz will
still be smaller than that in the case of the Si based inverter.
Therefore, heat sink can still contribute to system level cost
saving for the GaN based inverter at a very high switching
frequency.

B. Thermal Stress Comparison

The applied modulation scheme in Fig. 2 provides low
conduction losses with the penalty of uneven loss distribution
in the 3L-ANPC phase leg at unity power factor operation.
During positive half cycle of the output voltage, S1 is subject
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Fig. 8: Estimated annual power losses and cumulative energy
loss of the ANPC inverter based on different technologies
using the mission-profile analysis approach: (a) annual power
losses and (b) cumulative energy losses.

to hard switching and also conducts during active state, while
S3 conducts during positive and zero states, and S2 only
conducts during zero states. Therefore, it is expected to see
highest power losses across S1 or S3 switches depending
on the device switching, conduction performance and inverter
switching frequency. The loss distributions for upper devices
in the 3L-ANPC - phase leg-A in Fig. 1 are presented in Fig.
10 for Si and GaN. In the Si-based inverter, due to the unity
power factor operation, antiparallel diodes D2 and D3 only
conduct during positive and negative zero states. Although
S3 has higher conduction losses than S1, S1 has the highest
losses in the inverter leg due to the switching loss contribution
presented in Fig. 9 (a). On the other side, for the GaN based
inverter at 10 kHz and 300 kHz in Fig. 10 (b) and (c), the
loss distributions among S1 and S3 vary with respect to the
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Fig. 9: Semiconductor total, conduction, and switching losses
per phase leg of the ANPC inverter based on: (a) Si IGBT
technology with a switching frequency of 10 kHz, (b) GaN
technology with a switching frequency of 10 kHz, and (c)
GaN technology with a switching frequency of 300 kHz,
where different ambient temperatures with the maximum solar
irradiance level are considered.

selected switching frequency. High switching performance of
the GaN HEMTs shows the impact at 10 kHz by keeping
power losses of S1 less than S3. By increasing the switching
frequency to 300 kHz, switching losses become significant in
overall losses (Fig. 9 (c)), resulting in that S1 has the highest
power loss in the inverter leg.

As the devices with highest power losses and therefore
the thermal stress in each configuration are identified, further
thermal performance analysis can be conducted on these
devices based on the annual mission profile. Mean junction
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Fig. 10: Loss distribution of the ANPC inverter based on: (a)
Si IGBT technology with a switching frequency of 10 kHz, (b)
GaN technology with a switching frequency of 10 kHz, and
(c) GaN technology with a switching frequency of 300 kHz,
where different ambient temperatures with the maximum solar
irradiance level are considered.

temperature (Tj) and junction temperature variation (∆Tj) for
devices with the highest thermal stress are presented in Fig.
12 (a) and (b), respectively. Mean junction temperature of S1

in a Si IGBT based inverter is below 50 oC, while the mean
junction temperature of S1 in the GaN HEMT based inverter
with 300 kHz switching frequency can go up to 75 oC during
summer time. The mean junction temperature follows the
ambient temperature trend throughout the year and can show
significant variations based on the solar irradiance and ambient
temperature. Regarding the junction temperature variations,
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Fig. 11: Thermal loading profiles for the most stressed de-
vices in 3L-ANPC inverter through a year: (a) mean junction
temperature and (b) junction temperature variation.

S1 in a GaN HEMT inverter with 300 kHz has the highest
temperature variation across the junction of the device. S3 in
a GaN HEMT inverter at 10 kHz has a similar performance
during warm months to that of S1 in a Si IGBT inverter due
to the increased conduction losses.

It can be seen from Fig. 12 that the long term mean junction
temperature and junction temperature fluctuations are irregular
profiles with varying frequencies and amplitudes. In order to
make the results more meaningful, cycling counting methods
can be applied to the mean junction temperature and junction
temperature variation data. The number of cycles at each
temperature level is dependent to mission profile, thermal and
electrical models as it is explained in the previous sections.
Rainflow is one of the cycle-counting methods to identify
full and half cycles within irregular profiles, and is chosen
in this study. It has been used in calculation of lifetime of

power modules based on device solder temperature profiles
[44]. The histograms of mean junction temperature (Tj) and
junction temperature variations (∆Tj) are presented for the
most stressed devices are presented in Fig. ?? (a) and (b),
respectively. Replacing Si IGBTs with GaN HEMTs at 10 kHz
switching frequency reduces the number of cycles of at higher
temperatures. On the other hand, the GaN HEMTs with 300
kHz switching frequency have increased Tj and ∆Tj at higher
temperatures, which means that the device is subject to higher
thermal stresses in comparison to other two options.

The Coffin-Manson model for conventional power modules
indicates that number of failures in a power module is only
dependent on the temperature cycles, cycle amplitude ∆Tj
and mean junction temperature Tj [45]. Therefore, with ad-
equate device packaging models for the GaN HEMTs and
Si IGBTs, lifetime consumption of the power devices at
different switching frequencies can be calculated and then an
optimisation between reliability, efficiency and system volume
can be achieved.

C. Thermal Interface Material Impact on GaN HEMT

As it is mentioned earlier, the thermally-conductive insu-
lator (thermal interface material, TIM) with 4 oK/W ther-
mal resistance has been placed between the thermal pad of
the GaN HEMT and the heat sink. As the junction-to-case
thermal resistance of GaN HEMTs is extremely low, the
thermal resistance of TIM will increase the thermal stress
across the GaN power devices. In order to illustrate this, the
mean junction and junction temperature variation of S3 in
a GaN HEMT inverter at 10 kHz switching frequency with
and without TIM are presented in Fig. 13. It is clear that
the mean temperature can increase by 10 oC during warm
days and the maximum junction temperature variation can
increase from 5 to 10 oC. The histograms based on mean
junction temperature and junction temperature variations in
Fig. 13 are presented in Fig. 14 (a) and (b) respectively.
The histogram results show that number of cycles for mean
junction temperature and junction temperature variation is
higher with TIM. Therefore, innovative cooling solutions are
required for the GaN packages that provide excellent electrical
isolation without compromising thermal performance of the
devices.

IV. EXPERIMENTAL RESULTS

The performance of 600 V Si IGBTs has been well studied
in literature for different applications and some these results
have been discussed in the introduction section of this paper.
On the other hand, normally-off 650 V GaN HEMTs with
low inductance package recently emerged for power electronic
applications. Therefore, a GaN HEMT based single phase
ANPC inverter demonstrator has been designed and built.
The performance of GaN HEMT devices is experimentally
evaluated and presented in this section.

The GaN HEMT based single phase ANPC inverter is
presented in Fig. 15. The power cell is formed by four-layer
PCB with 140 µm copper on each layer. The power cell
consists of high frequency DC link capacitors, GaN HEMT
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Fig. 12: Rainflow counting results for the thermal loading
profiles shown in Fig. 11 under a yearly mission profile: (a)
mean junction temperature and (b) cycle amplitude.

switches, gate drivers, signal and power isolation circuits for
gate drivers and fibre optic receivers for gate signals. The
S1 − S3 GaN devices are placed on top side of the PCB
while S4 − S6 GaN devices are placed on bottom side of
the PCB in symmetry to S1 −S3 for minimised commutation
loop and high switching speed. The PCB is designed to have a
modular system with the option to extend the demonstrator to
three-phase by stacking PCBs vertically. Regarding cooling of
power switches, two commercial heat sinks, which are joined
by 4 screws with compression springs in order to apply equal
contact pressure to the devices from top and bottom part of
the PCB. The PCB has been presented without heat sinks in
order to show device positions on the board.
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Fig. 13: Thermal loading of the S3 GaN HEMT in the 3L-
ANPC inverter with and without electrical insulation (TIM)
material: (a) mean junction temperature and (b) junction
temperature variation.

A. Switching Performance

The ANPC power cell is initially operated as a buck DC/DC
converter in order to evaluate switching performance of GaN
devices and designed power cell. For buck configuration, upper
switches S1−S3 are used where S3 is completely on during the
switching period and complementary gate signals are applied
to S1 and S2 with 200 ns dead-time.

The switching waveforms at 40 kHz switching frequency
with 400 V DC link voltage and 1 kW output power are
presented in Fig. 16. In Fig. 16 (b), the output current
commutates from S2 to S1 and S1 is subject to hard-switching.
The commutation from S1 to reverse conduction of S2 is
presented in Fig. 16 (c). Drain-source voltage waveforms VDS1

and VDS2 prove high switching speed of GaN HEMTs with
13.2 ns rise and fall time of VDS2 and VDS1 respectively.
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Fig. 14: Rainflow counting results of the thermal loading
profile shown in Fig. 13 (for the S3 GaN HEMT device)
with and without electrical insulation material: mean junction
temperature and (b) junction temperature variations.

B. Inverter Performance

The single phase 3L-ANPC inverter prototype in Fig. 15 is
tested with 700 V DC link, 10 kHz switching frequency to
demonstrate performance of GaN based power cell without
heat sink. The inverter test setup is presented in Fig. 17.
The inverter is powered by a DC power supply with DC
link decoupling capacitors. An RL load configuration is used
for evaluation of performance under different load conditions.
Efficiency and losses of power cell is measured by Yokogawa
WT3000E precision power analyser with 0.01% power accu-
racy.

The experimental output current and voltage waveforms,
and power cell efficiency with experimental and simulation
results are presented in Fig. 18 (a) and (b), respectively. The
experimental results support validity of high performance of

Input Terminals
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116 mm
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Fig. 15: Hardware of the GaN HEMT based single phase
ANPC power cell: (a) top view and (b) bottom view.

GaN HEMT devices in simulation and comparison with Si
IGBTs. The efficiency comparison in Fig. 18 (b) validates
the performance assumption of GaN HEMTs in the inverter
operation mode.

V. CONCLUSION

This paper has explored the challenging issues and the pos-
sibility of moving to new technologies namely GaN HEMTs
in PV inverters, with special focus on the reliability and
thermal performance. A comparison of Si IGBT against GaN
HEMT with three different possibilities: 1) with TIM at 10
kHz, 2) without TIM at 10 kHz, and 3) with TIM at 300
kHz has been performed. Considering a long term mission
profile, the results suggest higher reliability expectation for
GaN HEMTs at low frequencies due to considerably lower
power losses and thermal resistance between junction and heat
sink, whereas TIM has contributed to significant additional
thermal stress. Experimental results of single phase inverter
prove high performance of GaN HEMT devices. The results
in this paper are fundamental to confidently predict lifetime of
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Fig. 16: Switching performance of the GaN HEMT in the 3L-
ANPC inverter: (a) device voltage and output current, (b) hard
commutation and (c) soft commutation waveforms with buck
configuration.
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Fig. 18: (a) Experimental output voltage and current wave-
forms at 800 W output power and (b) efficiency of the 3L-
ANPC power cell with experimental and simulation results.

novel GaN based PV inverters considering long term mission
profiles.
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