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CHAPTER 4 
 

 

 

APPLICATION OF STOCHASTIC METHODS  

IN OPTIMIZATION
1
 

 

P. Thoft-Christensen, Aalborg University, Denmark 

 

 

 

 

 

1. INTRODUCTION  

It is well known that a great number of engineering problems are intimately connected 

with problems of optin1ization although most engineering problems probably are 

solved by a good intuition rather than by a good knowledge of optimization techniques. 

The reason for this situation may be found in a lack of experience in the use of digital 

computers. But to-day access to fast digital computers have stimulated a great deal of 

research in the field of optimization and one can expect that this field will become more 

important for engineers in the future.  

It is also well known that the theory of non-linear optimization still contains 

many unsolved problems. One of the most difficult problems by all optimization 

methods is to obtain global rather than local optimal estimates. This problem is detailed 

discussed in this paper and a rather new strategy by Thoft-Christensen & Hartmann [1] 

is presented.  

The purpose of this paper is furthermore to review some of the most common 

methods of parameter optimization with emphasis on the random search techniques. 

The advantages and disadvantages by using random methods compared with non-

random methods are stressed and the different types of random methods are compared 

with each other. Finally some suggestions for future research in this field are given.  

 

 

2. METHODS OF NON-LINEAR OPTIMIZATION  

The discussions in this paper will for the sake of simplicity be restricted to the area of 

parameter optimization, that is the problem of finding minimum (or maximum) for a 

so-called criterion function  

                                                      
1
 VII International congress on the Application of Mathematics in Engineering, Weimar, DDR, June 

1975. 
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.: RRMF n   

The ordered set of n parameters 0x M is called a global minimum for the function F, 

if  

 
 

where M is called the feasible region for the function F.  

If there exists a neighbourhood  0x of the point 0x  so that  

 0 0( ) ( )F x F x for all x M x    

then 0x  is called a local minimum for the function F.  

In the classical theory of minima (and maxima) a necessary condition for a 

point 0x M to be a local minimum, (or maximum) for the function F of class C
2
 is 

that  

0( )
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x
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                                              (1) 

A point 0x =(x1, x2, …, xn) that satisfies (1) is called a stationary point and its 

nature is determined by the following determinants  

2 2

2

1 1

0

2 2

2

1

( ) , 1,2,..., .

k

k

k k

F F

x x x

x k n

F F

x x x

 

  

  

 

  

 

It can be shown that a stationary point is a local minimum if  

k 0( ) 0 for k 1, 2,..., nx   . 

It is clear that determination of local or global minimum based on this analytic 

method can be very difficult if the number of parameters is not very small. Further 

complications arise if equality or inequality constraints are introduced or if the criterion 

function F is not of class C
2
.  

In the literature a great number of different methods of optimization are 

discussed. One way of making a classification is the following division:  

a. Random methods,  

b. Non-random methods.  

But it must be noticed that a systematic classification usually is very difficult as 

the methods often overlap both with regard to technique and with regard to 

applicability.  

It is outside the intention with this paper to give a comprehensive review of all 

methods of optimization. For this purpose it can be referred to the books by Pierre [2], 

Lavi & Vogl [3], Lootsma [4], Kuester & Mize [5], Wilde [6], Wilde & Beightler [7], 

Kowalik & Osborne [8] and many others.  

In section 3 some non-random methods are briefly treated and in section 4 - 6 

random methods are more detailed discussed.  

 

0( ) ( ) ,F x F x for all x M 
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3. NON-RANDOM METHODS  

An excellent presentation and discussion of the theoretical foundation for the steepest 

descent methods is given by Sargent & Sebastian [9] on the basis of a work by 

Davidson [10].  

The intuitive ideas behind the classical steepest descent methods (or the hill 

climbing methods) are the following. An initial starting point 0x  for the search for 

minimum is given. The next point 1x in the search is the sought by proceeding in the 

direction which gives the greatest decrease in ( )F x , that is in the direction of the 

steepest slope. The gradient  

                                                    0 0
0

1

( ) ( )
( ) ( ,..., )

n

F x F x
g x

x x

 


 
 

can be shown to be the sought direction. However, this direction is not always the 

"best". In the so-called DFP-method presented below the gradient direction is not the 

search direction. 

Following the presentation by Sargent & Sebastian [9] the “new” point 1kx  is 

determined from the "old" point kx  by the equation  

1 1k k k k k k kx x S g x p      ,                                               (2) 

where the nn matrix kS  is defined by the recursion formula  

1 1
1

1

T T

k k k k k k
k k TT

k kk k k

S q q S p p
S S

p qq S q

 




     ,                                      (3) 

where 1k k kq g g   and k  is chosen so the function  , where  

  ( ) ( )k k kF x S g                                                    (4) 

is minimum.  

The steps in this algorithm are as follows:  

(1)  A starting point 0x  is selected.  

(2)  A search direction 0 0s g  , where 0S  can be chosen arbitrarily (e.g. the unit 

matrix I ) and g  is the gradient vector 0( )g x , is computed.  

(3) A one-variable minimization in the direction chosen by the previous step is 

conducted on the function  

0 0 0( ) ( )F x S g     

to determine 0 . 

(4) A "new" point 1x  is computed by the formula  

1 0 0 0 0.x x S g   
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This procedure is then continued on the basis of the formulae (2), (3) and (4). 

Fletcher & Powell [11] proved that kS  is positive definite provided 0 0s g   is positive 

definite and that the denominators in (3) are non-zero. Further, they proved that a 

function decrease is obtained at every step. The last assertion is only valid if the 

function ( )  is uni-modal.  

If the objective function is quadratic it can be shown that by the method just 

described the minimum will be obtained in at most n steps. A detailed treatment of this 

method can be found in e.g. Jacoby, Kowalik & Pizzo [12].  

It is generally believed that the DFP-method is a very highly efficient search 

technique with fewer disadvantages than the usual "steepest descent" techniques. 

Before leaving the non-random methods a brief presentation of the conjugate direction 

method by Fletcher & Reeves [13] will be given.  

By their method the search direction is determined by the formula  

1

1 1

T

k k
k kT

k k

g g
s g s

g g


 

    

with 0 0s g  . As before ( )k kg g x . This method can be shown to have some of the 

advantages of the DFP-method and further it is simpler to work with and its storage 

requirement is lower. With a quadratic objective function F the directions ks , k = 0, 1, . 

. . , n-1 are conjugate, so the minimum will also by this method be located in n steps. 

For a non-quadratic function the algorithm must be restarted for every (n+ 1) steps with 

0s  equal to the steepest descent direction.  

It is commonly asserted that the DFP-algorithm is more successful than the 

method by Fletcher and Reeves. There exists a great number of experiments with the 

two methods and most of them confirm this statement although it always is possible to 

find a specific function for which a given method seems to be better in some sense than 

all other methods.  

In case the derivatives cannot be evaluated from analytical formulae finite 

difference approximations must be used and truncation errors and rounding errors will 

occur. The performance of the gradient methods may then be critical.  

  

 

4. PURE RANDOM METHODS  

When gradient searches can be used, that is when the objective function F has 

continuous derivatives on the feasible region nM R . These methods are generally 

more efficient as compared with random methods. But in some situations such as the 

case when the objective function F is not even continuous random methods can often 

be used with success, but an enormous number of function evaluations are usually 

needful. Further a very slow rate or convergence is often seen by these methods, 

although it is theoretically possible to show that they converge to the global solution 

with probability one.  

In spite of these reservations we shall see in the following that the random 

methods also have their advantages.  

The most primitive types of random search methods are the so-called pure 

random methods. Such methods are apparently first proposed by Brooks [14]. The 

method is very simple to program even in the case of an objective function of many 

variables but a great number of function evaluations are needed.  
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The idea behind this method is to select a number of points from a uniform 

probability distribution over the feasible region. The function value is calculated in 

each of these points and the smallest value is chosen as the minimum. Unfortunately 

the number of points to select is going up exponentially with the dimension n (see 

White [15] and Spang [16]).  

The only practical application of the pure random method is perhaps to use it in 

choosing a starting point for the creeping methods.  

 

 

5. CREEPING RANDOM METHODS  

Some fundamental investigations concerning the convergence of creeping random 

methods made ten to fifteen years ago by Rastrigin [17] and Gurin & Rastrigin [18] 

gave rise to an extensive research in random methods. The main results of these 

investigations seem to indicate that some creeping random methods are superior to the 

steepest descent method for problems with many parameters. On the other hand later 

experiments with the non-random methods presented in section 3 have shown the 

opposite result. The only tenable conclusion to day regarding this problem is that the 

random methods in same situations may by superior to non-random methods with 

regard to convergence. But, as shown later, there may exist other more serious reasons 

for choosing a random method.  

The basic principle in the creeping random search can be illustrated by the 

following very simple method. A starting point 0x  in the feasible region M for the 

objective function :F M R and a fixed step size (step length) is chosen. The first 

step 0x  is supposed to have a random direction and the fixed step size. If 

0 0 0( ) ( )F x x F x   the trial step 0x  is called a success, and the point 1 0 0x x x   is 

used as the starting point for the next step in the search. If 0 0 0( ) ( )F x x F x   the trial 

step 0x  is called a failure and the old point 0x  is again used as starting point for a new 

random trial step until a success is found. The method continues in this way until the 

search is terminated by some stopping rule. This simple algorithm can be described by 

the formula  

1i i i ix x x     

where 

0

0

1 if ( ) ( )

0 if ( ) ( )

i i

i

i i

F x x F x

F x x F x


  
 

 
 

If the random trial step ix  is a failure, then it is easily seen that the step - ix  with 

opposite direction is a success if the objective function can be approximated by a linear 

function in a neighbourhood of ix . The reverse search can be presented by  

1i i i ix x x     

where  

1 if ( ) ( )

1 if ( ) ( )

i i i

i

i i i

F x x F x

F x x F x


  
 

  
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It is a characteristic of the methods presented above that the step size is fixed 

and that the step direction is chosen random. It is clear that information about the 

behaviour of the function in the neighbourhood of the point ix  is used only very little 

for the future steps. The first algorithm at all uses no local information and by the 

second only the reverse property is used. It is therefore likely to expect better 

performance if the step direction is not chosen random and if the step size is not fixed. 

It is as an example reasonable that a successful step should affect the next step with 

regard to its direction. Further intuition indicates that the step size should be decreased 

when the search is close to the minimum to improve convergence. It is important to 

notice that the considerations here only are valid if the nearest minimum is considered 

that is if the serious problem of finding global rather than local minimum is neglected. 

In section 6 problems concerning global minimum is closely discussed.   

  Directional adaptation can be introduced by some kind of correlation between 

past successful steps and future trial steps. In this way some local property for the 

function F is taken into account as it is done in the non-random methods. A simple way 

of doing it is used by de Graa [19] who defined the next step ix  as a linear 

combination of e.g. the last successful step 1ix  and some kind of random vector ir  

that is by the formula  

1i i ix a x br                                                      (5) 

where a and b are constants. He records a substantial improvement in the number of 

function evaluations.  

A more general algorithm than (5) was earlier suggested by Matyas [20] based 

on the same idea namely a kind of combination of a vector depending of old successful 

steps and a random vector.  

There exists of course a lot of different ways of making directional adaptation 

(see e. q. White [15]). Thoft-Christensen & Hartmann [1] suggests the following 

directional adaptation. Let ix  be the last determined point in the search and let the step 

length 
ix  be given. On the hyper sphere  

i ix x x                                                     (6) 

a number of points are then chosen until a successful step ix  is found by some 

probability distribution defined on the hyper sphere. In experiments with two-parameter 

test functions the directional adaptation was carried out by letting the directional angle 

of the new trial step follow the normal probability distribution N[ , v], that is with a 

mean equal to the directional angle   for the last successful step and a standard 

deviation v. For three-parameter tests the directional adaptation was accomplished by 

use of a po1ar description of the steps. The directions of the next trial steps are now 

given by two angles   and  , which are assumed to follow normal probability 

distributions with means equal to the corresponding angles of the last successful step 

and with a given standard deviation. In the general n-parameter situation the following 

form for directional adaptation was used. Let 1ix   be the last successful step and let 

the coordinates of its normalized directional vector be 1( ,..., )n  . The direction of the 

next trial step is then determined by a normalized vector with coordinates given by n 

normal probability distributions with means equal to i  i=1,...,n and standard 

deviations depending of the desired degree of directional adaptation. This way of 
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determining the step directions has been used with success on test functions with up to 

15 parameters.  

It is more difficult to choose an effective algorithm with regard to the step size. 

The reason for this will appear from the following considerations. To-improve 

convergence the step size should be decreased when the search is close to the 

minimum. But it is very difficult to judge during the search how close the search is to 

the minimum, because only discrete values of the objective function are at hand. And a 

small change here does not guarantee that the random search is close to the minimum, 

as the objective function may have a flat part. In the random methods presented in the 

literature several procedures for step-size adjustment have been used. Some authors 

increase the step size if a success takes place and decrease it if none occurs within some 

number of trials. Other authors reduce the step- size following a number of failures. 

There seems to be no universal answer to this problem (see Matyas [20] and Schumer 

& Steiglitz [21].  

The strategy proposed by Thoft-Christensen & Hartmann [1] is based on a step-

size adjustment, which is not very critical. After arriving in a point ix  a prescribed 

(small) number of points on the hyper-sphere (6) with the radius 
ix  is checked. If no 

successful step is found the length of the trial steps (and therefore the radius of the 

hyper-sphere) is bisected and doubled. In this way two sets of hyper spheres with radius  

ix /2, 
ix /4, 

ix /8,… 

and  

2
ix , 4

ix , 8
ix ,… 

are defined and the tracking of a successful trial step is continued on these spheres one 

after each other. When a successful step is located the same procedure continues in the 

new point 1i ix x x    , but with a step length modified by some kind of gain-

dependency.  

It is obvious that many different methods of optimization can be constructed on 

basis of the considerations above. By combining different kinds of directional 

adaptation with different ways of adjusting the step-size random methods with 

unpredictable properties appears. The only way of comparing them is to test them on 

some test functions (see e. g. G. Schack & Borowski [22] and Brooks [23]), but it is 

very difficult to generalize on basis of such experiments.  

 

 

6. GLOBAL OPTIMIZATION  

All the methods mentioned previous have one very serious drawback, namely that they 

if no special precautions are taken only work satisfactory if the objective function is 

unimodal. If the objective function is multimodal there exists a risk that methods based 

on gradient techniques or on a rapid convergent random strategy only will disclose a lo- 

cal optimum. This will happen when the starting point is outside of the field of 

influence of the global optimum. So in such problems where the field of influence of 

the global optimum only is a small part of the feasible region the change of obtaining a 

local rather than a global optimum is corresponding high.  

It is easy to see that these problems are extremely difficult to solve, as the main 

objective by most methods is to arrive in the nearest minimum as fast as possible and 
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only the local behaviour of the objective function is used. Therefore it is often stated 

that the method should be initiated from a number of different starting points (see e.g. 

Weisma &Wood [24]). Bocharov & is Feldbaum [25] have discussed a number of 

different methods for locating starting points. This local-global problem is investigated 

by a great number of authors, e.g. Hill [26], Mc. Cormick [27], and many others, but 

still all too little information has been published. It usually believed that the random 

methods in this connection have some potentials not yet fully investigated.  

The techniques used by Hill [26] is based on a combination of global and local 

search technique: initially the search space is divided into a large number of small 

hyper volumes (e. g. hyper cubes) and in the global part of the search the values of the 

objective function are evaluated in the centers of each hyper volume. It is then assumed 

that the objective function is unimodal within any hyper volume so that a local search 

based on a steep-ascent hill limping technique can be used on some hyper volumes 

selected by the global search. The number of hyper volumes being searched are 

selected by assigning to each hyper volume a probability that it contains the global 

extremum completely different way. The main idea behind the strategy is the use of 

local and global steps. The intention with the local steps is to obtain a nigh degree of 

convergence to the nearest minimum not depending on whether it is a global or a local 

minimum. So the step sizes for the local steps are “rather small”. On the contrary the 

global steps are not limited in size as their purpose only is to escape from a local 

minimum by making sufficiently large steps. The global steps must be arranged in such 

a way that any point in the feasible region can be reached by a global step from the 

point in question.  

The main idea is thus the division in local and global steps, which not only 

differ by step size but also in the way the step-directions are chosen.  

First a starting point is chosen at random in the feasible region by use of a 

random number generator. It is not very important to use more than one starting point 

because of the presence of global steps, but of course the probability of obtaining 

global estimates is increased if the search is initiated from several starting points.  

When a starting point has been chosen the strategy is based on local and global 

steps in the following way. First some local trial steps are taken with step size and 

directional adaptation as described in section 5. When a prescribed (small) number of 

successful local steps are carried out a global trial step follows. The intention with the 

global steps is to be able to reach any point in the feasible region, so no information on 

any "good" direction for global steps can be given in general. Therefore the step size is 

chosen random in a predetermined interval with an upper bound greater than the length 

of the diagonal of the feasible region. By the same reason the directions of the global 

steps are chosen "random" by using a uniform probability distribution over a given 

interval for each of the parameters.  

In this way a pre-described number of global trial steps are made until an 

improvement may happen. In such a case the new point is then used as starting point 

for local steps. Otherwise further local trial steps are made from the same point but now 

with new directions. The procedure described above continues until a pre-described 

number of successful steps have occurred or until no further improvements by local 

steps can be found under the restrictions given on the number of trial steps.  

In Thoft-Christensen & Hartmann [1] some experimental results with this new 

strategy on unimodal and multimodal test functions with two and three parameters are 

presented. Recently the strategy has been used on test functions with up till 15 

parameters.  
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An example from [1] with the following figures from a typical experiment with 

the function  

2 2 21
( , , ) 2 exp cos cos cos

4
F x y z x y z x y z




     

 
 

shows the importance of the global steps:  

  

Step no: x y z F(x,y,z) 

  0 -1.000 10.000 10.000 1.877 

  8 -3.317   5.916  -2.771 1.522 

17 -3.122   6.161  -3.160 1.458 

18 -3.203   0.094   3.131 1.304 

29 -3.099   0.007   3.071 1.296 

30 -0.074   0.577  -0.448 1.289 

53  0.000   0.005   0.015 1.001 

60  0.001 -0.001  -0.000 1.000 

  

After 8 steps the search is trapped by a local minimum and the next 10 steps are 

used to improve the local minimum value (F5 = 1.458). Step no. 18 is a global step that 

brings the search to a better local minimum that is reached by step no. 29 (F5 = 1.296). 

Finally the global step no. 30 makes it possible to reach the global minimum (F5 = 

1.000). A CDC CYBER 72 computer belonging to Aalborg University is used and the 

random numbers are generated with the following linear congruential generator  

xi+1 = 9901 xi (mod 2
39

 + 1). 

Normal variates with mean 0 and a standard deviation equal to 1 is generated by the 

formula 

1 22ln cos(2π )x r r   

where r1 and r2 are independent random variables in the interval [0; 1] calculated by the 

random number generator described above (see Newmann & Odell [28] ).  

 

 

7. DISCUSSION AND CONCLUSIONS  

One must remember that for many users of optimization algorithms the only important 

thing is to be able to find in the computer library an algorithm that is reliable, such a 

user is not concerned at all about computer time. Having this in mind random methods 

may be worth working with in particular for multimodal functions although they often 

results in an enormous number of function evaluations. But for some users it is very 

important to think of efficiency e.g. when optimization algorithms are used very often. 

In such a case it is useful to know whether one method is "better" than the others. As 

long as theoretical investigations are as incomplete as to day the only way to collect 

such information is by numerical experimentation. Examination of algorithms from a 

theoretical point of view is only possible for very few simple problems, but nonetheless 

of great importance. It is to be hoped that the intensive research in this field for non-

random methods will be transferred to the random methods.  

Testing of algorithms by numerical experiments is of course a difficult work if 

reliable results shall come out as a lot of different parameters can be changed. 
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Objective functions with both a small and a large number of parameter should be tested 

and the degree of non-linearity is important. As usually when doing numerical 

experimentation one can only hope that the numerical results can be generalized to 

more general situations. Himmelblau [29] summaries that the criteria to be considered 

in the evaluation of unconstrained algorithms are:  

1. Robustness - success in obtaining an optimal solution (to within a certain 

precision);  

2. Number of function (and derivative) evaluations;  

3. Computer time to termination (to within the desired degree of precision).  

In the same paper a great number of non-random algorithms are compared, but 

the same kind of evaluations of random methods is still missing. 
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