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CHAPTER 12 
 

 

 

RELIABILITY OF STRUCTURAL SYSTEMS WITH 

CORRELATED ELEMENTS
1
 

 

P. Thoft-Christensen & J. Dalsgård Sørensen, Aalborg University, Denmark 

 

 

Abstract  

Calculation of the probability of failure of a system with correlation members is usually 

a difficult and time-consuming numerical problem. However, for some types of 

systems with equally correlated elements this calculation can be performed in a simple 

way. This has suggested two new methods based on so-called average and equivalent 

correlation coefficients. By using these methods approximate values for the probability 

of failure can easily be calculated. The accuracy of these methods is illustrated with 

examples. 

 

  

INTRODUCTION  

Reliability analysis of real structures is usually too difficult to be treated in an exact 

way. It is therefore necessary to make a number of approximations. These 

approximations can be related to loads and to resistances of single elements, but can 

also be obtained in the way the real structure is modelled. It is obvious that 

mathematical modelling of a real structure will affect the calculated reliability of the 

structure. Therefore, it is of great importance in estimating the reliability of a structure 

to be able to use rather sophisticated systems. However, even for a drastically idealized 

system calculation of the probability of failure may be impossible or very computer-

time consuming. Traditionally when designing structures the reliability of a structural 

system is connected with the safety of some critical members or cross-sections.  

In this paper evaluation of the probability of failure of parallel systems and 

series systems is discussed. Known exact results for systems with members, which are 

equally correlated, are used as a basis for new methods. The use of so-called average 

and equivalent correlation coefficients is discussed in detail and illustrated.  

 

 

                                                      
1
 Applied Mathematical Modelling, Vol.6, 1982, pp. 171-178. 
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FUNDAMENTAL SYSTEMS  

In some situations it is possible to subdivide a real structure into a number of 

substructures where these substructures are modelled by so-called series systems or 

parallel systems. It is therefore of great interest to analyse the behaviour of such 

systems.  

Series systems 

and parallel systems 

are constructed on 

the basis of single 

elements. For a 

single element 

(structural member, 

cross-section, etc.) 

the probability of 

failure Pf can be 

determined in a simple way if its strength can be described by a single random variable 

R, and the loading by a single random variable S (see Figure 1). In such a case failure 

will occur when R - S < 0. Therefore the probability of failure Pf is given by: 

( 0) ( ) ( ) (1 ( )) ( )f R S S RP P R S F t f t dt F t f t dt

 

 

                           (1)  

where fS, FS and fR ,FR are density and distribution functions for S and R. Here, 

statistical independence between the random variables R and S is assumed. If 

independence between R and S cannot be assumed the probability of failure is given by:  



f

dsrfP RSf



),(                                                (2)  

where fRS is the joint density function for R and S, and where the area of integration is 

the failure domain }0),{( 2  srRsrf . 

It is important to note that evaluation of the probability of failure, even in the 

idealized case above for a single member, can only be performed when the density 

functions fR and fS are known. If only the expected values E[R] and E[S] and the 

variances var[R] and var[S] are known, then the reliability index  , suggested by 

Coenell [1], can be used as a measure of the reliability. The reliability index    is 

defined by:  

             
½])(var[

][

SR

SRE




                  (3)  

 Returning to the fundamental 

systems it is of great importance whether the 

involved elements can be considered 

perfectly brittle or perfectly ductile. A 

structural element is called perfectly brittle 

if it becomes ineffective after failure, which 

is it loses its load-bearing capacity 

completely by failure. If an element 

maintains its load level after failure it is 

Figure 1. 

Figure 2. 
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called perfectly ductile. It has been 

suggested by Thoft-Christensen [2] 

that the symbols shown in Figure 2 be 

used to distinguish these two types of 

elements.  

As mentioned above, there are 

two fundamental systems, namely 

series systems and parallel systems. A 

system is a series system if it is in a 

state of failure whenever any of its elements have failed. Such a system is also called a 

weakest- link system. In the literature series systems are usually illustrated by a 

statically determinate structure, as 

shown in Figure 3. Obviously, 

fracture in any member of such a 

structure will result in fracture of the 

whole system. A series system with n 

elements is generally symbolized as 

shown in Figure 4. Let the 

distribution function for the strength 

of element i be 
iRF  then the 

distribution function FR for the 

strength of the series systems is given 

by:  





n

i

iRnRRRR rFrFrFrFrF
in

1

21 ))(1(1))(1))...((1))((1(1)(
21

           (4)  

where r is the external load on the series system resulting in the stress ri in element i 

assuming independent strength of the elements.  

Using (1), the probability of failure for the series system in Figure 4 can then be 

determined from:  

1

( ) ( ) 1 (1 ( ) ( )
i

n

f R S R i S

i

P F r f r dr F a r f r dr

 

 

                        (5) 

where ai = ri/r  and fS is the density function for the load S on the series system.  

It is well known that failure in a single member in a structural system will not 

always result in failure of the whole system, because the remaining elements by re- 

distributions may be able to sustain the loads. This situation will often appear for 

statically indeterminate structures. Failure of such structures will usually require that 

more than one element fails. Such a set of elements is called a parallel system from a 

strength point of view and the associated failure state is called a failure mode. A 

statically indeterminate structure will usually have a great number of failure modes 

each modelled by a parallel system. Therefore such a structure system will fail when 

the weakest mode (parallel system) fails. In other words, a parallel system will only fail 

when all elements in the system fail. On this background it is obvious that the 

behaviour of such a system depends on whether or not the elements are perfectly 

ductile or perfectly brittle.  

Figure 3. 

Figure 4. 
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First consider a parallel system with perfectly ductile elements as shown in 

Figure 5. Due to the assumption of ductile behaviour of the elements the strength R of 

this system is simply:  





n

i

iRR
1

                        (6)  

where the strength of element i is 

given by the random variable Ri. Note 

that when Ri, i= 1,…,n are normally 

distributed, R is also normally 

distributed. If this is not the case it 

might according to the central limit 

theorem be a good approximation to 

assume R to be normally distributed if 

the number of elements, n, is not too 

low.  

A parallel system with 

perfectly brittle elements is shown in 

Figure 6. Let r1, r2, . . . , ln, where r1 

< r2 <. . . < rn, be the strength of the n 

elements. Then the strength r of the 

system is given by:  

r=max(nr1, (n-l)r2,..., 2rn-1,rn)  (7)  

It has been shown [3] that r 

under certain conditions approaches a 

normal distribution.  

As mentioned above failure of a statically indeterminate structure can 

sometimes be evaluated on the basis of a number of failure modes where each failure 

mode can be modelled by a parallel system. Modelling of the complete structure will 

then be a series system of parallel systems (see Figure 7). Note that a given element 

may appear in several failure modes. Also note that correlation in such a system can 

appear in at least two forms, namely by correlation between single elements and 

correlation between failure modes.  

 

 

RELIABILITY BOUNDS FOR SYSTEMS  

Calculation of the exact probability of failure for a complicated system as shown in 

Figure 7 is usually not possible and a 

numerical determination is often rather 

time-consuming. It is therefore of great 

interest to investigate the possibility of 

deriving upper and lower bounds for 

the exact probability of failure of a 

given system. Of course the practical 

value of such bounds depends on how 

narrow they are. In this section only 

systems with positive correlated 

elements will be considered.  

Figure 5. 

Figure 6. 

Figure 7. 
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If a system has a great number of elements it is convenient to use Boolean 

variables to describe the state of the elements [4] – [6]. For each element it is assumed 

that it can exist in two states, namely “failure” or “non-failure”. Therefore, a Boolean 

variable Si is associated with each element:  



 


statefailureainiselementif0

statefailurenonainiselementif1
iS                                  (8)  

   It is useful to define a set of Boolean variables Fi by:  

Fi= l - Si                                                             (9)  

Consider now a system with n elements. The state of such a system is 

determined by the vector S = (Sl, S2,…,Sn) and can be described by a so-called system 

function SS(S). The system function is also a Boolean variable:  

 
1 if element is in a non failure state

( )
0 if element is in a failure state

SS


 


S                           (10)  

For a series system one obtains by analogy with (4) the following system function:  





n

i

iS SS
1

definitionbyor)(S  





n

i

iSS FSS
1

)1(1)(1)( SF                                   (11) 

where F = (F1, F2,. . . , Fn).  

For a parallel system the system function is given by:  

1 1

( ) 1 (1 ) or ( )
n n

S i S i

i i

S S S F
 

    S F                                 (12)  

  From the definition of Si and Fi, i = 1,…, n it follows for a single element i that 

the expected values E[Si] and E[Fi] are associated with the probability of failure P(Fi = 

1) in the following way:  

               )1(][

)1(1][

 F P FE

F - P  SE

ii

ii




                                   (13)    

The probability of failure for the system is then by analogy:  

 )]([ FSf SEP                                                        (14)  

Determination of the probability of failure for a system on the basis of (14) will 

imply calculation of n-dimensional multi-integrals. The exact value of Pf can therefore 

only be determined in some simplified cases. As a consequence of this it is of great 

interest to find approximations for Pf in the form of upper and lower bounds. Such 

bounds have been derived, [l], [5], [7], [8].  

Very simple bounds can be derived for a series system with positive correlation 

between the strength of the elements on the basis of (11). When:  





























 









i

j

ji

i

j

j SPSPSP
1

1

1

1

1)1(1                                      (15)  

for all 11  ni it is easy to show the following bounds:  
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1,
1

max ( 1) 1 (1 ( 1))
n

i f i
i n

i

P F P P F




                                       (16)  

where the lower bound corresponds to perfect dependence between all elements and the 

upper bound to no dependence between any pair of elements. For a parallel system one 

obtains the bounds:  

1,
1

(1 ( 1)) min ( 1)
n

i f i
i n

i

P F P P F




                                       (17) 

The above-mentioned authors have derived better bounds. The closed bounds are 

apparently those derived by Ditlevsen [5].  As his bounds are used later in this paper a 

brief derivation will be given here. It follows from (11) that:  

nn

nnnnS

FSSSFSSFSF

FSSSSSSSSSS

121321211

12112121

......

......1...1)(







F
                       (18)  

Therefore;  

1 1 2 1 2 1[ ] [ ] ... [ ... ]f n nP E F E S F E S S S F                                      (19)  

It is easy to see that:  

inn FSSSFFF   1...)...(1 121121                                (20)  

where i < n. By inserting (20) into (19) and bearing in mind that all probabilities are 

nonnegative one obtained the following lower and upper bounds:  

 
















n

i

i

j

jiif FFPFPFPP
2

1

2

1 ]0),)1()1(()1(max)1(              (21)  

  

1

1 1

( 1) max (( 1) ( 1))
n n

f i j
j i

i i

P P F P F F


 

                                 (22)  

The upper bound (22) has been derived by Vanmarcke [8]. A lower bound 

similar to (21) has been suggested by Spaethe [9].  The numbering of the elements may 

influence the bounds (21) and (22). Therefore, to obtain the best bounds one has to 

choose from the different possible numberings of the elements. The bounds (21) and 

(22) will be used later in evaluating a new simplified method to estimate the probability 

of failure for a series system.  

 

 

SYSTEMS WITH EQUALLY CORRELATED ELEMENTS  

The previous section showed bounds for the probability of failure of systems. In some 

cases, however, it is possible to calculate the exact probability of failure. Grigoriu & 

Turkstra 10 has done this for series systems and for parallel systems with ductile 

elements on the assumption that the strength of the elements can be modelled by 

normally distributed random variables, Ri, i = 1,..., n, which are equally correlated with 

a common correlation coefficient p. Further, the loads are deterministic and constant in 

time and all elements have the same reliability index e .  

It is for some structures relevant to assume equally correlated elements. For a 

great number of structures such an assumption cannot be justified. It is, however, as 
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shown by Grigoriu and Turkstra [10] a great advantage to use this assumption because 

then the exact probability of failure can be calculated. Bearing this in mind it seems 

worth- while to investigate the possibility of using a kind of 'average' coefficient of 

correlation in the general case where the correlation is unequal. Such an investigation is 

performed later in the paper for parallel systems and series systems, respectively. The 

rest of this section gives a brief presentation of the work by Grigoriu and Turkstra [10] 

so that the main results can be used in the following sections.  

For a series system with n elements it can be shown (see Appendix 1) that the 

probability of failure on the assumptions mentioned above is given by:  

    ( ) 1 ( )
1

n

e
f

t
P t dt

 
 







  
       

                                   (23) 

 where   and   denote the distribution and density function for the standard Gaussian 

random variable. The variation 

with   of the probability of 

failure Pf is shown in Figure 8 

for n = 1, 2, 5, and 10 and e = 

3.0. The upper and lower 

bounds (16) corresponding to 

  = 0 and   = 1 are given  

by:  

 0 : 1 ( )
n

f eP      (24)                                       

 1: 1 ( )f eP         (25)                                         

Note that Pf, as 

expected, decreases with the 

correlation coefficient   and 

is increased with the number of 

elements n.  

  Grigoriu and Turkstra 

[l0] consider a parallel system 

with n ductile elements having 

identical Gaussian member 

resistances. Further, the 

elements are assumed to be 

equally correlated with the 

common positive correlation 

coefficient   and the load is 

deterministic and constant in 

time. As shown in Appendix 2 the reliability index S  for the system is then given by 

the simple expression:  

1 ( 1)
S e

n

n
 




 
                                                          (26)  

where e  is the common reliability index for all elements.  

Figure 8. 

Figure 9. 
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Due to the assumption of Gaussian member resistances it follows from (6) that 

the strength of the parallel system is also Gaussian so that the probability of failure is 

given by:  

)( SfP                                                          (27)  

The variation with   of the probability of failure Pf  is shown in Figure 9 for n 

= 1,2,5 and 10 and e = 3.0. Bounds for Pf can be derived from (26) and (27) by 

inserting   = 0 and   = 1. One obtains:  

( ) ( )e f en P                                                   (28)  

Note from Figure 9 that Pf increases with the correlation coefficient   and decreases 

with the number of elements.  

 

 

PARALLEL SYSTEMS WITH DUCTILE ELEMENTS  

In a real structure modelled by a system with n elements the correlation coefficient 

between the elements will usually not be equal. This may be the case if, for example, 

different contractors produce the elements. In this section the influence on the 

probability of failure of abandoning the assumption of equal correlation coefficients is 

investigated for parallel and series systems. As in the previous section the following 

assumptions are made:  

(1) The loads are deterministic and constant with time,  

(2) The strength Ri
,
 i = 1,2, . . . , n for the members are Gaussian ),( iiN  ,  

      where ][ ii RE and ]var[2

ii R , 

(3) All elements are designed to have a common reliability index e .  

Note that the only difference from the assumptions of Grigoriu and Turkstra 

[10] is connected to the correlation between the elements. The correlation coefficient 

between element i and j will be denoted  ij and the correlation matrix is defined by the 

matrix:  

12 1

21 2

1 2

1

1
[ ]

1

n

n

ij

n n

C

 

 


 

 
 
  
 
 
  

                                           (29)  

For a parallel system with n ductile elements the probability of failure can easily 

be calculated by generalization of (26), when  i  and  i . Following the same 

procedure as in Appendix 2 the reliability index S for the system is now:  

2 2 ½

, 1,

[ ]
( ( ))( )

var[ ]

1 ( 1)

n

S e ij

i j i j

e

E R Q
n n n n

R

n

n

       






 


    


 


               (30)  

where  
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, 1,

1

( 1)

n

ij

i j i jn n
 

 




                                               (31)    

By comparing (26) and (30) it is seen that for systems with nonequal correlation 

coefficients the reliability index S  can be calculated by the simple expression (26) by 

inserting for   the average correlation coefficient   defined by (31).   is the average 

of all jiij , .  

This result is interesting because the probability of failure for such a system can 

now easily be calculated for any correlation matrix (29). One only needs to make a set 

of curves as in Figure 9 once.  

 

 

SERIES SYSTEM  

In this section series systems with n elements are considered with the same three 

assumptions as in the previous section. An exact determination of the probability of 

failure will, as mentioned earlier, imply extensive numerical calculations of n-

dimensional integrals. It is therefore of interest to investigate the possibility of using an 

approximate calculation. Suggesting new methods for determination of approximate 

values for the probability of failure Pf for such a series system will do this. Use will be 

made of the fact that it is relatively easy to compute Pf when the correlation coefficients 

jiij , are equal (see earlier section). The method suggested here is thus based on the 

same correlation coefficients (equivalent correlation coefficient) for any pair of 

elements and defining this equivalent correlation coefficient so that the resulting value 

of Pf is close to the exact value. Evaluation of this method is done by comparing the 

results with lower and upper bonds (21) and (22) derived by Ditlevsen [5].  

The equivalent correlation coefficient   is chosen so that:  

(1)   is the common  for a system with equal correlation coefficient jiij ,  

(2)   is in the interval [0; 1].  

In the last section it was shown that use of the average correlation coefficient   

gives the correct value of Pf for a parallel system. It is therefore reasonable to 

investigate whether the use of   as an equivalent correlation coefficient gives good 

results. To investigate this a series system with the following simple correlation matrix 

C  is considered.  

12

12

1 0.2 0.2

1 0.2 0.2

0.2 0.2 1 0.2

0.2 0.2 0.2 1

C





 
 
 
 
 
 
  

                                         (32)  

The probability of failure can now be calculated from (23) with   equal to the 

average correlation coefficient   defined by (31). The result is shown in. Figure 10 for 

n = 2, 3, 5 and 10 and e = 3.0 as the curves 2. The lower and upper bounds (21) and 

(22) by Ditlevsen [5] are calculated for some values of 12  and are shown in Figure 10 

as intervals 4 The curves 1 are upper bounds corresponding to independent elements 
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(equation (16)). The curves 3 are approximations based on an equivalent correlation 

coefficient defined later in this section.  

It appears from Figure 10 that the bounds (21) and (22) are very close for n = 3 

and n = 5. For n = 10 some gap is found. As Pf for 12  = 0.2 is correct using  =   the 

lower bound (21) is apparently 

very close to the correct value for 

12  in the neighbourhood of 0.2.  

For 12  > 0.7 it is clear 

from Figure 10 that using   as 

an equivalent correlation 

coefficient is on the safe side. 

The curves 2 do not decrease as 

fast as the correct values of Pf  for 

12  approaching 1.0. To obtain a 

better agreement a modification 

of P(  ) must be used.  

A much better agreement 

can in this case be obtained by using an equivalent correlation coefficient   indirectly 

defined by:  

,2 ,2 max( ) ( ) ( ( ) ( ))f f f fP P P P                                (33)  

where ,2 max( )fP  is the probability of failure calculated from (23) with n = 2 and 

max max ,ij i j     . Note that ( )fP  gives the correct value when all jiij , are 

equal. ( )fP  ) is shown in Figure 10 as the curves 3 and it can be concluded that in this 

example the values of ( )fP  are close to the (lower) bounds, but a little on the unsafe 

side.  

It is convenient to use approximate values for Pf based on ( )fP  or ( )fP   

because one only needs a table giving Pf  as a function of n and   as given by (23). 

Then for any correlation matrix C  approximate values can easily be calculated by 

hand.  

The example shown in Figure 10 seems to indicate that ( )fP   is an upper 

bound for the exact probability of failure. It has not been possible to show this in 

general. The statement that ( )fP   is an upper bound is correct for n = 3 where the 

exact value can be calculated and compared with ( )fP  . A complete systematic 

investigation of the statement by numerical testing is very computer-time consuming. 

Therefore evaluation of ( )fP  and ( )fP  is performed by generating randomly a great 

number of correlation matrices C . The single elements in C  are assumed to be 

uniformly distributed in the interval [0; 1]. Nonpositive definite matrices were of 

course rejected.  

The results of these extensive investigations are shown in Table 1 where the 

upper bound (22) is denoted u

fP  and the lower bound (21) l

fP .  

Figure 10 
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From Table 1 it can be concluded that in none of almost 20000 computer tests 

with n equal to 3, 5 or 10 and e equal to 2.5, 3.0 or 3.5, was ( )fP  < l

fP . Therefore, 

the statement that ( )fP  is an upper bound for Pf cannot be rejected by these 

experiments. Note that the relative number of cases where ( )fP  < u

fP  is increasing 

with the number of elements n, but decreasing with the element reliability index e .  

Table 1 shows that ( )fP   is not an upper bound for Pf. However, for increasing 

n the relative number of cases 

where ( )fP  <Pf is decreasing 

fast. Note that the maxi- mum 

difference between Pf and 

( )fP   is only worth 

mentioning for n = 3.  

Finally, in Table 1 the 

improvement by using  ( )fP   

or ( )fP   instead of Pf(0) is 

shown. Pf(0) is the primitive 

upper bound corresponding to 

inde-pendent elements. The 

im- provement is increasing 

with n and decreasing with 

e . For n = 10 and e = 2.5 

the probability of failure is 

averagely 18% less by using 

( )fP  instead of Pf (0). The 

probability of failure is on 

average 5% less by using 

( )fP   instead of ( )fP  .  

A final illustration of 

the use of the different 

methods to evaluate the 
Figure 11. 
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probability of failure of series systems is made for a system with the following 

correlation matrix:  

2 3

2 1

2 2

1 2

1

1

1

1

n

n

n

n n n

C

   

   

   

  





 

 
 
 
 
 
 
 
 

                                  (34)  

The results for e  = 3.0 are shown in Figure 11 for n = 3, 5 and 10. The upper 

bounds Pf(0) are the curves 1 . ( )fP   are the curves 2 and ( )fP   the curves 3. The 

lower and upper bounds (21) and (22) are the intervals 4. In this case the curves for 

( )fP   and ( )fP   are rather close and they differ only slightly from the bounds (21) 

and (22). Note the great improvement obtained by using ( )fP   or ( )fP  instead of 

Pf(0) corresponding to independent elements.  

With regard to the bounds (21) and (22) it can be concluded from Figure 11 that 

they may be rather wide especially for correlation coefficients greater than 0.7 and 

when n increases. For small correlation coefficients the bounds are narrow and they are 

therefore in such cases of great importance in evaluating the probability of failure.  

 

 

CONCLUSIONS 

This paper presents two new methods to calculate the probability of failure for some 

series systems and some parallel systems with ductile elements taking into account the 

correlation between the elements. It is shown by a number of examples that correlation 

between member resistances is an essential parameter in determination of the 

probability of failure for systems.  

The first new method is based on the so-called average correlation coefficient. It 

is shown for parallel systems that under some assumptions, exact values for the 

probability of failure can be obtained in this way by very simple calculations. For series 

systems use of the average correlation coefficient seems to be on the safe side although 

it has not been possible to give a formal proof of this.  

In some situations, especially for highly correlated systems, the value of the 

probability of failure may be too far on the safe side when using the average correlation 

coefficient. Therefore, an equivalent correlation coefficient is introduced. This new 

correlation coefficient is almost as simple to use as the average correlation coefficient 

and extensive numerical testing shows that it gives values for the probability of failure 

close to well-known bounds for this probability.  

It is safer for a series system to ignore the correlation between the elements. But 

some improvements may be obtained by using the two methods presented in this paper 

compared with assuming no correlation.  
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APPENDIX 1 

Derivation of equation (23)  

Following Stuart [11] formula (23) will be derived in this appendix. The strength of 

element i is described by the random variable Ri which is assumed to be Gaussian 

),( iiN  . If iiii RR  /)(
~

 , then the probability of failure for a series system with 

n elements is given by:  

1 1
1 (min ) 1 (max )f i i e

i n i n
P P R Q P R 

   
                                    (A1)  

where e  is the common reliability index for all elements and Q the load effect for all 

members.  

Let Xi ,  i = 0, 1,... , n, be random variables with:  

E[Xi] = 0                                                             (A2)  

E[ 2

iX ] = 1                                                          (A3)  

E[XiXj] = 0, i   j                                                (A4)  

Define random variables iR , i = 1,…, n, by:  

iR = Xi – aiX0                                                       (A5)   

then from (A2)-(A4):  

E[ iR ] = 0                                                            (A6)  
22

1][ ii aRE                                                        (A7) 

E[RiRj] = aiaj,  i j                                              (A8)  

Therefore, the coefficients of correlation for iR  and jR  are:  














ji

ji
aa

aa

ji

ji

ij

for1

for
11 22                                   (A9)  
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By assuming 10,,   jiij , the coefficients ai = a can be determined:  








1
a                                                       (A10)  

If Xi, i = 0, 1,…,n are Gaussian then they are independent. From (A7) the 

variance of iR  is equal to 1+a
2
. Therefore, the probability of eiR 

~
is equal to the 

probability of 21i eR a  :  

2 2

0
1 1

2

( ) 1 (max 1 ) 1 (max 1 )

1 [ ( 1 )] ( ) 1 ( )
1

f i e i e
i n i n

n

n e

e

P P R a P X aX a

t
at a t dt t dt

  

 
  



   

 

 

        

  
             

 
`    (A11)  

 

APPENDIX 2  

Derivation of equation (26)  

A parallel system with n ductile elements is considered.  The strength R of the system is 

equal to the sum of the resistances Ri, i = 1,2,..., n, of the elements. Then:  

E[R] = 


n

i

i

1

                                                   (A12)  

var[R] = 



n

jiji

ji

n

i

i

,1,1

2                                    (A13)  

where i  = E[Ri], 
2

i = var[Ri] and   is the common correlation coefficient. Let the 

load of the system be Q and the common reliability index e . Further, if members are 

identically distributed, then i  =   and i  =   for i = 1,2,…, n. Then the reliability 

index S  for the system is:  

½ 2 2

( )[ ]

(var[ ]) ( 1)

e
S

n n nE R Q

R n n n

   


  

 
 

 
 

 or:  

)1(1 


n

n
eS


                                             (A14)  


