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RELIABILITY ANALYSIS OF ELASTO-PLASTIC STRUCTURES
1
 

 

 P. Thoft-Christensen & J. Dalsgård Sørensen, Aalborg University, Denmark 

 

 

 

 

1. INTRODUCTION  

This paper only deals with framed and trussed structures, which can be modelled as 

systems with ductile elements. The elements are all assumed to be linear-elastic 

perfectly plastic. The loading is assumed to be concentrated and time-independent. The 

strength of the elements and the loads are modelled by normally distributed stochastic 

variables. This last assumption is not essential, since non-normally distributed variables 

can be approximated by equivalent normally distributed variables by well-known 

methods. All geometrical dimensions and stiffness quantities are assumed to be 

deterministic.  

Failure of this type of system is defined either as formation of a mechanism or 

by failure of a prescribed number of elements. In the first case failure is independent of 

the order in which the elements fail, but this is not so by the second definition.  

The reliability analysis consists of two parts. In the first part significant failure 

modes are determined. Non- significant failure modes are those that only contribute 

negligibly to the failure probability of the structure. Significant failure modes are 

determined by the  -unzipping method by Thoft-Christensen [1]. Two different 

formulations of this method are described and the two definitions of failure can be used 

by the first formulation, but only the failure definition based on formation of a 

mechanism by the second formulation.  

The second part of the reliability analysis is an estimate of the failure 

probability for the structure on the basis of the significant failure modes. The 

significant failure modes are as usual modelled as elements in a series system (see e.g. 

Thoft-Christensen & Baker [2]). Several methods to perform this estimate are presented 

including upper- and lower-bound estimates.  

                                                      
1
 Proceedings of 11th IFIP Conf. On System Modelling and Optimization, Copenhagen, July 1983. 

Lecture Notes in Control and Information Sciences, Vol. 59, 1984, Springer-Verlag, pp. 556-566. 
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Upper bounds for the failure probability estimate are obtained if the failure 

mechanisms are used. Lower bounds can be calculated on the basis of series systems 

where the elements are the non-failed elements in a non-failed structure (see Augusti & 

Baratta [3]). 

 

  

2. IDENTIFICATION OF SIGNIFICANT FAILURE MODES  

A simple, but also computer-time consuming method to determine significant failure 

modes is simulation, where realizations of relevant stochastic variables are simulated. 

Corresponding to each set of realizations failure modes is determined by analysis of the 

structure (see Ferregut-Avila [4]).  

Several authors have suggested heuristic search. An ideal heuristic search 

method will disclose the significant failure modes in a sequence with decreasing failure 

probabilities. Moses [5] has suggested an incremental method where one significant 

failure mode is determined. A drawback by this method is that all loads are fully 

correlated. Further failure modes can be determined by changing the strength of the 

elements (increasing the variance) or by simulating realizations of the strength of the 

elements (see Gorman [6]). Identification of significant failure modes can also be 

formulated as an optimization problem. For linear structures the safety margins of the 

mechanisms are linear in load and strength variables. The individual mechanisms are 

identified by the coefficients to the stochastic variables and the reliability index {3 for 

the mechanisms is a non-linear function of these coefficients. Ma & Ang [7] consider 

identification of significant failure modes as the problem of finding minimum 

reliability index  . The variables in this optimization problem are the coefficients to 

the load and strength variables. A local minimum of the reliability index   

corresponds to a significant failure mechanism. All mechanisms are linear 

combinations of a set of fundamental mechanisms. This observation has been used by 

Ma & Ang [7] in formulating the problem of determining significant failure modes as a 

non-linear optimization problem. Klingmüller [8] has used a linear programming 

method to determine significant failure modes. Failure tree methods have also been 

used for this purpose. Each node (branching point) in the failure tree corresponds to a 

failure element. Murotsu et al. [9] calculates the failure probabilities for all elements 

and selects those with the highest failure probabilities. These elements are supposed to 

fail one by one and additional fictitious loads are applied to the structure corresponding 

to the yield capacity of the failed elements. By this method a number of failure modes 

are determined. A failure tree method has also been used by Kappler [10].  

The  -unzipping method (Thoft-Christensen [1], Thoft-Christensen & 

Sørensen [11]) is a failure tree method to identify significant failure modes. Each 

branch in the failure tree is chosen on the basis of reliability indices for the elements. In 

this paper two formulations of the  -unzipping method are presented.  

It is assumed that the structure can be modelled by n so-called failure elements 

with safety margins 

 },min{ iiiii SRSRM                                                  (1)  

where Si is a stochastic variable describing the loading of the failure element i and 

where 

iR and iR  are stochastic variables describing the yield capacity in “tension” and 

“compression”. Often 

iR = iR . By the linear elastic analysis  
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



k

j

jiji PaS
1

                                                         (2)  

where Pj , j = 1,2,…, k are the loads on the structure and aij are the coefficients of 

influence. The failure criterion for failure element i  

Mi  0                                                               (3)  

and the corresponding reliability index i can be calculated.  

In the  -unzipping method failure elements are assumed to fail one at a time 

until a mechanism has been formed. After failure of an element the structure is 

modified by putting the corresponding strength equal to zero and adding a fictitious 

loading Pk+i corresponding to the yield capacity of the ith element in the failure 

sequence 1 2{ , ,..., }nj j j . Formation of a mechanism can be unveiled by the fact that the 

corresponding stiffness matrix is singular. In the computer programme used in this 

investigation two alternatives can be used for the fictitious loads 

( ), 1,2,...; {1,2,..., }
ik i j iP f R i j n     

i i
( )j jf R R                                                       (4)  

i.e. equal to the yield capacity of the element.   

( ) i

i i i i

ji

j

j j j j

R

r
f R R R


                                            (5)  

where 
ij

r  is the ji-coordinate of the design point and where 
ij

R is the expected value at 

ij
R . Let element i be the last element to fail before the mechanism is formed. Then the 

safety margin Mi is equal to the safety margin for the mechanism provided all the 

elements have failed (during the unzipping) in the same manner as the actual 

mechanism indicates. Experience shows that this is not always the case. Therefore, 

instead of (1) the following safety margin is used  

)}(,)min{(
1111

j

k

j

ijj

mk

kj

ijij

k

j

ijj

mk

kj

ijii PaPaRPaPaRM 














                 (6)  

 where m is the number of failed elements. By using ija and not ija in (6) the correct 

safety margin is obtained because then all coefficients to yield forces and yield 

moments are positive.  

In figure 1 part of a typical failure tree determined by the  -unzipping method 

is shown. In each circle the upper number is equal to the number of the failure element 

and the lower number to the corresponding  -index. Each branch ending in a box 

indicates a failure mechanism or failure mode. At each branching point the structure is 

re-analyzed as described above, and failure elements with reliability indices within a 

prescribed distance from the lowest index for non-failed elements define the new 

branches of the failure tree. More detailed description of the automatic generation of 

the failure tree is given in Thoft-Christensen [1] and Thoft-Christensen & Sørensen 

[11].  

With regard to the safety margin the first parenthesis in (6) is chosen if   

1

0
i

k

ij P

j

a 


  

and the second parenthesis if  
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0
i

k

ij P

j

a 


 . 

 

It is of interest to note that the general  -unzipping method can also be used 

when failure of a structure is defined as failure of a number of elements and also when 

the behaviour of some elements is modelled by brittle elements ( ( ) 0
ij

f R  ).  

In the alternative formulation based on fundamental mechanisms only ductile 

elements can be taken into account and failure is defined as formation of a mechanism. 

Fundamental mechanisms can be automatically generated by a method suggested by 

Watwood [12]. The number of fundamental mechanisms is m = n - r, where n is the 

number of potential failure elements (yield hinges) and r the degree of redundancy. Let 

the number of real mechanisms be me > 0, then the number of joint mechanisms is mk= 

m-me . The safety margin for the fundamental mechanism i is    

1 1

n k

i ij j ij j

j j

M a R b P
 

                                                      (7) 

 where a and b  are influence matrices. Let 
em  ...21 be an ordered set of 

reliability indices for the me real mechanisms. Further mechanisms can be constructed 

by linear combinations of fundamental mechanisms. The corresponding failure margins 

will be like (7). The problem is now to combine the fundamental mechanisms so that 

the significant mechanisms can be obtained in an efficient way. Here a failure tree  

 

Figure 1. Failure tree for the structure in figure 5.  

                      indicates non-failure of the structure and       failure of the structure.  
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formulation can be used. First the real 

fundamental mechanism 1 is chosen. 

Then it is combined with all the other 

fundamental mechanisms and the 

corresponding reliability indices are 

calculated. The smallest index min  

among those is determined and 

mechanisms with indices in the interval 

[ min , min + 1 ], where 1  is a chosen 

constant, define the branches in the 

failure tree based on the mechanism in 

question. The combined mechanisms are 

now starting points for new branches 

where each branch symbolizes that the 

branching point at the end of the branch 

is constructed by combination of a 

combined mechanism and a fundamental 

mechanism. Corresponding to each 

branching point a new min  value is 

determined. In general, min  will de-

crease when more and more mechanisms 

are combined. The branching is 

terminated when the number of levels is 

greater than a number N or when 2min   u  where u is the reliability index for the 

mechanism and where 2  > 0. In this way each branching point symbolizes a 

mechanism. This is illustrated in figure 2, where part of the failure tree for the structure 

in figure 3 is shown. There are in this case 5 real mechanisms and 5 joint mechanisms.  

Significant failure mechanisms are determined on the basis of the failure tree. 

Let the smallest reliability index for a mechanism be 0 . Then the significant 

mechanisms are defined as those with reliability indices in the interval [ 0 , 0 + 3 ] 

where 3 > 0.  

 

 

3. EVALUATION OF THE PROBABILITY OF FAILURE  

A measure of the reliability of the structure can be obtained on the basis of the 

identified significant failure mechanisms by modelling failure of the structure as a 

series system where the elements are the significant failure mechanisms (see Thoft-

Christensen & Baker [2]). The probability of failure then is  

)...( 21 ns FFFPP                                                (8)  

where P )( is the probability measure and Fi, i = 1,2,…, n is the event that failure occurs 

by failure of mechanism i. In general Fi and Fj , ji  , will be correlated due to 

correlation between the failure elements and due to common failure elements in the 

failure mechanisms. Therefore, estimate of Ps will involve time-consuming calculation 

of multi-integrals. However, a number of approximate methods have been suggested  

(see e.g. Thoft-Christensen & Sørensen [11] or Grimmelt & Schuëller [13]).  

Figure 2. Part of the failure tree for the 

structure considered in example 1.                      

                   indicates that the mechanism    

                   obtained by combining the 

fundamental  

 

2.62 
1+10 
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Upper and lower bounds for P have been suggested by Ditlevsen [14] and 

Kounias [15]. Calculation of these bounds (here called Ditlevsen bounds) requires 

estimate of the probability of the intersection of Fi and Fj, i.e. )( ji FFP  . In this paper 

)( ji FFP   is calculated by numerical integration. Ang & Ma [16] have suggested an 

approximate method called the PNET-method, to evaluate Ps. This method is based on 

a grouping of all elements according to mutual correlation.  

In the following, safety margins are assumed normally distributed and linear. 

Then from (8)  

1 2

1 21 ... ( ; ) ... 1 ( ; )
n

s n n nP dx dx dx

 


  

      x ρ β ρ                            (9)  

where ( ; )n x ρ  is the n-dimensional density function for n standardized stochastic 

variables and ρ is the matrix of correlation coefficients. When all correlation 

coefficients are equal, 0 ij , then (see Dunnet & Sobel [18]) | 

1

1 ( ) ( )
1

n
i

s

i

u
P u du

 









  


                                          (10)  

Plackett [17] has shown that  

( (1 ) )
1 ( ; )

ij

ij

n
s n ij

i j ij

t t
P d








 
  


 

β; ρ+ κ
β κ                                 (11)  

where ρ  and κ  are regular matrices of correlation and  

(1 ) , 0 1ij ij ijλ t t t                                                 (12)  

and where e.g.  

);,...,,();,(
);(

2222224213212212

12

m
λβ

 



nnn

n 





        (13)  

2μ  and 22m are the conditional expected value vector and covariance matrix for X3, X4, . 

. . , Xn given X1 = 1  and X2 = 2 .  

A simple approximate value for Ps can be obtained from (10) even if the 

correlation coefficients are unequal, namely by putting   , where   is the average 

correlation coefficient defined by  

1

( 1)
ij

i jn n
 





                                                       (14)  

This corresponds to neglecting the last term in (11) and putting ij    

1 ( ;{ })s nP   β                                                      (15)  

where { }  is a correlation matrix with ,ij i j   .  

From equation (13) it is seen that  

2

( ; )
0 ( , ; )n

i j ij

ij

   



 



β ρ
                                     (16)  



Chapter 17 

 205 

Let min = min{ }ij
i j




and max max{ }ij
i j

 


  then from (11), (13), and (16) the 

following bounds for n  can be derived ( n  is an increasing function of ij ): 

max min

2 2 min

( ; ) min{ ( ;{ }), [ ( ;{ })

( ( , ; ) ( , ; ))]}

n n n

i j ij i j

i j

 

     


   

  

β ρ β β

                         (17)  

min max

2 2 max

( ; ) max{ ( ;{ }), [ ( ;{ })

( ( , ; ) ( , ; ))]}

n n n

i j ij i j

i j

 

     


   

  

β ρ β β

                      (18)  

It follows from (12) - (16) that Ps can also be approximated by  

1 ( ;{ })s nP   β - 2 2{ ( , ; ) ( , ; )}i j ij i j

i j

     


                      (19)  

The approximation (15) is suggested by Thoft-Christensen & Sørensen [19] (see 

also Ditlevsen [20]). An approximation based on the so-called equivalent correlation 

coefficient   indirectly defined by  

2 max 21 ( ;{ }) ( , ; ) ( , ; ) 1 ( ;{ })s n i j i j nP             β β        (20)  

has also been suggested by Thoft-Christensen & Sørensen [19]. This approximation can 

be derived from (19) by neglecting all terms in the summation except the one with the 

maximum correlation coefficient.  

Let ns and nr be the number of kinematically admissible mechanisms and the 

number of identified significant failure mechanisms, respectively. Then it follows from 

the upper-bound theorem of plasticity (see Augusti & Baratta [3]) that l

sP  given by  


rn

i

i

l

s FPP
1

)(


                                                       (21)  

is a lower bound of Ps . This can easily be seen from (8) when n is substituted by ns and 

nr. An upper bound of Ps can be derived from the lower-bound theorem of plasticity 

(see [3])  

,

'

1 1

( )
u im

nn

u

s ij

i j

P P F
 

                                                    (22)    

where nm is a number of statically admissible stress distributions, nu,i  is the number of 

non-failed failure elements in the structure i corresponding to a statically admissible 

stress distribution, and ijF   is the event that failure element j in such a structure fails. If 

the numerical signs in (6) are removed, then ijF   is equal to the event that iM 0 and 

(22) can be written  

,

1 1 1

( ( )) ( )
u im m

nn n

u C T n

s ij ij i

i j i

P P F F P F
  

                                 (23)  

where C

ijF  and T

ijF  correspond to the linear safety margins in the first and second 

parenthesis in (6). Note that (23) corresponds to a parallel system with elements, which 

are series systems with 2nu,i elements. It is often useful to use the following upper 

bound of u

sP   
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)(min n

i
i

u

s FPP                                                     (24)  

  Finally  

,

1 1

( ) min ( ( ))
u ir

nn
C T

i s ij ij
i

i j

P F P P F F
 

                                     (25)  

The bounds in (25) can be estimated by the approximations and bounds for 

series systems shown earlier in this chapter.  

The safety margins corresponding to the right hand side of (25) can only be 

determined if the first formulation of the  -unzipping method is used.  

In the next chapters some of the methods shown above will be used in two 

examples. The results will be presented by the so-called generalized  -index, G , 

defined by (see Ditlevsen [21])  

)(1

sG P                                                       (26)  

 

 

4. EXAMPLE 1  

Consider the frame structure in figure 3 with corresponding expected values and 

coefficients of variation for the stochastic variables in table 1. Yield moments in the 

same line are considered fully correlated and yield moments in different lines are 

mutually independent.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 12 most dominant failure mechanisms are shown in table 2 (from Ma & 

Ang [7]). By the first formulation of the  -unzipping method and by (4) the 

mechanisms shown in table 3 are determined. The calculations are performed on a CDC 

Cyber 170-720 computer. 10 of the most dominant failure mechanisms are determined 

after 2000 sec. computer time, but the remaining mechanisms 10 and 11 are closely 

correlated with mechanisms 3 and 1 and will therefore have a negligible influence on 

the reliability of the structure. 

 

 

Figure 3. Geometry, loading and potential yield 

hinges ( ) for the structure analysed in example 1.  
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 Table 2. The 12 most significant failure mechanisms for the structure in   

                                 Figure 3.  

 

 

 

 

 

 

 

 

 

             

Table 3. Failure mechanisms by the  -unzipping method. 

 

By the second formulation of the  -unzipping method based on the set of 

fundamental mechanisms shown in fig. 4 all 12 significant failure mechanisms were 

identified in only 17 sec. Nmax = 20, 1  = 0.5, 2 =2 and 3  = 0.3 were used. Although 

the choice of fundamental mechanisms and of Nmax, 1 , 2 , 3  values may be of 

Table 1. 
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importance for this result it seems to indicate that the formulation based on 

fundamental mechanisms is superior to the more direct first formulation. The main 

reason for the reduced computer time is of course that only one analysis of the structure 

is necessary by the second formulation, whereas the first formulation requires such an 

analysis at each branching point.  

The generalized reliability 

index G  will in this example be 

estimated on the basis of some of the 

methods presented in chapter 3. The 

mechanisms in table 3 are used as 

elements in a series system and the 

results are shown in table 4.  

Ma & Ang [7] have 

calculated the Ditlevsen bounds on 

the basis of all different real 

mechanisms with the result 

0.53  G 1.47 and by Monte-Carlo 

simulation determined the estimate 

G  = 1.20.  

On the basis of the safety 

margins determined by the first 

formulation of the IJ-unzipping 

method one gets -1.17  G 1.30. 

These bounds are determined as 

Ditlevsen bounds for the series 

systems in the right and left hand 

side of (25). The lower bound is for a 

structure with failure in elements 

1,6,11,12,15,18, and 19. Computer 

time is 2000 seconds.  

The upper bound 1.30 for G  

calculated by (25) is close to the 

simulated estimate 1.20, but the 

lower bound is useless. It follows 

from table 4 that the approximate 

estimate )(G =1.16 and 

)(PNETG =1.15 only differ by 3% from the simulated estimate.  

 

 

5. EXAMPLE 2  

Consider the structure in figure 5 and the data in table 5. All stochastic variables are 

considered independent. This structure has been investigated by Grimmelt & Schuëller 

[13]. By the first formulation of the  -unzipping method and (6) all significant failure 

mechanisms (see table 6) were identified in 154 seconds. The number of fundamental 

mechanisms is n - r = 17 - 9 = 8. By the second formulation of the  -unzipping 

method based on the set of fundamental mechanisms in figure 6 and the same data as in 

Figure 4. Set of fundamental mechanisms 

used in example 1.  

 

 

Table 4. Generalized reliability index G  

for the structure in figure 3.  
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example 1 all significant failure mechanisms were identified in 8 seconds. This result 

confirms the conclusion in example 1.  

 

 

On the basis of the significant mechanisms in table 6 the Ditlevsen bounds are 

6.17  G  6.17. Further, )(G  = 6.16 and )(PNETG = 6.24. These values are 

close to the results by Grimmelt & Schuëller [13] calculated on the basis of all possible 

mechanisms. It can therefore be concluded that the 5 mechanisms in table 6 really are 

the most dominant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By the first formulation of the  -unzipping method the following bounds 

corresponding to the right 

hand side of (25) can be 

calculated: 3.94  G 3.94. 

They correspond to a 

structure with failure in 

elements 6, 9,18, 19 or 6, 9, 

19, 20. Then by (25) one gets 

3.94  G 6.17. Again only 

the upper bound is close to 

the correct value. 

 

 

 

Figure 5. Geometry, loading and potential yield hinges for the structure 

analysed in example 2.  

 

Table 5.  

 
Table 6. Significant failure  

mechanisms.  
 

Figure 6. Set of fundamental mechanisms used in 

example 2,  
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6. CONCLUSIONS  

In the first part of this paper two formulations of the so-called  -unzipping method to 

identify significant failure modes were presented. Both methods are failure tree 

methods. The efficiency of the two methods is evaluated on the basis of two examples. 

The conclusion is that the second formulation seems to be superior when it can be used. 

It is based on fundamental mechanisms and is therefore only applicable to failure 

definitions based on mechanisms. The first formulation is more general. It can be used 

for ductile and brittle elements and failure of the structure need not be defined as 

formation of a mechanism.  

In the second part of the paper the estimate of the failure probability is 

investigated. A lower bound for the probability of failure is calculated on the basis of 

the identified significant failure mechanisms. These failure mechanisms are elements in 

a series system. A number of different methods to estimate the failure probability of 

series systems are discussed, namely Ditlevsen bounds, the PNET-method, and 

approximate methods based on the average and the equivalent correlation coefficient. 

New bounds and a new approximation are suggested. The reliability of two different 

structures is estimated by some of these methods and it can be concluded that the upper 

bound for the failure probability Ps (lower bound for the generalized index G is a bad 

estimate for the correct value. However, the lower bound for Ps (upper bound for G  is 

close to the correct value. For both structures approximate estimates of G based on the 

equivalent correlation coefficient   and the PNET-method are good estimates.  
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