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Abstract— In this paper, the power quality of microgrids is 
addressed. To achieve the desired level of power quality, a 
strategy based on the coordinated control between DGs and 
APFs is proposed. In this regard, hierarchical control is applied 
where primary control consists of power droop controller of DGs, 
selective virtual impedance and voltage/current regulators. Based 
on the secondary control, at first voltage harmonic compensation 
and voltage unbalance compensation of point of common 
coupling (PCC), that might includes sensitive loads, is carried out 
by DGs. Voltage compensation of PCC by DGs may cause severe 
voltage distortion at DGs terminals. Thus, the coordinated 
control is used to mitigate the voltage distortion to the defined 
maximum allowable value at DGs terminals. Evaluation of the 
proposed hierarchical control is carried out by a simulation 
study. 
 

Index Terms—Active power filter, Distributed Generator, 
Hierarchical control, Microgrid, Voltage unbalance/harmonic 
compensation.  

I. INTRODUCTION 

ISTRIBUTED  generators (DGs) are usually connected to 
microgrids (MGs) by power electronic interface 

converters. Regulating voltage/frequency of DG terminal is 
accomplishable by proper control of the interface inverters 
[1],[2]. Furthermore, many strategies have been suggested for 
improving power quality of MGs based on DGs inverters 
control [3]-[14]. 

Unbalanced voltage might be produced due to asymmetrical 
transmission lines or loads. It might cause serious problems 
such as increase of power losses in equipment, disturbing 
sensitive loads performance and even instability of system. As 
a common problem in three-phase MGs, voltage unbalance 
has been addressed in some previous works. A well-known 
strategy addresses voltage unbalance compensation (VUC) of 
point of common coupling (PCC) or DG terminal by proper 
control of DGs interface inverters [3]-[6]. To compensate 
unbalanced voltage of Sensitive Load Bus (SLB), an extra 
control loop is devised in [5] as secondary control. Although 
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SLB voltage is improved in [5], DGs terminal might be 
distorted. This strategy is also applied in [6], moreover, an 
extra control loop is contrived to distribute the distortion rate 
among DGs terminal in an optimized way. However, in severe 
unbalance conditions, one or more DGs terminal might 
become distorted severely by this method.   

With high penetration of nonlinear loads and power 
electronic equipment, harmonic pollution is considered as an 
important power quality problem. Many efforts have been 
done for voltage harmonic compensation (VHC). Like VUC, 
DGs inverters are usually used for VHC. The common 
strategy is making resistance emulation at harmonic 
frequencies [7]-[14]. The methods proposed in [11] and [12] 
address VUC and VHC of PCC while compensation sharing is 
considered too. Furthermore, [11] is built on selective 
harmonic compensation approach and in [12], transient state is 
regarded too. Again, DG terminal might become distorted 
severely by these methods. To simultaneously compensate 
voltage harmonics of the both points (PCC and DGs buses), 
coordinated control of DGs inverters and Active Power Filter 
(APF) is suggested in [13] and [14]. In [13], satisfactory 
voltage quality of multi-area MG (with different voltage 
quality requirement) is obtained while in [14], DGs inverters 
rated power is considered in the coordinated control too. 

In line with previous efforts regarding power quality 
improvement of MG by DGs inverters and APFs, in the 
present paper, voltage unbalance mitigation is considered 
while VHC is carried out too.  

II. PROPOSED HIERARCHICAL CONTROL SCHEME 
A typical MG is represented in Fig. 1. Note that there might 

be more than one DG connected to DG(s) bus. Two points are 
represented in the system as nodes and PCC where nodes are 
DGs terminals and PCC is the point that there might be high 
amount of loads (including sensitive loads). Note that there 
should be very low voltage harmonic distortion (VHD) and 
voltage unbalanced factor (VUF) at PCC while satisfactory 
power quality of nodes (according to the nodes voltage quality 
requirement) is considered. Meanwhile, since there is no 
constraint defined for voltage quality of a typical node, well-
known power quality indexes should be considered. 

Fig. 2 shows general scheme of the proposed hierarchical 
control. The proposed control contains two levels. Primary 
control is DGs local control that power sharing is considered 
in this level. Secondary control is for PCC voltage quality 
improvement by DGs interface inverters. However, due to 
PCC voltage compensation by DGs, nodes voltages might
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Fig. 1. General scheme of microgrid. 

 

Fig. 2. General scheme of the proposed hierar
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B. Secondary(Central) Control 
As mentioned before, in s
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compensation rate calculation block
it is shown in Fig. 3, VDR is calcula

௏௛േܦܪܸ ൌ ௏ೝ೘ೞ೚ഀ೓േ௏ೝ೘ೞ೚ഀభశ        ܽ݊݀   
The VDR is compared with the re

there is any violation, depending o
signal is produced for individual
-by using a Proportional (ௗ௤௛േ,ଵିܥ)
Then ܥௗ௤௛േ,ଵି is sent to compensati
DGs to mitigate PCC distortion to t
controller should be tuned so tha
achieved in short time while stability
It is worth noting that the “dead
prohibit secondary control opera
distortion is lower that the reference
coordination step is also included in
described in Section V. 

2

 

 
rchical control. 

compensation by DGs is 
sation effort controller of 
explanations of different 
in [1], [5] and [14]. 

secondary control PCC 
s, firstly. Fig. 3 shows PCC 
k of secondary control. As 
ated like below: 

ܨܷܸ     ൌ ௏ೝ೘ೞ೚ഀభష௏ೝ೘ೞ೚ഀభశ             (1) 

eference value (ܸܴܦ௥௘௙), if 
n the violated rate, proper 
l sequence of harmonics 
Integrator (PI) controller. 
on effort controller of all 

the reference value. The PI 
at the reference quality is 
y margin is considered too. 

d band” block is used to 
ation since PCC voltage 
e value. Remember that the 
n secondary control that is 



  
 

Fig. 3.  Block diagram of compensation rate calculation. 
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Fig. 6.  APF current measurement. 
 
where ݊ is the number of DGs. In Eq. (4), i
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TABLE I 
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15 2200 0.2+j1.131 0.1+j0.565 0.2+j1.005 235 2

Control Stage Parameters 

APF Capacitor-PI Controller Coope
Kp Ki ݇ଵଵି ݇ଵଷേ 

0.16 0.02 0.5 0.45 
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Required data of power and control stages of the system is 
available in Table I and the data concerning primary and 
secondary controls can be found in [11] and [14]. Based on 
DGs power droop characteristics, DG1 is twice of DG2.  

To test different parts of the proposed hierarchical control 
clearly, Table II shows simulation process and the following 
explanations are based on this table. It is worth noting that 
MATLAB/Simulink is used for evaluating the proposed 
hierarchical control.  

Two DGs are in the system so power, harmonic and 
unbalance current sharing should be considered. It is assumed 
that voltage quality reference of the node 1 is Total Harmonic 
Distortion (THD) equal to 3% (ܶܦܪேሺଵሻೝ೐೑ ൌ3%) and ܸܷܨேሺଵሻೝ೐೑ ൌ1% while the maximum permissible VDR is 
considered for node 2 according to IEEE Standards 519 and 
ேሺଶሻ೘ೌೣܦܪܶ) 141 ൌ5% and ܸܷܨேሺଶሻ೘ೌೣ ൌ2%) [19],[20].  

Since APF is only cooperated with DG1, Fig. 7 shows 
voltage waveforms of node 1 and PCC according to simulation 
time periods (Table II). As it is represented, the node voltage 
is completely sinusoidal in the first period, demonstrating 
perfect performance and well design of droop control and 
selective virtual impedance. However, PCC voltage waveform 
is distorted. It is for the voltage drop produced through ܼଵ,ଶ 
(see Fig. 1). As it is shown in Fig. 7, voltage waveform of 
node 1 and PCC are severely distorted while current unbalance 
and harmonic sharing between DGs is obtained by virtual 
impedance (see Fig. 8). It can be seen in Fig. 8 that harmonic 
and unbalance components in DG2-current is higher than that 
of DG1 before ݐ ൌ  while after this time, current sharing is ݏ2
happened based on DGs rated power. As shown in Fig. 7, PCC 
voltage is significantly improved since secondary control is 
initiated but node 1 voltage is severely distorted. It shows that 
DG1 has main role in PCC compensation. However, the 
cooperation is required because ܸܴܦேሺଵሻ is very higher than 
the reference value, according to Fig. 10. Since the 
cooperation is initiated, it can be seen that ܸܴܦேሺଵሻ is reduced 
while PCC voltage is remained unchanged. It proves that the 
cooperation is designed accurately. 

Fig. 8 shows current distortion at nodes. As shown, since 
secondary control is initiated, node 1 current is severely 
distorted. However, as the cooperation is initiated, it can be 
seen that current distortion in node 1 is reduced while this 
parameter is nearly unchanged in node 2. It is because APF is 
only cooperated with DG1.  

To be more illustrative, Fig. 9 shows current waveforms of 
nodes according to the simulation time periods. It can be seen 
that node2-current is more close to sinusoidal waveform since 
virtual impedance is initiated and current sharing is taken 
place. On the other hand, node1-current is more distorted. As 
PCC compensation is occurred by DGs, it is shown that 
node1-current is even more distorted than before because DG1 
plays the main role in compensation. However, by initiation of 
the cooperation at ݐ ൌ  node1-current waveform is nearly ,ݏ9
sinusoidal due to the fact that a part of PCC compensation is 
carried out by APF.    

To test the proposed hierarchical control more accurately, 
Fig. 10 shows VHD curves of both positive and negative 
sequences of individual harmonic components and VUF of the 
nodes and PCC. Based on Fig. 10, nodes and PCC-VDR are 

 

 

 

 
(a)                                              (b) 

Vertical axis: current(A), Horizontal axis: time(s) 
 Fig. 9.  Current waveforms: (a) Node1, (b) Node2.  
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(c) 

Fig. 10.  Voltage Distortion Rate (dashed: positive sequence, solid: negative 
sequence): (a) VUF, (b) 3th harmonic, (c) THD. 
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increased since current sharing is happened. According to Fig. 
10, when secondary control is active, PCC-VDR is 
significantly reduced and ܸܴܦ௉஼஼ೝ೐೑ is achieved but node1-
VDR is severely increased and the violation from ܸܴܦேሺଵሻೝ೐೑ is 
occurred. In the final period, the cooperation between APF 
and DG1 is initiated and ܸܴܦேሺଵሻೝ೐೑ is achieved. It is shown in 
Fig. 10 that ܸܴܦேሺଶሻ and ܸܴܦ௉஼஼ (both positive and negative 
sequences of voltage harmonics and VUF) are remained 
unchanged when APF is participated in compensation. It 
shows perfect performance of the coordination and precise 
design of its parameters.   

VI. CONCLUSION 

A hierarchical control scheme to improve voltage harmonic 
distortion and voltage unbalance factor of microgrid is 
proposed. The hierarchical structure includes two levels. In the 
primary control, power and current sharing is carried out. 
Secondary level compensates PCC by controlling DG(s) 
inverters. Compensation of PCC by DG(s) might increase 
voltage distortion at DG(s) terminal. Thus, a coordinated 
control between DGs and APF is designed to share 
compensation. The coordinated control is based on the 
required power quality of each DG terminal and the APF 
capacity.  
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