Obtaining the Andersen's chart, triangulation algorithm

Sabaliauskas, Tomas; Ibsen, Lars Bo

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Sabaliauskas, T., & Ibsen, L. B. (2016). Obtaining the Andersen's chart, triangulation algorithm. Department of Civil Engineering, Aalborg University. DCE Technical Memorandum, No. 53
Obtaining the Andersen's chart, triangulation algorithm

Tomas Sabaliauskas
Lars Bo Ibsen
Obtaining the Andersen's chart, triangulation algorithm

by

Tomas Sabaliauskas
Lars Bo Ibsen

February 2016

© Aalborg University
Andersen’s chart (Andersen & Berre, 1999) is a graphical method of observing cyclic soil response. It allows observing soil response to various stress amplitudes that can lead to liquefaction, excess plastic deformation or stabilizing soil response.

The process of obtaining the original chart has been improved, and the new method is described in this paper. Algorithm based approximation is introduced, it replaces hand made lines with computer generated curves. This makes the obtained estimates more reliable and once implemented the procedure is faster than the original method.

1. INTRODUCTION

The original work done by (Andersen & Berre, 1999) on undrained cohesionless soil response is the starting point of this paper. In their original work they approximated cyclic response of soil during stress cycles on triaxial samples and summarized the results in an Andersen's chart (Fig.7). Similar project was undertaken by (Troya & Sabaliauskas, 2014) using an improved triaxial apparatus in Aalborg University. The latter authors used a computer algorithm to generate the Andersen's chart from the data they collected (Fig.12).

Soil used

The chart starts from measuring real soil response. Samples of Frederikhaven sand were dry tamped to 80% relative density (maximum porosity $e_{\text{max}}=1.05$; minimum porosity $e_{\text{min}}=0.64$);

All samples were tested from initial conditions of pore pressure $\Delta U_p = 200$[kPa], initial confining pressure $p'_0=60$[kPa]. Anisotropic K0 consolidation is applied to reassemble in situ soil state for cohesionless soil with friction angle of approximately $\phi=39^\circ$ giving initial sample state of $\sigma_1=161$[kPa] $\sigma_3=60$[kPa];

The saturated sample (of saturation beyond 99% saturation judging by Skempton's B) is exposed to cycles of constant stress amplitude. Different stress amplitude τ_0 and average stress values τ_a for every test (parameters ilustrated in Fig.1). The two parameters are chosen in such a way to provoke 10% strain in approximately 1000 cycles or less. They cluster around liquefaction sensitive areas in the Andersen's chart (the boundary between stable and liquefying soil as shown in Fig.6)

Axial strain is logarithmically corrected to represent true strain rather than engineering strain. This is necessary because strain beyond 10% can be encountered, engineering strain becomes increasingly less precise as large strain is applied.

During triaxial testing effective stress states are monitored, thus all plots in this paper and the Andersen's chart it self are by default in effective stress state. Compression is taken as positive loading direction with respect to geotechnical sign convention.

Fig. 1 cyclic, average and plastic components of shear stress, strain and pore pressure (Andersen & Berre, 1999)
2. UNDRAINED BEARING CAPACITY

To draw the boundaries of undrained Andersen's chart it is important to recognize where the physical limits of the chart are. There is a limited amount of load that can be applied on a soil sample, thus all the loading scenarios going beyond this limit need to be avoided. By drawing the boundary of undrained bearing capacity one can quickly observe the testing limits within which the tests will be executed.

If the sample was loaded drained it would follow the Effective Stress Path (ESP line in Fig. 2). Undrained dense soil fails at much higher load than drained ones due to dilation induced pore pressure drop. Pore pressure can drop all the way to cavitation, where water transforming into a gas. Once the dilating sample “pulls the water apart” the liquid water becomes into gas and there is nothing to further resist soil deformation. Thus the point of cavitation limits undrained dilative soil strength. The undrained limit can be seen in Fig. 2, by the name of Total Stress Path minus the negative cavitation pressure (TSP-Ucav).

When dense sand is compressed to failure undrained it dilates at close proximity to friction angle (points A-B-C in Fig. 3). At some point pore pressure will reach near -100[kPa] and turn into gas (Point C-D). As the stiffness of water is lost pure plastic response will follow (from point D in Fig. 3, TSP-Ucav in Fig. 2).

Cavitation plays a very definitive role in response of undrained, dense, cohesionless soil. The transitions into cavitation a strict limit on ultimate strength (Fig. 2, Fig. 4). This was not taken into account in original work of Andersen (Fig. 5), probably because he used very high pore pressure during his tests. This should have pushed the undrained bearing capacity beyond the testing range of his equipment. Nonetheless, the undrained limit imposed by cavitation is shown to play a decisive role in multiple other studies. (Ibsen, 1994) (Ibsen, 1995) (Nielsen & Ibsen, 2013) (Troya & Sabaliauskas, 2014). The maximum and minimum undrained bearing capacity can be found from equations (2-3).

The undrained and drained boundary can be observe in Fig.4, where drained test is compared to 3 different kind of undrained tests, all with similar density.
The provided bearing capacity expressions include effects of pore pressure and quantify the absolute limit of soil strength. Thus it is proposed to normalize undrained soil response using these strength limits. (Nielsen & Ibsen, 2013)

\[p'_{\text{LOCK}} = p'_{0} + U_{0} - U_{cav} \]
\[\tau_{\text{max}} = -p'_{\text{LOCK}} \cdot \sin(\varphi)/(\sin(\varphi) - 1) \]
\[\tau_{\text{min}} = -p'_{\text{LOCK}} \cdot \sin(\varphi)/(\sin(\varphi) + 1) \]

3. BOUNDARIES IN STRESS SPACE

Each sample starts from anisotropic – K0 state which is loaded over 1 hour of slow, drained loading. Then the valves are closed and a cyclic, sinusoidal shaped load is applied.

The sinusoidal load shape is good for one sided loading – a loading case where absolute value of \(\tau_{a} \) is bigger than \(\tau_{c} \).

Testing indicated that stress reversal (\(|\tau_{a}| < \tau_{c} \)) cause liquefaction even at very small stress amplitudes, by increasing ever increasing strain amplitudes. Incremental collapse was confirmed to occur if stress is not maintained sufficiently high within one sided loading (Fig. 6). (Sabaliauskas & Troya, 2014).

During cyclic loading failure was defined as 10% axial strain. If 10% strain amplitude did not accumulate after 1000 cycles the sample was deemed stable. 1000 cycle limit was chosen because it approximates the number of waves during a 3 hour storm peak in typical storm in North Sea. The \(\varepsilon=10\% \) is equivalent to shear strain limit of \(\gamma=15\% \) used by Andersen & Berre, 1999.

During testing it was observed that 1000 cycles produce a very steep function separating stable response from unstable. In Fig. 6 position of test with similar \(\tau_{a} \) and \(\tau_{c} \) are shown. Small difference in stress can have significant impact on soil response, and testing is very slow, thus it is important to target the zones of interest within the chart.

Strain stabilizes with cycles, producing increasingly more horizontal curve. It is necessary to interpolate along this flat curve for reliable approximation of the number of cycles that lead to 10% strain (shown in Fig. 9). This is hard to do by hand (Fig.7), but a computer algorithm will easily detect the first cycle to cross the 10% boundary.

By using the undrained ultimate shear strength \(\tau_{\text{max}} \) to normalize the chart one can scale the bearing capacity for different soil states as long as the TSP+Ucav (Fig.2) is scaled properly. Thus the limits between 1 and 0 are in respect to undrained strength for triangle shown in Fig. 6.
4. DATA PROCESSING FOR ANDERSEN’S CHART

Obtaining coordinates of data points

Three points need to be found for each data point in the chart - \(\tau_a \), \(\tau_c \), and the number of cycles \(n \) leading to a selected strain limit. These are obtained by detecting stress peaks inside measurements (Fig. 9).

Averaging high peak and low peak stress values of the true applied shear average was also necessary (Fig. 10). The samples were loaded with a force, but as the samples deform the area of cross section changes and the effective stress generated by the same applied force is somewhat fluctuating.

Number of cycles when \(\varepsilon \) limit is reached are found by identifying the first data point to cross above the 10% strain limit. When that data point is known algorithm checks how many stress peaks are present before that point in testing history (Fig. 9). The 3 values, 2 for stress and 1 for cycles, are saved for each test.

Adding some pre defined data points helps to fill in the gaps without executing new tests. For instance all points with amplitude \(\tau_c = 0 \) [kPa] are stable. If applied amplitude is zero, the sample will not fail unless \(\tau_a \) reaches the ultimate undrained failure limit. 1000 cycles of zero amplitude is nothing more than keeping a stable load applied, thus it is safe to say that \(n = 1000 \) at points of \(\tau_c = 0 \) [kPa] where \(\tau_a < \tau_{\text{max}} \).

If \((\tau_a + \tau_c) > \tau_{\text{max}} \) or \((\tau_a - \tau_c) < \tau_{\text{min}} \) then sample will cross the ultimate shear strength before completing the first cycle. Thus the outer perimeter of the triangle in is set to \(n = 0 \) cycles. The points are distributed along the boundary to form convenient grid for future interpolation.

Interpolating

At this point the chart will be interpolated by triangulation. A surface is formed by connecting the nearest points into a triangular surfaces (Delaunay triangulation). As more tests are done definition of the chart will continuously increase Fig. 11. However some fine tuning by hand can increase the diagram precision as well.

Increasing chart definition manually

If charts in Fig.11 and Fig.12 Are compared it is easy to see that one of them has “smooth” edges while the other has some glitches. The original way to increase precision of the chart is to monitor for glitches observed in algorithm generated plot at early development stages. This allows to target the next test position. The plot can be updated indefinitely. Yet in some times manual adjustment of the Delaunay triangulation could be much faster than setting up a new test.

![Fig. 7 Original Andersen’s chart for undrained soil response (normalized by drained confining pressure)](image)

![Fig. 8 “Edge flipping”. There are 2 ways of connecting the same 4 points. Manual identification of the correct one might be necessary.](image)
One option previously mentioned is interpolating similar lines which means adding a point of 1000 cycles where the user is certain the soil is stable, or adding an n=0 point at the physical limits.

The other option comes directly from arbitrariness induced by Delaunay triangulation itself (Fig. 8). There are 2 ways of connecting 4 points that are not on the same plane. It can either be connected as a “mountain” (Fig. 8, left) or as a “valley” (Fig. 8, right). As the number of sample points increases this difference will converge towards zero, but looking at a course chart in Fig. 11 it is obvious where the “valleys” are. An averaged cycle count, in the middle between pj and pi can be inserted by hand in Fig. 8, by interpolating one point manually. It is up to user to decide where new points can be added, but it common sense to avoid extrapolating outside from in-between two real data points.

In the liquefying zone (Fig.6) it was found that much smaller stress amplitudes cause liquefaction than those triangulation linearly interpolated, while values of higher stress do not stabilize even in pure compression cycles – thus some n=0 points were added in the liquefying area to reduce the triangulation error. This was a case of cautious extrapolation based on observed soil response. The final surface of loading cycles leading to 10% strain is shown in Fig.12.

Once the algorithm is implemented, the 10% limit can be varied and undrained Andersen's chart of varying sensitivity will be produced. However, because the transition from liquefaction to stable state is so steep and fragile, additional tests will likely be necessary, as the position of transitioning lines could shift.
5. BIBLIOGRAPHY

