Inrush Transient Current Analysis and Suppression of Photovoltaic Grid-Connected Inverters During Voltage Sag

Li, Zhongyu; Zhao, Rende; Xin, Zhen; Guerrero, Josep M.; Savaghebi, Mehdi; Li, Peide

Published in:
Proceedings of 2016 IEEE Applied Power Electronics Conference and Exposition (APEC)

DOI (link to publication from Publisher):
10.1109/APEC.2016.7468402

Publication date:
2016

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Inrush Transient Current Analysis and Suppression of Photovoltaic Grid-Connected Inverters During Voltage Sag

Zhongyu Li, Rende Zhao
Electrical Engineering Department
China University of Petroleum (Eastern China)
Qingdao China
lzyupc619@gmail.com, zhaorende@126.com

Zhen Xin, Josep M. Guerrero,
Mehdi Savaghebi
Energy Department
Aalborg University
Aalborg Denmark
zxi@et.aau.dk, joz@et.aau.dk,
mes@et.aau.dk

Peide Li
Equipment Factory Co., LTD
Jinan China
peidezhilin@163.com

Abstract—The Inrush Transient Current (ITC) in the output of the photovoltaic grid-connected inverters is usually generated when grid voltage sag occurs, which can trigger the protection of the grid-connected inverters, and even destroy the semiconductor switches. Then, the grid-connected inverters will thus fail to ride through the voltage sag and even further cause more serious grid faults. This paper analyzes the generation principle of ITC and explores its influence factors, upon which, the suppression approaches are presented. Simulation and experimental results validate the theoretical analysis and the effectiveness of the proposed method.

Keywords—the inrush transient current (ITC); photovoltaic grid-connected inverters; voltage sag; influence factors; suppression approaches

I. INTRODUCTION

The recent interest in solar energy is increasing tremendously. And the installation of large photovoltaic (PV) power generation systems, which are interconnected with the utility grid, is accelerating [1], [2]. However, the PV power generation systems may lead to instability when grid disturbances occur. The mainly reason is that the photovoltaic grid-connected inverters (PGI) is sensitive to grid disturbances, especially, the voltage sags [3], [4]. Therefore, to maintain the stability of the power system, one important grid code issued in many countries is that the PGI should success riding through voltage sags [5-8]. In order to meet the requirement of the grid code, firstly, PGI shouldn’t disconnect from the grid by the reason of the fault current.

The fault current studies of grid-connected inverters have been widely reported in many literatures [2], [9-13]. In [9], a fault current limiter is used to reduce overcurrent in the converter, but it has the drawback of absorbing active power. Also, in the field of overcurrent reduction, there are other methods relying on the control scheme, which can avoid any increase of devices cost in the system. A study reported in [10] proposes a proportional-resonant (PR) current controller for the current limiter to make sure the output current without overcurrent, this current limiter is acquired indirectly by using an active power limiter. In [11] and [12], a proper reference current is selected to ride through grid faults and achieve requirements of different power quality. Among these methods, although low currents can be acquired, the control scheme does not assure its minimum value, but [13] overcomes this problem. On the other hand, for unbalanced voltage sags, there is also a control algorithm [2] to limit the peak current.

Obviously, the above mentioned technical literatures are all having concerns about the fault current limitation when the digital controller can take control of the output voltage of PGI. However, when a sudden decrease of grid voltage occurs, the output voltage of the PGI cannot change instantaneously. This is because of the time delay in its digital control system. Therefore, a large voltage drop will be generated on the output of the PGI. On the other hand, for unbalanced voltage sags, there is also a control algorithm [2] to limit the peak current.

Therefore, it is of great importance to study the ITC suppression solutions for the PGI. Obviously, a good understanding of the ITC influence factors will contribute a lot to this work. Actually, although the generation principle of ITC is not complex, the ITC influence factors have not been fully investigated so far. Therefore, in this paper, a thorough study of the ITC influence factors is carried out. Based on these findings, the appropriate ITC suppression approaches are then discussed. Finally, some experimental results are given to validate the theoretical analysis and the effectiveness of the proposed ITC suppression method.

II. PRINCIPLE AND CAUSE OF INRUSH TRANSIENT CURRENT

Fig.1 shows the basic control structure of the three-phase PGI. To explain the generation principle of ITC, the grid-connected inverter with L filter is analyzed for example. u, v, i, L, R represent the grid phase voltage, inverter output voltage, phase current, grid-connected inductance and its resistance,
respectively. In this paper, a proportional-integral (PI) current controller is used, which is denoted by $G(z)$ in Fig.1.

![Inverter Grid System Diagram](image)

As shown in Fig.1, the inverter output voltage reference v_{dq}^* is influenced by two components, which are the output of current controller u_{dq}^* and the direct feed-forward grid voltage u_{d0}. Due to the time inertial of the current PI controller, the direct feed-forward grid voltage is the effective component to control the inductor current during the process of the grid voltage sag.

Traditionally, the single-sampling approach is widely used in PGI digital control system, then the state variables (i.e., inductor currents and grid voltages) needed in the control algorithm are sampled once per switching period [14]. Because of this sampling approach, it is hard to guarantee that the instantaneous voltage can be sampled instantly, and with considering the zero-order hold (ZOH) effect of the PWM [14], the valid output voltage, which can limit the ITC, need at least one and half switching period to be produced by DSP. Due to this delay, the voltage difference on the grid-connected wire system, the sum of the current is $i_a+i_b+i_c=0$, so (1) becomes

$$
\begin{align*}
S_a U_{dc} - u_a - R_i a - L \frac{di_a}{dt} \\
S_b U_{dc} - u_b - R_i b - L \frac{di_b}{dt} \\
S_c U_{dc} - u_c - R_i c - L \frac{di_c}{dt}
\end{align*}
$$

where S_a, S_b, S_c are switch function. In the three-phase three-wire system, the sum of the current is $i_a+i_b+i_c=0$, so (2) becomes

$$
\begin{align*}
L \frac{dv_a}{dt} &= v_a - u_a - R_i a + \frac{1}{3} u_s \\
L \frac{dv_b}{dt} &= v_b - u_b - R_i b + \frac{1}{3} u_s \\
L \frac{dv_c}{dt} &= v_c - u_c - R_i c + \frac{1}{3} u_s
\end{align*}
$$

where v_a, v_b, v_c are the inverter output voltage. And their expression can be given by

$$
\begin{align*}
v_a &= \left[S_a - \frac{S_a + S_b + S_c}{3} \right] U_{dc} \\
v_b &= \left[S_b - \frac{S_a + S_b + S_c}{3} \right] U_{dc} \\
v_c &= \left[S_c - \frac{S_a + S_b + S_c}{3} \right] U_{dc}
\end{align*}
$$

u_i is the sum of the three phase voltage and is given by

$$
u_i = u_a + u_b + u_c
$$

According to (2), any single phase equivalent circuit diagram can be seen in Fig. 3 when considering the balance sag.
where \(k \) is the symbol of \(a \), \(b \), \(c \) phase. Before the voltage sags, according to Fig. 3, the single phase voltage expression for this system can be given by

\[
L \frac{d v_k}{dt} = v_k - u_k - R i_k + \frac{1}{3} u_k
\]

(5)

When the voltage sag occurs, (5) changes to

\[
L \frac{d v_k}{dt} = v_{k_f} - u_{k_f} - R i_{k_f} + \frac{1}{3} u_{k_f}
\]

(6)

where \(v_{k_f} \), \(u_{k_f} \) and \(i_{k_f} \) are the output voltage of PGI, grid phase voltage and the sum of the three phase voltage, respectively.

In (6), the resistance of the grid-connected inductor is so small that its influence to the ITC can be neglected in the following analysis.

When a sudden decreasing of the grid voltage occurs, DSP may not sample the voltage instantly. Hence, the PGI output voltage remains unchanged, with \(v_{k_f} = v_k \). However, the grid voltage could be significantly different and (5) changes to:

\[
L \frac{d v_k}{dt} = v_k + \frac{1}{3} u_{k_f} - u_{k_f}
\]

(7)

where \(u_{k_f} \) is the normal phase voltage. Assuming that the three voltage symmetrical sag occurs in the grid, then \(u_{k_f} = 0 \) and \(u_{k_f} = p_k u_k \). At the sag moment, the current in the inductor can be given by

\[
i_{k_f} = \int_{t_1}^{t_2} (v_k - p_k u_k) \, dt + i_0
\]

(8)

Thus, the ITC \(\Delta i_k \) is given by

\[
\Delta i_k = \int_{t_1}^{t_2} (v_k - p_k u_k) \, dt = \frac{1}{L} \Delta u \Delta t
\]

(9)

where \(\Delta t = t_2 - t_1 \) represents the digital control delay, \(\Delta u = v_k - p_k u_k \) represents the voltage difference of the inductor. It shows obviously that ITC is influenced by the digital control delay \(\Delta t \), the voltage difference \(\Delta u \) and the inductor \(L \). \(v_k \) is the PGI output voltage and kept unchanged during \(\Delta t \), while the grid voltage is changed to \(p_k u_k \).

Under normal grid-connected condition, assuming that the power factor is unit, hence the difference between \(u_k \) and \(v_k \) is very small compared with the fault condition, approximately, \(u_k \approx v_k \). So (9) can be rewritten by

\[
\Delta i_k \approx \frac{1}{L} \int_{t_1}^{t_2} (u_k - p_k u_k) \, dt = \frac{1}{L} (1 - p_k) u_k \Delta t
\]

(10)

According to (10), Figs. 4-6 show how the ITC are influenced by these factors.

1) The influence of grid-connected inductor \(L \) and the digital control delay \(\Delta t \) to the ITC: The influencing factors were set by following conditions (see Fig. 4):

a) CASE A:
\[u_k = 311V \quad p_k = 50\% \quad L = 2mH \quad \Delta t = 2.5 T_s = 75\mu s \]

b) CASE B:
\[u_k = 311V \quad p_k = 50\% \quad L = 4mH \quad \Delta t = 2.5 T_s = 125\mu s \]

c) CASE C:
\[u_k = 311V \quad p_k = 50\% \quad L = 2mH \quad \Delta t = 1.5 T_s = 125\mu s \]

By the comparison between CASE B and CASE C of Fig. 4, given that the grid-connected inductor is 2mH, the ITC is larger. As shown in CASE A and CASE C, the only difference is the sampling time which leads to the digital control delay are 75\(\mu s\) and 125\(\mu s\), respectively. Clearly, the longer the digital control delay is, the larger the ITC is.

![Fig. 4 The influence of \(L \) and the digital control delay \(\Delta t \) to the ITC](image)

2) The influence of sag depth \(p_k \) to the ITC: The influencing factors were set by the following conditions (see Fig. 5):

a) CASE A:
\[u_k = 311V \quad p_k = 70\% \quad L = 2mH \quad \Delta t = 125\mu s \]

b) CASE B:
\[u_k = 311V \quad p_k = 50\% \quad L = 2mH \quad \Delta t = 125\mu s \]

c) CASE C:
\[u_k = 311V \quad p_k = 30\% \quad L = 2mH \quad \Delta t = 125\mu s \]

As shown in Fig. 5, it’s clearly to see that the ITC is 13.6A when the sag depth is 70\%, which is larger than the other two cases (9.7A and 5.8A).
factors were set by the following conditions (see Fig. 6):

However, if the system is not able to change these influence

inductance, adopting the multi-sampling scheme approach, etc.

substantially reduced by using a larger grid-connected

suppressed by regulating the influence factors. The ITC can be

(d) phase A grid-connected current, and (e) zoomed-in views of ITC.

Fig. 6 The influence of sag time to the ITC: (a) Phase A grid voltage, (b)-(d) phase A grid-connected current, and (e) zoomed-in views of ITC.

3) The influence of sag time to the ITC: The influence factors were set by the following conditions (see Fig. 6):

a) CASE A:
\[u_l = 200V \quad p_u = 70\% \quad L = 2mH \quad \Delta t = 125\mu s \]

b) CASE B:
\[u_l = 100V \quad p_u = 70\% \quad L = 2mH \quad \Delta t = 125\mu s \]

c) CASE C:
\[u_l = 0V \quad p_u = 70\% \quad L = 2mH \quad \Delta t = 125\mu s \]

Fig. 6 shows the ITC at different sag time. The ITC is 8.8A, 4.4A, 0A, respectively. It’s easy to find out that the ITC is much larger as the voltage reaches the peak value.

Fig. 6 The influence of sag time to the ITC: (a) Phase A grid voltage, (b)-(d) phase A grid-connected current, and (e) zoomed-in views of ITC.

The validity of the (10) is demonstrated by the simulation results above.

In the high power PGI, the switching frequency can be hundreds hertz per second [17]-[18]. Moreover, considering the worst voltage sag condition, the ITC could reach the destructive value of the semiconductor.

IV. CURRENT SUPPRESSION METHOD

From the above analysis, obviously, the ITC can be suppressed by regulating the influence factors. The ITC can be substantially reduced by using a larger grid-connected inductance, adopting the multi-sampling scheme approach, etc. However, if the system is not able to change these influence factors, the methods mentioned above will be invalid. Due to the time delay of ITC can be dozens of \(\mu s \), to suppress this inrush current, this paper proposed a hardware suppression method to limit the ITC under the safe range.

As shown in Fig. 7, the hardware current limiter in PGI is positioned between the DSP controller and the IGBT driver, when a phase current is sampled with a value exceeding the limiting value, the limiter can thus set a low level of the PWM signals to the IGBT driver. By shutting down the IGBT about dozens of \(\mu s \), the ITC is suppressed and then the PWM signals resume normal again. Thus, the PGI overcurrent protection will not be triggered and the system will continuously work in the grid-connected condition. This is biggest different between the hardware current limiter and the overcurrent protection circuit. Meanwhile, the limiter does not influence the normal condition. The block diagram of hardware current limiter is shown in Fig. 8.

Fig. 7 The location of the hardware current limiter

As shown in Fig. 8, the first part of hardware current limiter is the current sampling circuit whose function is removing the higher harmonics from the sampled current and properly scaling the sampled current. Both the reference current circuit output \(I_{ref} \) and the processed current signal \(I_{sample} \) are sent to a current comparing circuit. The kernel of the comparing circuit is the hysteresis comparator, which has two thresholds \(I_{T1} \) and \(I_{T2} \). This hysteresis comparator is realized by a differential comparator, like LM339. When \(I_{sample} \) is larger than \(I_{T1} \), the comparator output \(Out_c \) goes low. When \(I_{sample} \) is lower than the value of \(I_{T1} \), \(Out_c \) will go high. Suppose that \(Out_c \) is low, when the PWM signals pass through the PWM blocking circuit which is realized by an AND gate, the PWM signals would be set to low level and until \(Out_c \) goes high. According to this mechanism, the ITC can be suppressed. This is quite different from the overcurrent protection circuit which will shut down the PGI. Although the above discussion is with one phase case, it also applies to three-phase system.

Fig. 8 The block diagram of hardware current limiter
The hardware of the current limiter is shown in Fig. 10. Because the devices used in the hardware limiter is inexpensive, the additional cost of the limiter is quite little.

The simulation results of ITC without and with the hardware current limiter are shown in Fig. 9, where the influence factors were set by the following condition

\[u_k = 311 \text{V} \quad p_u = 70\% \quad L = 2\text{mH} \quad \Delta t = 125\mu\text{s} \]

In Fig. 9, CASE A and B are the ITC waveform without and with the hardware current limiter. In CASE B, the current is suppressed under 11.2A due to the hysteresis of comparator. When the current goes beyond the first threshold (11.2A), the PWM signals are blocked, and this blocking status remains until the current goes down below the second threshold (8.6A). Then the PWM signals resume normal.

\[u_k = 311 \text{V} \quad p_u = 70\% \quad L = 2\text{mH} \quad \Delta t = 125\mu\text{s} \]

In Fig. 11, the influence factors of ITC were set by the following condition:

\[u_k = 311 \text{V} \quad p_u = 50\% \quad L = 2\text{mH} \quad \Delta t = 1.5T_s + t_d = 125\mu\text{s} \]

As shown in Fig. 11, under the normal condition, the grid-connected current is 7.0A, yet the ITC is 9.7A as the voltage sags. Substituting the influence factors \((L = 2.0\text{mH},\ p_u = 50\%,\ u_k = 311\text{V},\ \Delta t = 125\mu\text{s}) \) into (10), the theoretical result of ITC is 9.69A, which is consistent with the experimental result.

In Fig. 9, CASE A and B are the ITC waveform without and with the hardware current limiter. In CASE B, the current is suppressed under 11.2A due to the hysteresis of comparator. When the current goes beyond the first threshold (11.2A), the PWM signals are blocked, and this blocking status remains until the current goes down below the second threshold (8.6A). Then the PWM signals resume normal.

V. EXPERIMENTAL RESULT

To examine the theoretical analysis and the current limiter proposed in this paper, the experiments with a PGI system are performed shown in Fig.10. In the experimental setup, a voltage sag generator (VSG) is used to simulate the voltage sags. The inverter is controlled by DSP TMS320F28335. The photovoltaic power source is implemented by a programmed Chroma DC source. The parameters of the actual system are given in Table II.

![Fig. 10 Experimental system](image)

![Fig. 11 The experiment waveform when voltage sags at peak value](image)

TABLE II EXPERIMENTAL PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid phase voltage amplitude</td>
<td>311 V</td>
</tr>
<tr>
<td>Grid frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Grid inductance</td>
<td>2.0 mH</td>
</tr>
<tr>
<td>DC filter capacitance</td>
<td>1660 (\mu \text{F})</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>20 kHz</td>
</tr>
<tr>
<td>Voltage sag type</td>
<td>Three phase voltage sags</td>
</tr>
<tr>
<td>Sag duration time</td>
<td>0.5 s</td>
</tr>
</tbody>
</table>

In the actual system, the grid voltage and current are sampled by the hardware circuit. Due to the existence of the low-pass filter circuit, a hardware delay would be inevitably introduced in digital control. In this PGI system, the hardware delay is \(t_d = 50\mu\text{s} \).

In Fig. 11, the influence factors of ITC were set by the following condition:

\[u_k = 311 \text{V} \quad p_u = 50\% \quad L = 2\text{mH} \quad \Delta t = 1.5T_s + t_d = 125\mu\text{s} \]

As shown in Fig. 11, under the normal condition, the grid-connected current is 7.0A, yet the ITC is 9.7A as the voltage sags. Substituting the influence factors \((L = 2.0\text{mH},\ p_u = 50\%,\ u_k = 311\text{V},\ \Delta t = 125\mu\text{s}) \) into (10), the theoretical result of ITC is 9.69A, which is consistent with the experimental result.
In Fig. 13 and Fig. 14, the influence factors of ITC were set by the following conditions:

\[u_k = 311\text{V} \quad \rho = 70\% \quad L = 2\text{mH} \quad \Delta t = 2.5T_s + t_d = 175\mu s \]

\[u_k = 311\text{V} \quad \rho = 50\% \quad L = 2\text{mH} \quad \Delta t = 2.5T_s + t_d = 175\mu s \]

As shown in Fig. 13, when the sag depth is 70%, the ITC is 19.0A which is larger than the ITC in Fig. 14. The only difference between two Figures is that sag depth is changed to 175\(\mu \)s in Fig. 14 from 125\(\mu \)s in Fig. 11, consequently the ITC increases to 13.6A from 9.7A. By substituting the above influence factors into (10), the ITC are 19.05A and 13.56A, respectively. By observing the results given in Fig. 11, Fig. 13 and Fig. 14, obviously, the deeper of the voltage sag and the longer of the digital control delay, the greater destructive of ITC.

In Fig. 13 and Fig. 14, the influence factors of ITC were set by the following conditions:

\[u_k = 311\text{V} \quad \rho = 70\% \quad L = 2\text{mH} \quad \Delta t = 2.5T_s + t_d = 175\mu s \]

\[u_k = 311\text{V} \quad \rho = 50\% \quad L = 2\text{mH} \quad \Delta t = 2.5T_s + t_d = 175\mu s \]

As shown in Fig. 13, when the sag depth is 70%, the ITC is 19.0A which is larger than the ITC in Fig. 14. The only difference between two Figures is that sag depth is changed to 175\(\mu \)s in Fig. 14 from 125\(\mu \)s in Fig. 11, consequently the ITC increases to 13.6A from 9.7A. By substituting the above influence factors into (10), the ITC are 19.05A and 13.56A, respectively. By observing the results given in Fig. 11, Fig. 13 and Fig. 14, obviously, the deeper of the voltage sag and the longer of the digital control delay, the greater destructive of ITC.

VI. CONCLUSION

In this paper, the influence factors of the Inrush Transient Current (ITC) and its suppression method are presented. By using a hysteresis comparator, the proposed hardware current limiter has fast and excellent suppression ability to suppress the ITC. Thus, the PGI can uninterruptedly work in the grid-
connected condition without the influence of the ITC. Both simulation and experimental results validate the theoretical analysis and the proposed suppression method. Moreover, the proposed methods in this paper can also be used in other applications, where PWM inverters are used.

REFERENCES