
Aalborg Universitet

An In-depth Study of Sparse Codes on Abnormality Detection

Ren, Huamin; Pan, Hong; Olsen, Søren Ingvor; Jensen, Morten Bornø; Moeslund, Thomas B.

Published in:
IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016

DOI (link to publication from Publisher):
10.1109/AVSS.2016.7738016

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Ren, H., Pan, H., Olsen, S. I., Jensen, M. B., & Moeslund, T. B. (2016). An In-depth Study of Sparse Codes on
Abnormality Detection. In IEEE Advanced Video and Signal-based Surveillance (AVSS) 2016 (pp. 1-7). IEEE
(Institute of Electrical and Electronics Engineers). https://doi.org/10.1109/AVSS.2016.7738016

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/AVSS.2016.7738016
https://vbn.aau.dk/en/publications/adf61ca2-12ab-4ae5-8570-ded8dbad8137
https://doi.org/10.1109/AVSS.2016.7738016


An In-depth Study of Sparse Codes on Abnormality Detection

Huamin Ren
Aalborg University, Denmark

hr@create.aau.dk

Hong Pan, Søren Ingvor Olsen
University of Copenhagen, Denmark

hong.pan,ingvor@di.ku.dk

Morten Bornø Jensen, Thomas B. Moeslund
Aalborg University, Denmark

mboj,tbm@create.aau.dk

Abstract

Sparse representation has been applied successfully in
abnormal event detection, in which the baseline is to learn
a dictionary accompanied by sparse codes. While much
emphasis is put on discriminative dictionary construction,
there are no comparative studies of sparse codes regard-
ing abnormality detection. We present an in-depth study of
two types of sparse codes solutions - greedy algorithms and
convex L1-norm solutions - and their impact on abnormal-
ity detection performance. We also propose our framework
of combining sparse codes with different detection methods.
Our comparative experiments are carried out from vari-
ous angles to better understand the applicability of sparse
codes, including computation time, reconstruction error,
sparsity, detection accuracy, and their performance com-
bining various detection methods. The experiment results
show that combining OMP codes with maximum coordinate
detection could achieve state-of-the-art performance on the
UCSD dataset [14].

1. Introduction
Abnormal event detection is the core of video surveil-

lance applications, which could assist people in various situ-
ations, such as monitoring patients/children, observing peo-
ple and vehicles in a busy environment, or preventing theft
and robbery. The purpose of abnormality detection is to
learn normal patterns or behaviors through training and de-
tect any abnormal or suspicious behaviors in test videos.

Abnormal event detection, like other video analysis ap-
plications such as action recognition, needs to address the
following questions: how to represent image/video content
effectively, how to learn patterns from the training data, and
how to conduct the detection task. What differentiates ab-
normal event detection from other applications is that train-
ing videos only contain normal behaviors, and the determi-

nation of abnormal features is based on a detection method
rather than a classification method. Sparse representation
has been found beneficial due to the its compactness and
representative ability, with which the remaining signals can
be represented or reconstructed in terms of a linear combi-
nation of atoms in an overcomplete dictionary [19] [3] [8].
The use of sparse representation has also turned out to
be successful in other applications, such as image denois-
ing [5] and action recognition [11].

Research on sparse representation can be generally
divided into dictionary learning [13] and sparse cod-
ing [15] [18] [2] [10]. Dictionary learning aims to ob-
tain atoms (or basis vectors) for a dictionary. Such atoms
could be either predefined, e.g., undecimated Wavelets [9],
steerable Wavelets, Contourlets [4], Curvelets [1], and more
variants of Wavelets, or learned from the data itself, such as
the K-SVD [16] [7] method and the BSD algorithm [19].
Sparse coding, on the other hand, attempts to find sparse
codes (or coefficients) with a given dictionary, i.e., find-
ing the solution to the underdetermined system of equa-
tions y = Dx either by greedy algorithms or convex al-
gorithms. Through sparse coding, input features can be
approximately represented as a weighted linear combina-
tion of a small number of (unknown) basis vectors. These
methods include matching pursuit [15], orthogonal match-
ing pursuit [18], and basis pursuit [2].

When applying sparse representation on abnormal event
detection, a great deal of emphasis is put on dictionary
learning. A common procedure is: first, visual features are
extracted either on a spatial or temporal domain. A dictio-
naryD is then learned based on these visual features, which
consists of basis vectors capturing high-level patterns in the
input features, as in [13, 19]. A sparse representation of a
feature is a linear combination of a few elements or atoms
from a dictionary. Mathematically, this can be expressed as
y = Dx, where y ∈ Rp is a feature of interest, D ∈ Rp×m

is a dictionary, and x ∈ Rm is the sparse representation of
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y in D. Typically m � p results in an overcomplete or
redundant dictionary. During the detection procedure, each
testing feature can be determined as normal or an anomaly
based on its reconstruction error.

Despite the aforementioned progress, the impacts of
sparse codes that serve as important feature representations
to distinguish normalities from anomalies remain to be ex-
plored. For instance, among the huge body research on
coding representations, which performs well in detecting
anomalies? For a given sparse code, most of the existing
approaches use only an approximate reconstruction error
to save computation; for example, the least square error,
which means the sparse codes are actually not taken into
consideration during the detection. In fact, the impact of
sparse codes generated by different approaches is still un-
clear. Therefore, we offer an in-depth study of the sparse
codes in terms of their performance on abnormal event de-
tection. We pay special attention to two major types of
sparse codes: greedy algorithms and L1-norm minimization
algorithms.

Our main contributions are: 1) we provide an in-depth
study of sparse codes, in terms of their reconstruction error,
sparsity, computation time and detection performance on
anomaly datasets; 2) we propose a framework to detect ab-
normality, which combines sparse representation with var-
ious detection methods; and 3) we propose an effective
code detection method, Maximum Coordinate (MC), which
achieves the state-of-the-art performance on the UCSD
anomaly detection dataset [14] when combining with the
OMP codes [18].

The remainder of this paper is organized as follows: We
give a brief review of greedy algorithms and L1-norm solu-
tions in Sec.2 and propose our framework of abnormal event
detection in Sec.3, which combines sparse codes with vari-
ous detection methods. We show our comparative results in
Sec.4 and conclude the paper with a discussion and ideas of
future work in Sec.5.

2. Sparse Codes Representation
There are various ways of generating sparse codes

through optimization solutions. We introduce two catego-
rized solutions: greedy algorithms and L1-norm approxi-
mation solutions.

Greedy algorithms rely on an interactive approximation
of the feature coefficients and supports, either by iteratively
identifying the support of the feature until a convergence
criterion is met, or by obtaining an improved estimate of
the sparse signal at each iteration that attempts to account
for the mismatch with the measured data. Compared to L1-
norm minimization methods, greedy algorithms are much
faster, and thus are more applicable to very large problems.

L1-norm minimization, on the other hand, has become
a popular tool to solve sparse coding, which benefits

both from efficient algorithms and a well-developed theory
for generalization properties and variable selection consis-
tency [21]. We list two common L1-norm minimization for-
mulations in E.q. 1 and E.q. 2. Since the problem is convex,
there are efficient and accurate numerical solvers.

x̂ = argmin
x

1

2
‖Dx− y‖22 + λ‖x‖1 (1)

x̂ = argmin
x
‖x‖1 subject to ‖Dx− y‖2 ≤ ε (2)

2.1. Greedy Algorithms

We review two broad categories of greedy methods to re-
construct y, which are called ‘greedy pursuits’ and ‘thresh-
old’ algorithms. Greedy pursuits can be defined as a set of
methods that iteratively build up an estimate x. They con-
tains three basic steps. First, the x is set to a zero vector.
Second, these methods estimate a set of non-zero compo-
nents of x by iteratively adding new components that are
deemed to be non-zeros. Third, the values for all non-zeros
components are optimized. In contrast, thresholding al-
gorithms alternate between element selection and element
pruning steps.

There is a large and growing family of greedy pursuit
methods. The general framework in greedy pursuit tech-
niques is 1) to select an element and 2) to update the co-
efficients. Matching Pursuit (MP) [15] discusses a general
method for approximate decomposition in E.q. 3, which
addresses the sparsity issue directly. The algorithm selects
one column from D at a time and only the coefficient asso-
ciated with the selected column is updated at each iteration.
More concretely, it starts from an initial approximation x
(0) = 0 and residual R(0) = x, then builds up to a sequence
of sparse approximations stepwise. At stage k, it identifies
the dictionary atom that best correlates with the residual and
then adds to the current approximation a scalar multiple of
that atom. Afterm steps, one has a sparse code, seen in E.q.
3 with residual R = R(m).

y =

m∑
i=1

xridri +R(m) (3)

Orthogonal Matching Pursuit (OMP) [18], updates x
in each iteration by projecting y orthogonally onto the
columns of D associated with the current support atoms.
In contrast to MP, OMP never reselects an atom and the
residual at any iteration is always orthogonal to all currently
selected atoms in the dictionary. Another difference be-
tween the two is that OMP minimizes the coefficients for
all selected atoms at iteration k, while MP only updates
the coefficient of the most recently selected atom. In or-
der to speed up pursuit algorithms, it is necessary to select
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Figure 1. Our framework of combining sparse codes with different detection methods.

multiple atoms at a time; therefore, the algorithms are pro-
posed to keep computational costs low enough for apply-
ing to large-scale problems, such as Stagewise Orthogonal
Matching Pursuit (StOMP) [6]. These algorithms choose
the element that meets some threshold criterion at the atom
selection step and have demonstrated both theoretical and
empirical effectiveness for the large system.

Greedy algorithms are easy to implement and use and
can be extremely fast. However, they do not have recovery
guarantees, i.e., how well each sample can be reconstructed
by the dictionary and their sparse codes, in contrast to L1-
norm approximations.

2.2. L1-norm Approximation

L1-norm approximation replaces the L0 constraint with a
relaxed L1-norm. For example, in the Basis Pursuit method
(BP) [2], a nearly universally differentiable and often con-
vex cost function is applied, while in the Focal Underde-
termined System Solver (FOCUSS) algorithm [17], a more
general model is optimized.

Donoho and etc. [5] suggest that for some measurement
matrices D, the generally NP-Hard problem (L0 norm)
should be equivalent to its convex relaxation: L1 norm,
see E.q. 1. The convex L1 problem can be solved using
methods of linear programming. Representative work in-
cludes Basis Pursuit (BP). Instead of seeking sparse rep-
resentations directly, it seeks representations that minimize
the L1 norm of the coefficients. Furthermore, BP can com-
pute sparse solutions in situations where greedy algorithms
fail. The Lasso algorithm [20] is similar to BP and is, in
fact, know as Basis Pursuit De-Noising (BPDN) in some

areas. Rather than trying to minimize the L1-norm like BP,
the Lasso places a restriction on its value.

The FOCUSS algorithm has two integral parts: a low-
resolution initial estimate of the real signal and the iteration
process that refines the initial estimate to the final localized
energy solution. The iterations are based on the weighted
norm minimization of the dependent variable for which the
weights act as a function of the preceding iterative solutions.
The algorithm is presented as a general estimation tool that
can be used across various applications. In general, L1-
norm methods offer better performance in many cases, but
they are also more demanding with respect to computation.

3. Sparse Code Based Detection
In addressing the detection of abnormal behaviors based on
sparse codes, two issues should be addressed: 1) how to
generate the sparse codes, i.e., the solution of x; and 2) how
to determine whether the testing code is normal or anoma-
lous. For the first issue, various sparse codes discussed in
Sec.2 could be adopted, while for the second issue we take
various detection methods into consideration. Our proposed
abnormal event detection framework is shown in Fig. 1.

After a testing feature is represented by a sparse code,
the detection method determines whether it is normal or ab-
normal. There are two commonly used detection methods:
the reconstruction error (RE) and the approximated recon-
struction error (ARE). In terms of sparse codes, the high
response of dictionary atoms, or concentrated non-zeros in
coefficients, may indicate a connection to a possible nor-
mality. Unfortunately, these codes property and their con-
nection with normality or abnormality have not been ex-



plored yet. Therefore, we also introduce maximum coordi-
nate (MC) and the non-zero concentration (NC) as two new
detection methods.

Reconstruction Error (RE): Most existing approaches
treat dictionary learning and detection as two separate pro-
cesses, i.e., a dictionary is typically learned based on the
training data, and then different measurements are adopted
to determine whether the testing sample is an anomaly.
More sophisticated approaches unify these two processes
into a mixed reconstructive and discriminative formulation.
Nevertheless, a basic measurement that is widely used in
both cases is reconstruction error. The reconstruction error
of the testing sample y, according to the dictionary D, is
represented as: ‖y − Dα‖22, where α is the sparse code of
y.

Approximate Reconstruction Error (ARE): To speed
up detection, reconstruction error is sometimes approxi-
mated by the least squares [13] rather than being calcu-
lated based on sparse codes through an optimization so-
lution. Thus, the reconstruction error is calculated as:
‖y −D(DTD)−1DT y‖.

Maximum Coordinate (MC): Given a testing sample y,
its sparse code is denoted as α. Ideally, all non-zero entries
in the estimate α would be associated with the columns of
the dictionary from a normal pattern (note that only normal
data is used during the training). Then we could detect y as
a normal feature if a single largest entry in α were found;
otherwise, it would be detected as an anomaly.

Non-zero Concentration (NC): Inspired by [19], the
distribution of non-zeros is more important to the detec-
tion than the location of non-zero elements. Thus, we pro-
pose a detection measurement called non-zero concentra-
tion. Based on the dictionary proposed in [19], a normal
code should have a non-zero concentration property, i.e.,
non-zeros concentrated in the dictionary that has the small-
est reconstruction error. Anomalies can be detected if no
concentration is found on any of the existing dictionaries.

4. Experimental Results
We provide a comprehensive study of the abnormality

detection performance on sparse codes. Our experiments
are carried out on the UCSD [14] Ped1 dataset because it
is a popular abnormal event detection dataset and many de-
tection results are reported. We start by evaluating the per-
formance of various sparse codes, focusing on a compari-
son of sparse codes generated by two types of algorithms:
greedy algorithms and L1-norm approximation algorithms.
The following aspects are highlighted: computation time,
reconstruction error, the ratio of sparsity in codes, and their
performance on abnormal event detection. Next, we use
the OMP algorithm to generate sparse codes, combine the
codes with different detection methods, and conclude by
evaluating their detection performance with state-of-the-art

algorithms.

4.1. Dataset and Settings

UCSD Ped1 dataset [14] is a frequently used public
dataset for detecting abnormal behaviors. It includes clips
of groups of people walking towards and away from the
camera with some perspective distortion. There are 34 train-
ing videos and 36 testing videos with a resolution of 238 ×
158. Training videos contain only normal behaviors. Test-
ing videos demonstrate abnormal behaviors exhibited by ei-
ther non-pedestrian entities in the walkways or anomalous
pedestrian motion patterns.

We use the spatial-temporal cubes in which 3D gradi-
ent features are computed, which mimic the setting in [12].
Each frame is divided into patches of a size of 23 × 15.
Five consecutive frames are used to form 3D patches, and
gradients features are extracted in each patch. See details
in [12]. Through this, we obtain 500-dimensional visual
features and reduce them to 100 dimension by using the
PCA algorithm.

4.2. Comparison of Sparse Codes

We evaluate sparse codes from four perspectives: com-
putation time, reconstruction error, the ratio of sparsity in
codes, and the codes’ performance on abnormal event de-
tection based on their reconstruction error.

We randomly select 1% of the training features (238,000
features in total), use the K-SVD algorithm [16] to construct
a dictionary consisting of 1000 atoms, and generate sparse
codes by applying various algorithms. There are many algo-
rithms available; we select only representative greedy algo-
rithms (OMP, MP, StOMP) and compare them with repre-
sentative L1-norm solutions (BP and Lasso algorithm). The
reconstruction error is calculated by Re = ‖y −Dx‖22. We
also calculate the mean ratio of sparsity in the codes, i.e.,
the average percentage of non zeros in the dimension of
the codes (1000). We report these results as well as com-
putation time in Tab. 1. Greedy algorithms need far less
time to compute, and the OMP achieves the fastest compu-
tation, followed by the StOMP algorithm. OMP is approx.
180 times faster than the Lasso algorithm. Both OMP and
StOMP could achieve sparser solutions, while BP could ob-
tain an extremely dense solution with an exact recovery.

To measure the accuracy of abnormality detection, we
calculate the reconstruction error of each feature and regis-
ter features with large reconstruction errors as anomalies.
A frame with an abnormal feature is considered a posi-
tive frame. To compare performance, we adopt two pop-
ular evaluation criteria in abnormality detection: frame-
level evaluation and pixel-level evaluation, which are de-
fined in [14]. We follow precisely their setting in our eval-
uation, which is to say that in the frame-level evaluation,
a frame is considered abnormal if it contains at least one



Table 1. Comparison of greedy algorithms and L1-norm solutions on sparse code generation.

ALGORITHMS COMPUTATION TIME (S) RECONSTRUCTION ERROR SPARSITY (%)
MP 166.00 0 31.8%
OMP 1.83 0.4236 1.9%
STOMP 15.79 0 10%
BP 114.20 0 100%
LASSO 333.49 0.0005 9.9%

Table 2. Comparative results on UCSD Ped1: frame-level evaluation results (AUC and EER) and pixel-level evaluation results (AUC and
EDR) are reported.

ALGORITHMS AUC (FRAME-LEVEL) EER AUC (PIXEL-LEVEL) EDR COMPUTATION TIME (S)
MP 0.6956 0.3547 0.3898 0.5716 13342
OMP 0.5003 0.5052 0.2849 0.6637 527
STOMP 0.5415 0.465 0.3494 0.6190 4668
BP 0.5454 0.4764 0.3057 0.6479 38949
LASSO 0.5305 0.5173 0.3132 0.6383 56400

anomaly feature. In contrast, for the pixel-level evaluation,
a frame is marked as a correctly detected abnormality if at
least 40% of the truly abnormal pixels are detected. Ground
truth on frame-level and pixel-level annotation is available,
and we calculate the true positive and false positive rates
to draw ROC curves, and report the Area Under the Curve
(AUC). Following [14], we obtain the value when the false
positive number equals the missing value. These are called
the equal error rate (EER) and equal detected rate (EDR)
in the frame and pixel-level evaluations, respectively. See
Tab. 2 for details. In the frame-level evaluation, the MP
algorithm achieves the best results with a moderate compu-
tation time. The StOMP algorithm is relatively fast, and the
AUC is satisfactory.

It is worth noting that the pixel-level AUC is lower than
the frame-level AUC in general because the pixel-level eval-
uation is stricter and takes location into consideration. In
the frame-level evaluation, there could be a coincidental de-
tection - a normal feature could be erroneously detected as
an anomaly in an abnormal frame, and this erroneous detec-
tion could end up with a correct detection of that frame. In
the pixel-level evaluation, in contrast, a frame is marked as
a correctly detected abnormality only if a sufficient number
of anomaly features has been found. Compared to the MP
algorithm, the StOMP algorithm can achieve a competitive
detection result in the pixel-level evaluation, but it is three
times faster than the MP algorithm. The BP algorithm also
performs well on pixel-level detection; however, its high
computation cost hampers its application in real detection
problems.

In summary, greedy algorithms compute quickly, but
their reconstruction errors are larger than L1-norm solu-
tions. Convex relaxations, such as the BP and the Lasso
algorithm, have better theoretical guarantees and recovery
ability, but they are more time consuming. Surprisingly,

greedy algorithms, especially the StOMP algorithm, seem
to perform better on pixel-level detection, which means that
they could more accurately localize anomaly features.

4.3. Comparison of Combining Sparse Codes with
Detection Methods

We choose the OMP algorithm to generate sparse codes
due to computation considerations, combine them with four
types of detection methods (RE, ARE, MC, NC), and com-
pare their detection performance. We draw comparative
frame-level AUC curves that correspond to the detection
methods. We then compare these combinations with state-
of-the-art methods on abnormality detection.
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Figure 2. Combining sparse codes generated by the OMP algo-
rithm with various detection methods: non-zero concentration
(NC), approximate reconstruction error (ARE), reconstruction er-
ror (RE), and maximum coordinate (MC).



Table 3. Comparative values of AUC, EER and EDR on UCSD Ped1 dataset.
Method AUC (frame-level) EER AUC (pixel-level) EDR
SF-MPPCA [14] 0.5900 0.3200 0.2130 0.3200
MDT [14] 0.8180 0.2500 0.4610 0.2500
Lu13[13] 0.5842 0.4413 0.3622 0.5826
OMP+RE 0.6603 0.3823 0.5386 0.5113
OMP+ARE 0.5013 0.5081 0.5317 0.5113
OMP+NC 0.5697 0.5055 0.5397 0.5113
OMP+MC 0.6339 0.4016 0.5433 0.5113

As displayed in Fig. 2, abnormality detection by com-
puting the real reconstruction error outperforms the esti-
mated reconstruction error on frame-level evaluation, which
further validates the idea that the decomposition of real co-
efficients is necessary. Among all approaches, OMP+RE
achieves the best AUC score on frame-level evaluation
(0.6603), followed by MC (0.6340), NC (0.5697) and ARE
(0.5013). We give further insight into how accurate the
detection is in an even stricter pixel-level evaluation. We
find that OMP+MC achieves the best result with an AUC
of 0.5433. This is because that the high response in the
code means that there is a strong connection between the
testing feature with some atoms in the dictionary. This hap-
pens when the features have a similar pattern to the atoms
convey. Therefore, the high response also implies that the
testing feature is normal. However, we also notice that NC
detection, which also considers the non-zeros distribution
in sparse codes, performs relative poorly. This may be due
to the type of dictionary being adopted, or due to the princi-
ple of how the OMP code is generated, which are based on
the reconstruction error of the chosen atoms, rather than the
concentrated atoms.

Finally we compare combining OMP codes and various
detection methods with state-of-the-art abnormality detec-
tion algorithms. Comparison of AUC in the frame-level
evaluation of UCSD Ped1 is shown in Fig. 3, and quan-
tized evaluations are shown in Tab. 3. Compared with
state-of-the-art algorithms, combining OMP codes with de-
tection methods outperform other methods on two criteria
evaluation except MDT method on frame-level evaluation,
which verifies the effectiveness of sparse codes generated
by greedy algorithms. Note that as aforementioned pixel-
level is a more precisely defined evaluation criterion, even
though the AUC of MDT [14] on frame-level evaluation is
higher than OMP codes, its AUC on pixel-level evaluation
is low, which may indicate a high false positive prediction of
abnormal pixels. Furthermore, maximum coordinate detec-
tion outperforms other methods, which implies that a high
response (large code value) could contribute to the detec-
tion.

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

UCSD Ped1 Frame-level ROC

Sparse
Adam
MPPCA+SF
SF
MPPCA
MDT
Lu13
BSD (Ours)
OMP+NC
OMP+ARE
OMP+RE
OMP+MC

Figure 3. Comparison with state-of-the-art abnormality detection
approaches.

5. Discussions and Conclusion

In this paper, we give an in-depth study of sparse codes
in respect to their performance in abnormal event detection.
We compare two category sparse codes: codes generated
by greedy algorithms and those generated by L1-norm so-
lutions. Various aspects are covered: computational cost,
recovery ability, sparsity, and their detection performance.
Furthermore, we explore the sparse codes and compare dif-
ferent methods to determine whether a testing code is an
anomaly or not.

Experimental results show that greedy algorithms can
obtain good detection results with fewer computations.
Among the top three best detection results, two are greedy
algorithms. Considering the computation requirement,
which limits some L1-norm algorithms from being ap-
plied in real surveillance applications, greedy algorithms
are promising. When combining OMP codes with var-
ious detection measurements, maximum coordinate mea-
surement outperforms other methods, which implies that the
high response in the code could help the detection result.
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