
Aalborg Universitet

Robust Two Degrees-of-freedom Single-current Control Strategy for LCL-type Grid-
Connected DG System under Grid-Frequency Fluctuation and Grid-impedance
Variation

Zhou, Leming; Chen, Yandong; Luo, An; Guerrero, Josep M.; Zhou, Xiaoping; Chen, Zhiyong;
Wu, Wenhua
Published in:
IET Power Electronics

DOI (link to publication from Publisher):
10.1049/iet-pel.2016.0120

Publication date:
2016

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Zhou, L., Chen, Y., Luo, A., Guerrero, J. M., Zhou, X., Chen, Z., & Wu, W. (2016). Robust Two Degrees-of-
freedom Single-current Control Strategy for LCL-type Grid-Connected DG System under Grid-Frequency
Fluctuation and Grid-impedance Variation. IET Power Electronics, 9(14), 2682 - 2691.
https://doi.org/10.1049/iet-pel.2016.0120

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

https://doi.org/10.1049/iet-pel.2016.0120
https://vbn.aau.dk/en/publications/a112b1ec-7079-456a-821e-a8335d639d91
https://doi.org/10.1049/iet-pel.2016.0120


Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025



 1

Leming Zhou1, Yandong Chen1*, An Luo1, Josep M. Guerrero2, Xiaoping Zhou1, Zhiyong Chen1, and Wenhua Wu1 

1. College of Electrical and Information Engineering, Hunan University, Changsha, China 

2. Department of Energy Technology, Aalborg University, Aalborg East 9220, Denmark 

*yandong_chen@hnu.edu.cn 

Abstract—For LCL-type grid-connected distributed generation (DG) system, the grid-frequency fluctuation and grid-

impedance variation affect the active/reactive power control accuracy and resonance peak suppression respectively, 

which would reduce the system robustness. In this paper, a robust two degrees-of-freedom single-current control 

(RTDOF-SCC) strategy is proposed, which mainly includes the synchronous reference frame quasi-proportional-integral 

(SRFQPI) control and robust grid-current-feedback active damping (RGCFAD) control. The proposed SRFQPI control 

can compensate the local-loads reactive power, and regulate the instantaneous grid current without steady-state error 

regardless of the fundamental frequency fluctuation. Simultaneously, the proposed RGCFAD control effectively damps 

the LCL-resonance peak regardless of the grid-impedance variation, and further improves both transient and steady-

state performances. The stability margin and dynamic response of the overall system are analyzed in detail, and the 

proper parameters are selected without complicated trial. Finally, Simulation and experimental results verify the 

proposed control and design strategies. 

Index Terms—Grid-connected inverter, LCL-filter, two degrees-of-freedom, single-current control, active damping 

1. INTRODUCTION 

With the shortage of fossil energy and deterioration of environmental pollution, renewable energy (e.g. wind and solar energy) 

distributed generations (DGs) have been attracted more attention, and have become a research hotspot [1]. As a key interface 

between DGs and utility grid, LCL-type grid-connected inverter has become a popular and cost-effective application. However, 

there are still some unsolved problems for LCL-type inverter as follows: i) Since the DGs are widely installed at the end of the 

feeder, it is necessary to compensate the load reactive power in order to remain the feeder steady [2]; ii) Since LCL-filter is a 

three-order low-damping system, it easily occurs to resonance, and then affects the system stability [3]; iii) Since plenty of DGs 

and local loads are injected into the utility grid, the influences of grid-frequency fluctuation and grid-impedance variation can not 

be negligible for the LCL-type grid-connected inverter [4]. Especially, the grid-frequency fluctuation affects active/reactive 
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power control [5], and the grid-impedance variation affects the LCL-resonance suppress [6]. These problems are urgent to be 

considered and solved in the DGs. 

To regulate active and reactive powers, the synchronous reference frame (SRF) theory and the instantaneous reactive power 

(IRP) theory are the most addressed ones for the three-phase system [7-8]. Through creating an orthogonal imaginary variable 

from an original single-phase signal, active and reactive powers can also be conveniently regulated by using SRF and IRP 

techniques for the single-phase system [9]. Using a conventional SRF proportional- integral (SRFPI) regulator, the DGs can 

easily achieve zero steady-state error. Thus, the SRFPI regulator is considered to be superior to the PI regulator in the stationary 

coordinate frame [10]. However, the system stability and total harmonic distortion (THD) are greatly influenced by the grid-

frequency fluctuation and grid-voltage distortion since the SRFPI regulator depends extremely on the synchronous reference 

frame phase-locked loop (SRF-PLL) [5]. Therefore, it is necessary to improve the robustness of SRF control system against grid-

frequency fluctuation. 

To damp the LCL-resonance peak, active damping methods for the LCL-type grid-connected inverter have been discussed, 

mainly including the capacitor-voltage feedback (CVF) [11], capacitor-current feedback (CCF) [12], multivariable composite 

feedback (MCF) [13], grid-current feedback (GCF) [14-15], and so on. Compared with the extra-feedback methods, the GCF 

active damping method does not demand an additional sensor or a complex software-based observer, which can reduce the 

complexity as well as improve the reliability in the practical cases. Especially, the GCFAD method with high-pass-filter (HPF) 

has drawn much attention for its simple implementation and no noise disturbance [14-15]. However, the impact of grid-

impedance variation on the GCF active damping methods is unconsidered in the digital control. Since the control delay derived 

from the digital controller can drift the virtual equivalent damping resistance (VEDR) from its designed value [16], the control 

system stability is always drastically deteriorated. For instance, when the LCL-resonance frequency shifts to one-sixth of 

switching frequency fs due to the potential influence of the grid impedance, the VEDR of CCF active damping method equals to 

zero at the LCL-resonance frequency [12]. Consequently, the DGs can be hardly stable no matter how much the CCF coefficient 

is selected. Also, the similar phenomenon will occur in the GCF active damping method since its critical frequency is located in 

the range of LCL-resonance frequency [15]. To enhance the system damping and stability, the LCL-resonance frequency must 

keep away from the critical frequency which causes the VEDR equals to zero [17]. However, the LCL-resonance frequency 

always occurs shifting with the grid-impedance variation since the transmission lines and isolation transformers should not be 

negligible [18-19]. Consequently, the potential instability will be triggered if the grid-impedance variation imposes the LCL-

resonance frequency migrating to the critical frequency. It is necessary to improve the robustness of the control system in case of 

grid-impedance variation.  
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In this paper, a robust two degrees-of-freedom single-current control (RTDOF-SCC) strategy is proposed for single-phase 

LCL-type grid-connected DG System, which mainly includes the synchronous reference frame quasi-proportional–integral 

(SRFQPI) controller and robust grid-current-feedback active damping (RGCFAD) controller. The paper is organized as follows. 

The configuration and control strategy of photovoltaic (PV) DG system is described in Section 2. In Section 3, the performance 

of the RGCFAD controller is analyzed, and its optimized parameters are selected. The dynamic response and stability margin of 

the overall system are analyzed in detail, and the proper parameters of RTDOF-SCC are selected. Simulation and experimental 

results are illustrated in Section 4. Some conclusions are given in Section 5. 

2. SYSTEM MODELING AND CONTROL METHOD 

The structure of single-phase LCL-type grid-connected PV system is shown in Fig. 1, which mainly includes PV arrays, main 

circuits, local loads and control circuits. The main circuits are composed of the boost circuit, the single-phase full-bridge inverter, 

and the LCL-filter. The boost circuit transfers solar energy from PV arrays to the dc-link energy-storage capacitor Cdc through 

the maximum-power-point-tracking (MPPT) control [3]. The single-phase full-bridge inverter transmits the energy into the grid 

and local loads through the proposed RTFOF-SCC control. Lg is the grid inductance. L1 and L2 are the inverter-side and grid-side 

LCL-filter inductances, respectively, and their equivalent series resistances are R1 and R2. C is the LCL-filter capacitance. udc is 

the dc-link voltage, and uinv is the inverter output voltage. upcc is the point of common coupling voltage. us is the grid voltage. ig 

is the grid current, and is is the true injected grid current. 
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Fig.1. Configuration of single-phase LCL-type grid-connected PV system. 
 

As shown in Fig. 2 (a), the proposed RTDOF-SCC control strategy is composed of the dc-link voltage controller, double-

sampling mode, the SRFQPI controller and RGCFAD controller. The outer dc-link voltage controller keeps the dc-link voltage 

steady in the reference voltage u* 
dc [1]. The double-sampling mode reduces the control delay of active-damping loop through 

sampling the grid-current signal twice in each switching period Ts. The SRFQPI controller compensates reactive power quickly 
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and regulates the instantaneous grid current without steady-state error regardless of the grid-frequency fluctuation. The 

RGCFAD controller damps LCL-resonance peak and improves the system robustness against the grid-impedance variation. ω0 is 

the fundamental angular frequency. Kinv is the inverter gain. I* 
p  and I * 

q  are the active and reactive reference currents, respectively 

[3]. Gh(s) is the transfer function of Zero-Order-Holder (ZOH). λ1 and λ2 are the computation delay coefficients of SRFQPI and 

RGCFAD, respectively. Gcontrol1(s) and Gcontrol2(s) are the transfer functions of SRFQPI and RGCFAD control delays, 

respectively, and expressed as Eq.(1) [18]. 
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(b)                                                                                                                       (c) 
Fig. 2. Block diagram of the proposed RTDOF-SCC method and equivalent mode. (a) The proposed RTDOF-SCC method. (b) Equivalent structure of the 
proposed SRFQPI controller. (c) Equivalent electrical mode after introducing virtual impedance of RGCFAD controller. 

 

In the double-sampling mode, the sampling instants of ig are located at the peak and trough of the triangular carrier wave to 

avoid introducing the switching ripples. The two sampling values ig_peak and ig_trough are set as the input signals of SRFQPI and 

RGCFAD, respectively. In this mode, λ1=1 and λ2=0.5, so it can reduce the control delay of the active-damping loop as well as 

minimize the influence of the control delay on the VEDR. 

Meanwhile, the transfer function GLCL(s) from ig to uinv can be derived as follows. 

g

LCL 2 2
inv res

( ) 1
( )

( ) ( )

i s
G s

u s s s 
 


                                                              (3) 

where ωres is the LCL-resonance angular frequency, expressed as Eq. (4). 
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2.1. SRFQPI controller 

To regulate active and reactive powers, the grid current ig is transformed in the synchronous-reference frame as shown in Fig.2 

(a). Using the derivative of the α-phase grid current ig_peak[3], the virtual β-phase current is obtained to construct the orthogonal 

two-phase currents for detecting the reactive current quickly in the stationary coordinate frame. To reduce the effect of grid-

frequency offset, the quasi-proportional–integral (QPI) controller is proposed in the d-q rotating coordinate frame for obtaining a 

SRFQPI controller in the - stationary coordinate frame, which is equivalent to the characteristics of QPR controller.  

Assuming iα=ig_peak, the virtual β-phase current iβ can be obtained by the derivative of ig_peak(s), and iβ can be expressed as 

follows. 

g_peak

0

( ) ( )
s

i s i s 
                                                                              (5) 

Then, the dc components of active current Ip and reactive current Iq are derived as follows. 
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                                                                          (6) 

where Ig is the RMS value of grid-current ig at  the fundamental frequency ω0, and  is the initial phase-angle difference between 

grid-current component and grid-voltage component at ω0. 

The QPI regulator is proposed to control the active and reactive current errors Ep, Eq accurately, expressed as Eq. (7). 

*
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                                                           (7) 

where up and uq are the output signals values of GQPI(s) in the d-q rotating coordinate. The transfer function of GQPI(s) is 

expressed as follows. 

r c
QPI p

c

( )
K

G s K
s




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
                                                                        (8) 

where Kp and Kr are the proportion and integral coefficients of QPI regulator, respectively, and ωc is the cutoff frequency. 

As shown in Fig.2 (b), Ep, Eq can be equivalent to Eα, Eβ after transforming Ep, Eq from the d-q rotating coordinate frame into 

the - stationary coordinate. Where Eα and Eβ are the errors between iα, iβ and their corresponding references, respectively. Also 

Eα is the actual current error between the grid-current ig and its equivalent reference iref in the actual grid-current control. 

So, uα, uβ can be expressed as follows.  
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               (9) 

By substituting equation Eβ(s)=(-s/ω0)Eα(s) into Eq.(9), the transfer function GQPI(s) is equivalent as Eq.(10) in the - 

stationary coordinate, and Geq(s) is the proposed SRFQPI controller. 
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(10) 

 The bode diagram of Geq(s) is depicted in Fig.3 (a). Compared with the traditional SRFPI controller, the proposed SPRQPI 

controller not only keeps high gain but also reduces the effect of fundamental frequency offset, which increases the system 

robustness against the fundamental-frequency variation. The parameters of SRFQPI are designed carefully in section 3.1 and 3.3.  
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Fig.3. Bode diagram of the proposed SRFQPI method and the parameter ωc selecting. (a) Bode diagram (Kp=2, Kr=100, ω0=100π). (b) The relationship curve 

between the bandwidth (ωA-ωB) and ωc. 

2.2. RGCFAD Controller 

The essential cause of the poor robustness to the grid-impedance variation is that the critical frequency of VEDR is located at 

the LCL-resonance frequency range (10ω0/2π, 0.5fs), and the actual LCL-resonant frequency fr might cross over the critical 

frequency along with the grid-impedance variation. Hence, in order to improve the system robustness against the wide-range 

variation of grid-impedance, the RGCFAD controller is proposed to make the VEDR positive in the range (0, 0.5fs), as shown in 

Fig. 2(a). And its transfer function H(s) is expressed as follows. 

   
s
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g
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                                                                         (11) 
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  where Kg and ωg are the gain and cut-off angular frequency of RGCFAD  controller separately. 

So, the transfer function GAD(s) of the active damping loop is expressed as follows. 

g LCL h s
AD

LCL control2

( ) ( ) ( ) /
( )

( ) 1 ( ) ( ) ( )
inv

inv

i s K G s G s T
G s

u s H s K G s G s

 


                                                       (12)

 

From Eq. (12), the essence of H(s) is the phase-ahead negative feedback control nearby the actual LCL-resonance frequency. 

And the deeper the feedback, the better suppression of the LCL-resonance peak is obtained. Since the gain of transfer function 

GLCL(s) nearby the fr is negative, H(s) should provide a phase difference 180° to realize the negative feedback control. 

Meanwhile, the phase-ahead control part can further reduce the serious phase-leg introducing by the control delay Gcontrol2(s), and 

broaden the positive range of VEDR for improving the system robustness against the grid-impedance variation.  

In the RGCFAD controller, it is equivalent to the virtual impedance Zeq connected in the middle of the inductance L2 and grid 

inductance, as shown in Fig.2 (c). Considering the parasitic resistances R1 and R2 enough small to be ignored, the expression of 

Zeq can be derived as follows. 

control2 inv
eq 2
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Z

s L C
                                                                           (13) 

Here, Zeq can be defined as the resistance Rg1 connected in series with the reactance Xeq, and be rewritten as 

      eq eq eq( ) ( ) ( )Z R jX                                                                        (14) 

where Req(ω) and Xeq(ω) are easily figured out as follows. 
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where, 
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Meanwhile, combined Fig. 2 (c) with Eq. (15), fr can be rewritten as Eq. (17). 
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f

L L L X C



 

  


 
                                                                      (17) 

According to Eq.(15), the frequency characteristics of Req(ω) and Xeq(ω) are depicted in Fig.4 (a), where fs is the switching 

frequency, and fR is the positive or negative critical frequency of equivalent resistance part Req(ω), and fX1 and fX2 are the 

capacitive or inductive critical frequency of equivalent reactance part Xeq(ω).  
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Fig.4.The feature of the proposed RGCFAD method. (a) Frequency-domain characteristics of Req and Xeq. (b) Closed-loop pole maps with grid-impedance 

variation. 

As shown in Fig.4 (a), the critical frequency of Req is located outside the LCL-resonance frequency range, and Req presents 

positive resistance characteristic in the interval of (0, 0.5fs) all along. Furthermore, since fR=fX2, the actual LCL-resonant 

frequency fr cannot cross over the fR even with a larger Kg or a smaller ωg according to Eq. (17). As a consequence, the RGCFAD 

method not only eliminates the possibility where the critical frequency of VEDR crosses over the fr, but also broadens the range 

of Kg and ωg, respectively.  

Meanwhile, the close-loop transfer function Tcl(s) of RTDOF-SCC is expressed as follows. 

inv LCL eq control1

cl
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According to Eq.(18), the closed-loop pole maps of Tcl(s) along with grid-impedance variation is shown in Fig.4 (b). Due to 

the implement of double-sampling mode and RGCFAD method, the LCL-resonant complex conjugate poles are located inside 

the unit circle all along regardless of the grid-impedance variation. In this case, the LCL-type grid-connected inverter would keep 

remained stable with wide-range variation of grid-impedance.  

3. THE SYSTEM PERFORMANCE ANALYSIS AND OPTIMIZED RTDOF-SCC PARAMETERS DESIGN  

In this section, the overall system performance is analyzed in detail, and the optimized parameters of RTDOF-SCC are 

selected. 

To obtain a more intuitive sense, Gcontrol2(s)/(1+e-sTs) is rewritten in the frequency domain. 
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Then, the loop gain To(s) of RTDOG-SCC is equivalent as follows. 
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3.1 The bandwidth of SRFQPI analysis and the selecting of ωc 

To improve the system robustness against the variation of ω0, the bandwidth of SRFQPI should include the variation range of 

ω0, as shown in Fig.3 (a). And LCL-filter can be simplified as a simple inductance s(L1+L2) to analyze the performance at the 

low-frequency domain. Then, To(jω) is simplified as follows. 

inv r c c
o 2 2 2

1 2 c 0 c

2 ( 0.5 )
( )

( ) 2 ( )

K K j
T j

j L L j

  


     




   
                                                        (21) 

At the fundamental frequency, the maximum gain of To(jω) is expressed as o inv r 0 gmax
( ) / ( )T j K K L L   . According to 

the definition of the bandwidth, while o inv r 0 g( ) / 2 ( )T j K K L L   , the bandwidth of the SRFQPI controller can be figured 

out as follows. 

2 2 2 2 2 4 4 2 2
0 c 0 c 0 c( ) 2( ) 6 0                                                                    (22) 

Solving Eq. (22), it yields 

2 2 2
A 0 c c 0

2 2 2
B 0 c c 0

4

4

    

    

   


  
                                                                               (23) 

Then, the bandwidth of the SRFQPI controller can be obtained and expressed as 

2 2 2 2
A B 0 c c 0 0 c c 04 2 4                                                                  (24) 

To select the proper ωc, the theoretical curve between the bandwidth (ωA-ωB) and ωc is depicted in Fig.3 (b), and the fitting 

curve is also shown by the linearization. Obviously, the slope of the fitting curve is 4, and the bandwidth is approximately ωc/4. 

Generally, the frequency fluctuation range at fundamental frequency is ± 0.5 Hz, so ωc = 4 is selected. 

3.2 Optimized parameters design of the RGCFAD controller 

From Eq. (20), the generalized open-loop transfer function with ωg is derived as follows. 

3
g 1 2 1 2 g inv eq

open 4 2
1 2 g 1 2 g eq g inv

[ ( ) ( ) ( )]
( )

( ) ( ) [ ( ) ]

gL L L Cs L L L s K G s
G s

L L L Cs L L L s G s K K s

     


     
                                      (25)  
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(a)                                                                                                                     (b)      

Fig. 5. Root locus and resonance damp diagram of the proposed control system with ωg changing. (a) The generalized open-loop root locus of To(s) with the gain 

of ωg. (b) LCL-resonance suppression with the change of ωg. 

The generalized open-loop root locus with the gain of ωg is shown in Fig.5 (a), where Geq(s) is simplified as Kp, and Kg=18. 

With the increase of ωg, the conjugate poles become the dominant poles gradually, and the dynamic response tends to be worse. 

As shown in Fig. 5(b), ωg has a negative correlation with the LCL-resonance suppression. And the smaller ωg, the LCL-

resonance damping is bigger. So, the dynamic performance may achieve the best point when ωg values its minimum. 

From Eq. (20), the characteristic root equation of the transfer function To(s) is expressed as: 

3 2 3 2 2 2 2 2
1 2 g res g res g g inv 1 2 g c 0 c( ) ( ) [ / ( ) ][ 2 ( )]D s L L L C s s s s K K s L L L C s s               

                       

(26) 

The above characteristic equation can be also rewritten as the poles mode, given by: 

2 2 2 2 2
1 2 g 1 n n n c 0 c( ) ( ) ( )( 2 )[ 2 ( )]D s L L L Cs s K s s s s                                                   (27) 

where ξ is the damping factor of the conjugate poles, ωn is the resonant angular frequency of the conjugate poles and its value is 

approximately equal to 2πfr, and K1 is the ratio between the distance from the introduced poles to the imaginary axis and the 

distance from the complex conjugate poles to the imaginary axis. 

Comparing Eq.(26) with Eq.(27), the active damping parameters (ωg, Kg) and system performance are decided by (ζ, K1, ωn). 

Meanwhile, since the coefficients of Eq.(26) are equal to Eq.(27), the relationships between (ωg, Kg) and (ζ, K1, ωn) can be 

derived as follows. 

  

n 1 res

g 1 n

3
g g g 1 n inv

1 / (2 1)

( 2 )

[( ) ] /g

K

K

K L L K LL C K

  

  

 

  


 


  

                                                      (28) 

Referring to the 1st equation in Eq. (28), K1ξ is constant while ωn and ωres are assumed as constant. Then, the 2nd equation in 

Eq.(28) is rewritten as follows. 



 11

1 1
g 1 1 res( 2 / ) / (2 1)

K K
K K   

 
  

                                                       

(29) 

Obviously, ωg only depends on the K1/ξ. While K1=2ξ, ωg obtains the minimum value.  

The bode diagram of To(s) is depicted in Fig. 6. The value of K1/ξ is set to 0.2, 0.5, 2, 4 and 10, respectively, and ωn is 

1.55×104rad/s. In order to analyze the system performance, referring to Eq.(25) and Fig.6, K1/ξ can be considered in two cases: (i) 

When K1<2ζ, no resonance peak exists. However, with the decreasing K1/ζ, the stability margin becomes worse. (ii) When K1≥2ζ, 

with the K1/ζ increasing, the stability margin gradually turns better. However, compared with K1/ξ =2, a poorer LCL-resonance 

suppression and dynamic performance are yielded. Hence, the reasonable value of K1/ξ should be 2, where a balance among the 

LCL-resonance damping, the stability margin and the dynamic performance is achieved.  
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Fig.6. Bode diagram of T0(s) with the different ratio between K1 and ζ (Kp=1, Kr=0). 

Then, substituting K1=2ξ into Eq. (28), the two parameters of active damping loop are simplified as follows. 

2 2
g res

g

g res 22
inv

4 / (4 1)

2 ( ) 1
[2 ]

4 14 1

L L
K

K

   






  



 

   

                                                     (30) 

Obviously, the values of ωg and Kg only depend on ζ alone. As a result, the system could obtain the optimal operating 

condition only by regulating ζ, and the complexity of parameters (ωg, Kg) design is also significantly reduced.  

3.3 The system stability analysis and the selecting of parameters ζ, Kp and Kr   

Since the cutoff frequency ωsc and ωn are higher than the fundamental frequency, Geq(s) can be simplified as Geq(s)=Kp to 

calculate the gain margin (GM) and phase margin (PM) of the open loop To(s) at ωsc and ωn. Based on the abovementioned 

optimized design of the RGCFAD controller, the GM and PM of overall system can be easily derived as follows. 
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       (31) 

Seen from Eq. (31), ξ and ωsc/ωres affect both the GM and PM, and Kp and Kr only affect the PM. In generally, to guarantee a 

fast dynamic response and good ability of attenuating high-frequency harmonic currents, ωsc is set to 1/10fs [15]. In this case, 

ωsc/ωres is 0.27. And according to |To(jωsc)|=1, Kp can be derived as follows.  

 
2
sc

p sc g inv2 2
res

1
2 /

8 2
K L L K




 

 
    

 
                                                         (32) 

So, the GM is only determined by ξ, and the PM is determined by ξ and Kr.  

The relations between the parameter ξ and GM, PM are depicted in Fig. 7 (a) and (b), respectively. To obtain the proper 

stability margin, GM≥3dB and PM≥45° are required. As shown in Fig.7 (a), to keep the GM is above 3dB, it needs ξ>ξmin, where 

ξmin is the intersection point between the GM curve and the standard curve of 3dB. Seen from Fig.7 (b), to keep the PM be above 

45°, it needs ξ<ξmax, where ξmax is the intersection point between the PM curve and the standard curve of 45°. But ξmax varies with 

Kr, and ξmax constantly reduces with the increasing Kr. Once ξmax is smaller than ξmin, ξ has no value to satisfy GM≥3dB and 

PM≥45° simultaneously. For instance, while Kr=600 or 900, the PM cannot obtain the value higher than 45°regardless of ξ 

selecting any value. So, Kr cannot select to be too large value, and must satisfy the follow condition in Eq. (33). 

 
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2 sc
sc 1 2 2 2

res min
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2 sc
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min sc min scres
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4 2 4
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   


    




 
   
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 

 
    

 
  

 

              (33) 

Meanwhile, in order to meet the grid-current amplitude error (iref -ig ) less than 1%, |T(jω0)|≈KinvKr/ω0(L1+L2) should satisfy 

the following condition. 

0

0

( )
0.99

1 ( )

T j

T j







                                                                         (34) 

Solving Eq. (34), it yields 

r 0 1 2 inv99 ( ) /K L L K                                                                     (35) 
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According to Eq. (33) and Eq. (35), the interval of Kr can be easily acquired. Once Kr is determined, ξ is located within the 

interval of (ξmin, ξmax). 
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(a)                                                                                               (b) 

Fig.7. The PM and GM of the open loop with ξ. changing. (a) The relationship between GM and ξ. (b) The relationship between PM and ξ. 

4. SIMULATION AND EXPERIMENT RESULTS 

4.1 Simulation results 

The simulation is established by Matlab/Simulink, and simulation parameters of PV system are listed in Tab. 1. The ambient 

temperature is set to 25 ℃, and the standard light intensity is set to 1000 W/m
2
.  

Tab.1  
The simulation parameters of PV system 

parameter Value parameter Value 

P/kW 2.2kW us/V 220 

ω0/(rad/s) 2π×50 Lb /mH 2.8 

L1/mH 0.7 Udc/V 400 

L2/mH 0.4 Cdc/μF 3 600 

C/μF 10 r1/Ω 0.16 

Ts/s 1/10000 r2/Ω 0.09 

ωc/(rad/s) 4 Kpwm 1 

ωres/(104rad/s) 1.98   

 

To verify the optimal operation point (K1/ξ = 2), Fig.8 (a), (b) and (c) show the waveforms when the light intensity increasing 

from 500 W/m
2
 to 1000 W/m

2
 under the different ratios of K1/ζ, where ωn =0.8ωres, Kp=2, Kr=250, and a disturbance signal with 

16900rad/s is introduced. While K1/ξ=0.3, the THD of grid-current is up to 70.82%, and the PV system is instability, as shown in 

Fig.8 (a). While K1/ξ=10, the THD of grid current is only 1.13%, but the PV system yields a resonance peak around the LCL-

resonance frequency, as shown in Fig. 8 (c). While K1/ξ = 2, the THD of grid current is only 0.47%, and the resonance peak is 

greatly suppressed, as shown in Fig. 8 (b). Meanwhile, the overshoot of grid current is only 15% and the PV system has a faster 
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dynamic response than other conditions. In summary, the system obtains the optimal operation point with the condition of K1/ξ = 

2. 
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(a)                                                                            (b)                                                                               (c) 

Fig.8. Dynamic simulation results of grid current with the proposed RTDOF-SCC under different ratios of K1/ξ. (a) K1/ξ=0.3. (b) K1/ξ=2. (c)  K1/ξ=10. 

To select the proper parameters for RTDOF-SCC method, ξmin should be higher than 0.3 to satisfy GM≥3dB based on Eq. (31) 

and LCL-filter parameters in Tab.1. Then, the interval of Kr is easily selected ranging from 35 to 828 according to Eq.(33) and 

Eq.(35). To satisfy PM≥45°and a smaller amplitude error, Kr is selected as 300, and ξmax is easily selected as 0.4 according to 

Fig.7 (b). And Kp is selected as 1.78 according to Eq.(32). Finally, the control parameters of RTDOF-SCC method are selected 

without complicated trial as shown in Tab.2. In this case, PM and GM of the PV system are 47.7° and 4.4dB, respectively, and 

the LCL-type grid-connected PV system can obtain a good stability. 

Tab.2  
The control parameters of the RTDOF-SCC method 

parameter Value parameter Value 

ωc/(rad/s) 4 ωsc/(103rad/s) 6.28 

Kp 1.78 ωg/(104rad/s) 2.48 

Kr 300 ωn/(104rad/s) 1.55 

Kg 18.9 ωres/(104rad/s) 1.98 

ζ 0.4   

 

0 0.05 0.1 0.15 0.2
-2

-1

0

1

2
0 0.05 0.1 0.15 0.2

-2

-1

0

1

2

                         
0 0.05 0.1 0.15 0.2

-20

-10

0

10

20
0 0.05 0.1 0.15 0.2

-20

-10

0

10

20

 



 15

(a)                                                                                                                              (b) 

Fig.9. Comparative simulation results of the grid-current amplitude error and grid current under the different control methods. (a) The grid-current amplitude 

error ierror with the grid-frequency variation. (b) The grid current with the grid-impedance variation.   

To verify the effectiveness of proposed RTDOF-SCC method, comparative simulation results with the grid-frequency 

variation and grid-impedance variation are shown in Fig.9 (a)-(b), respectively. Where the grid-current amplitude error ierror is 

defined as (ig-iref); the traditional single-current control (SCC) method is defined as the SRFPI and GCF active damping method 

with HPF.  

As shown in Fig.9 (a), when the grid frequency changes from 50Hz to 50.3Hz, the grid-current amplitude error instantly 

increases from 0.17A to 0.63A under the traditional single-current method, but the proposed RTDOF-SCC method can still track 

the reference grid-current with smaller amplitude error regardless of the grid-frequency variation. Compared with the traditional 

single-current control method, the RTDOF-SCC method enhances the system adaptability against grid-frequency fluctuation.  

As shown in Fig.9 (b), at t=0s, a disturbance signal 16900rad/s is introduced, and at t=0.1s, the grid impedance varies from 

0.02mH to 0.3mH. Using the traditional single-current method, the waveform of grid current appears oscillation while Lg=0.3mH, 

because the VEDR of GCF active damping with HPF is approximately equal to 0. But with the implement of RTDOF-SCC 

method, the waveform always remains smooth regardless of the grid-impedance variation. The RTDOF-SCC method also 

obviously improves the system robustness against the grid impedance variation. 

4.2 Experiment results 

The 2.2-kW laboratory LCL-type grid-connected PV system is built, which is composed of the building PV arrays, dc/dc 

converter, full-bridge inverter, DSP control system, and etc. IPM Module (PM505LA060) is chosen as the power switch device. 

TMS320F2812 and AD7656 are used as the controller and sampling chip, respectively. The parameters of PV system are shown 

in Tab.1 and Tab.2. The steady-state experimental results are shown in Fig. 10 and Fig.11 by a power quality analyzer 

FLUKE43B, and the dynamic experimental results are show in Fig.11 by the digital high-speed oscilloscope TPS 2024 

(Tektronix). 

              

     (a)                                                            (b) 
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Fig.10 Experimental results of the currents and output power waveforms with the proposed RTDOF-SCC method under the resistor-inductance loads condition. 

(a) The grid-current ig and inverter output power. (b) The true injected grid-current is and injected grid power. 

Fig.10 (a) and (b) show the experimental results of the grid current and output power with the RTDOF-SCC method under the 

resistor-inductance loads condition. Obviously, the grid-connected inverter transfers PV energy into the grid and the local loads, 

and the grid power factor (PF) is close to 100%. The proposed RTDOF-SCC method not only provides active power and feeds 

the redundant energy into the grid quickly, but also regulates the reactive power to realize the reactive compensation. 

Fig.11 (a) and (b) show the comparative results of the grid-current THD under the different control methods while the grid 

frequency shifts. Compared with the traditional single-current method, the RTDOF-SCC method can track accurately the PV 

energy and enhance further the system performance. 

Fig.11 (c)~(f) show the comparative waveforms of the grid current with grid-impedance variation under the different control 

methods. Using the traditional single-current control method, the actual resonance frequency is more close to the critical 

frequency of VEDR while Lg=0.3mH, and the system tends to oscillate and become unstable, as shown in Fig. 11 (c) and (d). 

However, while the proposed method is applied, the VEDR shows positive characteristic at the actual resonant frequency, and 

the grid current becomes smooth and tracks accurately the reference current, as shown in Fig. 11(e) and (f). The system is also 

tested with the different grid impedance ranging from 0.5 mH to 3.0 mH, and the THD of ig always remains below 3.2%. The 

proposed method greatly enhances the system robustness against the grid-impedance variation. 

Fig. 11 (g)~(h) show the dynamic waveforms of the PV system when the load suddenly changes from half to full power under 

the different control methods. As a result, the proposed method has a faster dynamic response, and smaller overshoot compared 

with the traditional single current control method. 

            

(a)                                                                             (b)                                                   
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     (c)                                                                  (d) 

       
(e)                                                                      (f) 

          
t(10ms/div)

P0[1000W/div]

Q0[1000var/div]

 

         (g)                                                                 (h)                  

Fig. 11. Comparative experimental results under the different control methods. (a) The THD of grid current under the traditional SCC method with the grid 

frequency shifting. (b) The THD of grid current under the RTDOF-SCC method with the grid frequency shifting. (c) The waveform of ig under the traditional 

SCC method with Lg=0.3mH. (d) The THD of ig under the traditional SCC method with Lg=0.3mH. (e) The waveform of ig under the RTDOF-SCC method with 

Lg=0.3mH. (f) The THD of ig under the RTDOF-SCC method with Lg=0.3mH. (g) Dynamic waveforms of output powers under the traditional SCC method. (h) 

Dynamic waveforms of output powers with the RTDOF-SCC method. 

5 CONCLUSIONS 

For single-phase LCL-type grid-connected DGs installed at the end of the grid, a RTDOF-SCC strategy is proposed to 

improve the system robustness against the grid-frequency fluctuation and grid-impedance variation, which is mainly composed 
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with SRFQPI and RGCFAD control. The proposed SRFQPI control can compensate reactive power, and regulate the 

instantaneous grid-current without steady-state error regardless of the fundamental frequency fluctuation. The proposed 

RGCFAD control damps well the LCL-resonance peak regardless of the grid impedance variation. To realize a good damper, fast 

dynamic response, and high system stability, the proper parameters of RTDOF-SCC strategy are selected without complicated 

trial. The performance of RTDOF-SCC strategy is validated by the results from a 2.2-kW laboratory LCL-type grid-connected 

PV system. Moreover, the proposed method can be also applied commercially to the microgrid. 
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