Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Programming Concepts in Playful Programming Products

Allsopp, Benjamin Brink; Ejsing-Duun, Stine

Published in:
Proceedings of the 10th European Conference on Games Based Learning

Creative Commons License
Unspecified

Publication date:
2016

Document Version
Version created as part of publication process; publisher's layout; not normally made publicly available

Link to publication from Aalborg University

Citation for published version (APA):

Allsopp, B. B., & Ejsing-Duun, S. (2016). Programming Concepts in Playful Programming Products. In
Proceedings of the 10th European Conference on Games Based Learning: ECGBL 2016 Proceeding (pp. 1-10).
University of West Scotland.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 17, 2024


https://vbn.aau.dk/en/publications/4c9865fe-8be3-4815-835b-76cb78c784aa

Programming Concepts in Playful Programming Products

Benjamin Brink AIIsoppl’ 3, Stine Ejsing-Duun2’3

1Department of Learning and Philosophy, Aalborg University, Copenhagen, Denmark
2Department of Communication and Psychology, Aalborg University, Copenhagen, Denmark
*Research Lab: It and Learning Design (ILD)

ben@learning.aau.dk

sed@hum.aau.dk

Abstract: There is wide recognition that teaching children to program is immensely important. A new digital
divide is potentially defined in terms of competencies to create programs rather than access to computers. In
this context perseverance and motivation needed to acquire programming skills are gatekeepers as are
appropriate learning materials. Thus a new category of software products that attempts to turn learning to
programme into play is of special interest. These playful programming products are the focus of our research
program trying to bring perspective to their potential. A mid level goal of this program is to comprehensively
compare different products against a stable list of skills and understandings supported by the category of
playful programming software. This paper aims to initiate systematic development of this list of skills and
takes inspiration from Brennan & Resnick (2012) where a model of computational thinking is held up against
features of the visual programming language Scratch. However, we refine this model by assessing another
playful programming product against it. The changing model is represented in a series of concept specialisation
maps to support greater overview and transparency. A final relatively stable map is discussed with respect to
the larger research projects goals.

Keywords: Playful programming, Programming concepts, Concept specialisation maps.

1. Introduction

Learning to program and computational thinking is receiving growing interest in education research (e.g.
Guzdial & Soloway, 2008; Resnick et al, 2009; Repenning, Webb & loannidou, 2010; Brennan & Resnick, 2012).
This interest is justifiable in terms of addressing a new digital divide between the programmer and the
programmed (Rushkoff, 2010), or between the producer and the consumer (Gold, 2014) with potentially
greater social, cultural, economic and political significance than the divide defined by access to media and
computers (Selwyn, 2004). Unlike the previous digital divide, the new divide is not addressable by decreasing
production costs of devices or more equitable distribution of devices. Programming requires complex
abstractions, overview and mathematical insight (Misfeldt & Ejsing-Duun, 2015). Learning to program is a
demanding activity that requires perseverance and motivation. Robins, Rountree & Rountree (2003) review
extensive literature on teaching children and adults to program, we focus exclusively on playful programming.

1.1 Playful Programming

In recent years a number of computer games, robotic toys, programming apps and other software products
(and even board games) have been released that attempt to turn learning to program into play. These playful
programming products include Scratch, Lightbot, Hopscotch, Code Monkey Island, Kodable, Robot Turtles,
Code Combat, Cork the Volcano, Codemancer, Machineers, Bee-Bot, CodeSpells, LEGO Mindstorms, LEGO Bits
and Bricks, LEGO WeDo, Human Resource Machine and more. Products that claim to shortcut the path to
programming are interesting, but we lack clarity on what they can do. They differ in their underlying didactic
and pedagogical strategies and in the aspects of computational thinking they aim to teach, but no detailed
overview of their differences exists. For the educator interested in choosing a product, this lack of overview is
challenging. There are so many products that it is not convenient to try them all, and the developers own
descriptions of the products are often hyperbolic and hard to compare. Furthermore, a clearer understanding
of the underlying programming concepts and their relations can improve the design of playful programming
products in the future.

1.2 Goals and scoping

This paper is part of Playful Programming - a larger project with the goal of bringing together different
stakeholders (developers, educators, parents, learners and researchers) with a common vocabulary for



describing, developing, teaching with and comparing products. Central to this attempt is the examination of
existing products to determine their features. In broad strokes we can imagine distinguishing products based
on how they relate to the categories: who, why, how and what. The who covers who can benefit from using
the product, the why covers their motivation (inside and outside the game), the how covers the didactic
approaches used to facilitate learning, and the what covers what aspects of computer programming can be
learnt using the product. In this paper we focus on what can be learned using different products. We imagine
comparing a large number of products against a list of skills and understandings, but for now we want to
achieve a greater level of impartiality and detail with respect to creating this list. Specifically, we are concerned
that lists of skills and understandings can be compiled in many different ways to favour specific products. Skills
and understandings can be highly ambiguous and overlap in confusing ways.

1.2.1 This paper’s goal: a list of programming concepts

The goal of this paper is to produce a relatively stable candidate list of programming concepts exercised in
existing products, which can in later work be used in a further process assessing a large number of products.
Within this wording is embedded a number of decisions. To keep the list relevant for comparing products we
want the list to be based on actual products rather than an independent assessment of the actual skills and
understandings needed to program. However, this suggests a circular situation where we want to create a list
of skills and understandings that can help us assess all products, yet we need to assess all products to ensure
that we have a complete list. When we aim for a relatively stable candidate list this is because we conceptually
differentiate between a later process of assessing the majority of products while occasionally updating the list
and the current process of developing most of the list by examining two products: Scratch and Lightbot.

Other decisions in scoping this paper involve working with a reduced breadth of supported skills and
understandings. Firstly, we will not concern ourselves with skills and understandings that may be relevant for
being a good programmer, but also relate to many other creative processes. Secondly, we will only concern
ourselves with skills and understandings that are obvious from observing the product directly. For now we
want to focus on what the products offer and thus for now avoid observing user engaged in the tool. Thirdly,
this initial mapping of skills does not include levels of learning, where the same issue must for example be
considered in terms of whether the user can for example use it, understand it or define it, which will be
relevant at a later point. Together these decisions have focused this work on what we call “programming
concepts” and correspond to Brennan & Resnick’s (2012) description of computational concepts, which are:
“[...] the concepts designers engage with as they program” and “[..] common in many programming
languages”.

Finally, to achieve less ambiguity and untangle some of the overlaps between programming concepts we will
adopt a new approach to representing the different concepts as they relate to each other in concept
specialisation maps. Concept specialisation maps will be introduced in the research approach section below.

2. Our Approach

In brief, our approach involves starting with a provisional map of concepts based on the computational
concepts described by Brennan and Resnick (2012), examining a product to identify how these categories
suffice to describe the computational concepts that the product addresses. When a programming concept or
area of concepts are not satisfactorily captured in the map, it is modified before further exploring deficiencies
of the map. The approach resembles other processes of research and design inquiry, but the specific
methodological foundation of this work is inspired by Lakatos’ (1976) philosophical work on mathematical
proofs. Here science is championed by inviting falsification through facilitating greater social scrutiny. The
research/epistemological value of this work is the high level of transparency in developing a model. We aim to
achieve this level of transparency through the use of concept specialization maps to present iteration of our
model.

2.1 Concept specialisation maps (CSM)

Concept specialisation maps (CSMs) are a form of diagram introduced (or perhaps reintroduced) here to
overview how concepts are related and to help make subtle distinctions between different concepts spatially
apparent. They are shown throughout this paper (Figures 1, 3, 5, 6, 7 & 8) and superficially resemble, but are
distinct from maps showing learning prerequisites (Nagarjun, 2009). Both are directed acyclic graphs based on



nodes and arcs between these. But where arcs in learning prerequisites maps show how learning one thing is
dependent on first learning another thing, arcs is CSMs show how one concept is a special type of another
concept. Thus a programming concept labelled “Procedures with flow control” has a specialisation sub concept
labelled “Procedures with loops” because loops are one kind of flow control. Unlike Generalizes/Specialises
arcs in Unified Modelling Language (UML) use case diagrams and class diagrams (Rumbaugh, Jacobson &
Booch 2005), the specialisation arcs in CSMs are drawn without arrowheads because the direction of
specialization is always apparent from the graph’s layout. There are potentially other uses for CSMs and
especially interactive/dynamic CSMs in the presentation of programming concepts to wider audiences, but for
now (in our research process) CSM is exclusively considered an epistemological tool towards identifying a list
of programming concepts that will later be used in a matrix to compare many different products.

2.1.1 Our process

The plan for developing a relatively stable candidate list of programming concepts is to start with Brennan &
Resnick’s (2012) peer-reviewed model of computational concepts, which is revised and mapped out in a CSM.
We then systematically work through a product asking what programming concepts do they really exercise (as
opposed to what they only purport to exercise). Depending on the clarity of the observations we either update
the map or consider potential updates that need further confirmation. A benefit of CSMs is that they allow us
to not just add new concepts, but also to visualise concepts that partially overlap. These unclear distinctions
may be untangled by recognising that they are both subtypes of a common parent concept. This involves
identifying potential parents in the other displayed concepts or including new concepts as parents in the map
where they relate to other concepts. Each time the map is updated it is necessary to consider if the product
supported concepts accommodated by the previous version of the map are still accommodated in the revised
maps, and adapt accordingly. It is the opening of some of these critical reflections to peer scrutiny that
constitutes the scientific foundation for this paper, and it is CSMs that allow us to consider more complex
models of programming concepts than would be suited for description in prose text alone.

3. Our Initial Map

Our goal is to develop a CSM by testing it with a product that it was not initially designed for, but to do this we
need an initial map. This section first introduces Brennan and Resnick’s existing model of computational
thinking, which they developed in relation to the Scratch programming environment. At first we modify it to fit
the scoping of this article and display it as a CSM. After this we briefly examine Scratch ourselves and modify
the CSM more substantially. This is partly to exploit CSMs ability to show connections between concepts.

3.1 The model of computational thinking

Brennan and Resnick identify three main types of computational thinking covering: “[...] computational
concepts (the concepts designers engage with as they program, such as iteration, parallelism, etc.),
computational practices (the practices designers develop as they engage with the concepts, such as debugging
projects or remixing others’ work), and computational perspectives (the perspectives designers form about the
world around them and about themselves)” (Brennan & Resnick 2012, p. 1). While all of these are interesting
for the playful programming project we are here interested in their computational concepts shown as a CSM in
Figure 1. Brennan & Resnick provide short descriptions of each specialisation, which they elaborate through
examples of Scratch programs using the concepts.

Computational concepts

Operators
Sequences
Conditionals

Loops

Parallelism

Figure 1. A CSM showing Brennan and Resnick’s specialisation of computational concepts



3.2 Scratch

Scratch is the earliest playful programming product we have considered. It is an interactive environment
developed by the Lifelong Kindergarten research group at the MIT Media Lab. It allows young people to create
their own programs in the form of interactive stories, games, and simulations (Resnick et al., 2009). The central
programming activity involves snapping blocks representing instructions together into scripts to determine the
behaviour of entities (sprites) in the program (stage). Available blocks are organised in a number of groupings
including: Motion, Looks, Sound, Pen, Data, Events, Control, Sensing and Operators as shown in Figure 2. The
metaphor used for Scratch is theatre, thus the program is happening on a stage, the programs are scripts, and
sprites can be dressed with costumes (appearances) etc.

g1 |Untitled Scripts
i, | ~e

Stage
1 backdrop

New backdrop

Qa/aa

I,;\. o
IL,’,(:
I‘S'. J
frer

f oata

wait @ " move € steps

!
|

[

|

X: 240 Y: -180 -

Sprites Newsprite: @& / & 3 =

& =3
Sprite2 — —/—)

Figure 2. The Scratch programming environment

3.2.1 Our initial adaptions of the model.

Examining Scratch, the CSM from Brennan & Resnick model seems to match well. It was easy to confirm that
there were blocks, or ways of using blocks for all of the computational concepts. However there were a
number of details that warranted inclusion in the CSM. We did the following:

Changed the name of computational concepts to programming concepts. “Computation” is a broad
term that covers non-computer related skills (e.g. calculating) as well as computer efficiency concerns
not relevant in the context of playful programming that we focus on.

Changed the name of data to variables and added two specialisations. Here we found the term “data”
too broad; Scratch only supports creating simple variables and arrays under the data grouping. We
drew both as specialisation of the variables concept.

Added encapsulation. Brennan & Resnick (2012. p. 9) discuss abstracting and modularization as a
computational practice and characterise it as “building something large by putting together
collections of smaller parts”. It seems that this practices must be supported in terms of a
programming concepts. Encapsulation allows you to abstract away the complexity of some code and
make it available in other code by calling its name.

Added objects both as a specialisation of encapsulation and of variables. Scratch supports sprites that
are objects in that they encapsulate functionality and other variables and can be considered a special
type of variable.

Replaced a generic parallelism concept with two specialisations of the objects concept: objects with
parallelism across objects and objects with parallelism within objects. Brennan and Resnick (2012, p.



4) identify parallelism as a core computational concept, however they only describe parallelism in the
context of objects: “Scratch supports parallelism across objects. For example, a dance party scene
might involve several characters dancing simultaneously, each with a unique sequence of dance
instructions. Scratch also supports parallelism within a single object. [...] the Scratch cat has been
programmed to perform three sets of activities in parallel [...]".

6. Added arithmetic and conditions as specialisations of the operator concept. Both types of blocks can
be seen under the operator grouping in Scratch and operate on values to produce new ones.
Arithmetic operators produce numbers and conditions produce true or false.

All of these changes to the CSM are emphasised in Figure 3.

Encapsulation Arithmetic + - x /
Conditions

Objects
Arrays
Simple variables

Objects w. parallelism across objects
Objects w. parallelism within objects

Figure 3. Multiple initial changes to the CSM

4. Observations and Analysis

In this section we will describe a number of considerations leading to changes in our map of supported
programming concepts. These considerations arose while trying to use the initial CSM to evaluate another
product than it was developed around. We choose Lightbot because it seemed to represent a different
category of playful programming products than Scratch. We will discuss this distinction further in the
discussion, but while Scratch can be thought of as a visuospatial authoring tool, Lightbot seems more like a
traditional navigation game. In choosing a product form a different category, we hoped to further challenge
the Scratch bias of the initial CSM and consider more changes. Our considerations are grouped according to
the two product versions where they became apparent: Lightbot Web and Lightbot 9+. Lightbot Web is shown
in Figure 4, but both have the same basic appearance.

HORIEE

Figure 4. A level 2 screen from Lightbot Web




4.1 Lightbot Web

Lightbot is promoted as part of the hour of code initiative (https://code.org/learn) and was our first choice as
an archetypical example of a playful programming product of the navigation game category. It consists of a
series of screens (grouped in levels) that each presents a grid with an obstacle courses for a robot to navigate.
The challenge for the user is to give the robot all the necessary instructions in advance. The user drags a
number of instruction blocks into an area called main as shown in Figure 4. While we were attracted to
Lightbot for its minimalist user interface and simple game metaphor, we were intrigued with a claim (Biggs,
2013) that: “Lightbot offers an easy way for kids to learn concepts like loops, if-then statements, and the like
without typing or coding.” Would we really see looping and conditionals? Lightbot has versions for different
age groups and one web version. We played the entire web version while comparing it with and modifying the
CSM.

4.1.1 Procedures and procedures calling procedures

When Lightbot Web reaches level 2 the interface shows an additional area for adding instructions. The area
labelled “Procl” (visible in Figure 4.) allows the user to create a procedure comprising multiple instructions
that are called from the main instruction area with a block labelled “P1”. Our initial CSMs did not include
procedures because Brennan and Resnick’s model did not include them, but when now considering this
programming concept it is obvious that Scratch also exercises it every time a user creates a script. We added
procedures to the CSM to accommodate this feature of Scratch, however with the Procl field Lightbot is
exercising something more than Scratch does; it is allowing one procedure to call another with the P1 block. To
accommodate this in the CSM we added a specialisation of the procedures concept called “procedures calling
procedures” emphasised in Figure 5. This concept is reinforced later in Lightbot when an additional area
labelled “Proc2” is shown and can be called from the Procl area with the block labelled “P2”. At this point it
also became apparent that procedures calling procedures is also a special type of our encapsulation concept
because the code of the second procedure is run simply by calling its name. An arc representing this
relationship is also emphasised in Figure 5.

Procedures

Procedures calling procedures

Figure 5. Procedures calling procedures as a specialisation of both procedures and encapsulation

4.1.2 Grouping other concepts as specialisations under the general procedures concept

The updated map (Figure 5 above) represents procedures on the same specialisation level as sequences and
loops (directly under programming concepts). This was not accurate as we considered sequences a special
simple type of procedures where execution sequence is explicitly specified in a sequence of instructions. This is
accommodated in the CSM by showing the sequences concept as a specialisation of the procedures concept as
emphasised in Figure 6. Similarly it was noticed that loops and conditionals are what allow execution
sequences to be specified non-sequentially; they allow execution to jump in the instructions. Together they
allow an alternative type of procedure to sequences. This is accommodated in the CSM by adding a procedures



with flow control concept as a specialisation of procedures. The concepts loops and conditionals could then be
repurposed as the concepts procedures with conditionals and procedures with loops that both can be drawn as
specialisations of procedures with flow control also emphasised in Figure 6.

Sequences
Procedures with flow control

Procedures with conditionals
Procedures with loops

Figure 6. Other specialisations of procedures

4.1.3 A special type of looping

Looping is not obviously supported in Lightbot Web. There is no icon labelled “loop” or resembling a looping
structure. However at level 3 we see that a procedure can end by calling itself and thereby recursively repeat
itself. This provides an equivalent result to some more explicit loop structures. Should we simply mark Lightbot
Web as exercising loops? In that case we would draw an arc from procedures calling procedures to procedures
with loops to indicate the latter is a special type of procedures calling procedures. An argument against this is
that it would brush over important distinctions: A playful programmer that perfects the use of self-calling
processes will not necessarily recognize a more explicit loop structure and visa versa. Also a procedure calling
itself is more like a looping procedure than a loop in a procedure; they do not share the same parent. Finally,
we anticipate that there will be types of programs that will specifically require loops within procedures. We
decided to make the distinctions between two ways of looping visible in the CSM by adding a procedures
looping by calling themselves concept as a specialisation of the procedures calling procedures concept as
emphasized in Figure 7.

Procedures looping by calling themselves

Figure 7. Procedures looping by calling themselves as specialisation of procedures calling themselves

4.2 Lightbot 9+

After completing all the mazes available on Lightbot Web we had not seen anything suggesting the support of
if-then statements as promised by Biggs (2013). We decided to examine the interface of Lightbot’s most



advanced version for ages 9+ available on iPhone/iPad, Android, Windows Phone, Mac and Kindle to identify
any advanced features not seen in the Web version. We noticed one of relevance to our question.

4.2.1 Different types of conditionals and conditions

Lightbot 9+ displays some grid squares of the obstacle course in a bright colour. Examining these, we saw that
a new feature allowed the user to paint individual instruction blocks in the procedure to only work when the
robot is standing on a square of the same colour. If the robot is standing on a square of a different colour the
instruction block is simply skipped. This is undeniably an implementation of procedures with conditionals, but
it seems like a crude or simplistic implementation. Because we do not support degrees of implementation in
the CSM, we needed to find conceptual differences between these two implementations. We did this in two
parts (see Figure 8 below):

1. We considered that the Lightbot feature did not allow the specification of alternative instructions if
the condition is not met (the execution simply moves to the next instruction without the colour). In
contrast to this Scratch supports if-else structures where alternative instructions are given. This
distinction is supported in the CSM by including two specialisations under the procedures with
conditionals concept: procedures with if-then conditionals and procedures with if-else conditionals.

2. We recognised that the feature was also limited in the sophistication of the conditions that could be
specified. This is not part of a flow control concept but to do with types of conditions operators the
environment supports. Conditions operators are the expressions that can be evaluated as either true
or false. While Scratch allows three different condition operators (“=”, “>” and “<”), Lightbot only
supports checking if the values of two properties are equal (“="). In this case Lightbot checks if the
colour property of the robots position is equal to the colour property of the instruction. This
distinction is supported in the CSM by including two specialisations under the conditions concept: the
greater than, less than (> <) concept and the equals (=) concept.

Greater than/less than > <
Equals =

Procedures with if-else conditionals
Procedures with if-then conditionals

Figure 8. Concepts specialising procedures with conditionals and conditions

5. Discussion

In the above we have developed a map distinguishing various playful programming concepts. To assess the
effectiveness of our CSM based approach to identifying programing concepts, and how it supports the larger
playful programing project, we will ask and address three questions:

Has using CSM maps helped understand the two products? This can be considered in several ways. They have
helped us in identifying relevant programming concepts. We believe that every distinction shown in the maps
could in principle be made with words alone, and we have tried making our textual descriptions self-contained,
however it seems that CSMs have helped this process. They have helped us to form a clearer overview and
identify finer distinctions between programming concepts. However, they have only partially helped us
identify the breadth of what the two products do. We have not used them in exploring the who, why, and how



of the products. We have neither used them to identify all of what they exercise, for example considering
Brennan & Resnick’s practices and perspectives, or different levels of learning. They have helped identify
multiple concepts that could otherwise be thought of as one and we have certainly added to Brennan and
Resnick’s computational concepts, but the maps do not show that we have covered the products fully. For this
we must rely on the many hours we have spent exploring the products.

Will our model allow us to compare many products? With distinctions between different types of looping,
conditionals and conditions we will be able to show how products that only partially support these concepts
differ. A convenient way to compare many different products is in a matrix listing programming concepts on
the horizontal and product names on the vertical edges. The beginning of such a matrix is shown in Figure 9.
Any number of products can be added at the right and the list of concepts on the left is a direct transformation
of the current CSM. The list is indented to preserve some insight into how concepts specialise each other, but
it could be shown without these indents. Notice that a product is considered to exercise a general concept if it
supports one of its specialisations. When exploring more products we will need to make adaptions to the list
(via the CSM), however we hope that the list is relatively stable.

%
e 9,

s
&
% ¢

(o
6>O

Procedures with If-else conditionals
Procedures with loops
Procedures calling procedures
Procedures looping by calling themselves
Encapsulation

%é’b \'>$ \'>°o
Programming concepts v v /
Operators v v
(+-x:)Arithmetic v
Conditions v v
Greater than/less than > < v
Equals = v v
Procedures v v /
Sequences v v /7
Procedures w. flow control v v
Procedures with conditionals v v
Procedures with If conditionals v v
v
v

AN
NSS
AN

Objects
Objects with parallelism across objects
Objects with parallelism within objects

Variables

NSSSS

Simple variables
Arrays
Events

DN

Figure 9. Three products/versions compared against a list showing the current concepts in the CSM.

How stable is the list? We have only examined two products thoroughly, but there is some reason to believe
the list will remain relatively stable. We have superficially examined several other products. This has given us
many small observations; For example, the product Hopscotch is similar to Scratch, but differs in that it
supports procedures calling procedures. However a broader pattern also emerges. Playful programming
products seem to be dominated by three categories. Two of these have already been identified: navigation
games (LightBot, Bee-Bot, LEGO Bits and Bricks and Robo Rally) and visuospatial authoring tools (Scratch,
Hopscotch and LEGO Mindstorms). A third category consists of environments supporting coding in text based
programming languages (Swifty and Codecademy). As the third category supports traditional full-featured
programming languages it becomes less interesting in the context of comparing playful programming
concepts. On one level the relative stability of our concept list is suggested by the fact that we have explored



one product from each of the two relevant categories. This is suggested further on a deeper level when we
begin to see that products within our categories seem to share the same programming concepts. General
concepts like conditionals and loops can be ascribed to both categories, but specialised concepts like greater
than/less than (> <), procedures with if-else conditionals and procedures with loops are exclusively seen in
visuospatial authoring tools. It seems that the programming concepts exercised in an environment are
somewhat restrained by their category.

Finally it is worth restating the purpose of this paper in terms of the larger goal of building a vocabulary for
describing, developing, teaching and comparing products with the ultimate goal to support the adoption and
design of playful programming products in the future.

6. Conclusion

This article has taken inspiration from a model of computational thinking already used to evaluate the Scratch
programming environment. It introduces a diagramming technique to support greater overview of the
relationships between concepts (than normally achieved in prose text). Using this technique, we create an
expanded map of programming concepts while re-examining Scratch. This initial map is applied to an
assessment of a different playful programming product: Lightbot. Through a number of iterations the map is
updated when differences in the products are identified. Eventually the map accommodates both products
allowing subtle distinctions in how general concepts like loops and conditionals are supported. Once clarity is
achieved, the map is easily flattened into a list (a candidate list of programming concepts) that can be used to
evaluate other playful programming products. Further adaptations to the list are expected when the list is
used to evaluate a larger number of products, but it is considered relatively stable.

References

Biggs, John. '"Light-Bot Teaches Computer Science With A Cute Little Robot And Some Symbol-
Based Programming". TechCrunch. N.p., 2016. Web. 4 May 2016.

Brennan, K. and Resnick, M., 2012, April. New frameworks for studying and assessing the development of
computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research
Association, Vancouver, Canada.

Gold, J., 2014. Screen-Smart parenting: How to find balance and benefit in your child's use of social media,
apps, and digital devices. Guilford Publications.

Guzdial, M. and Soloway, E., 2002. Teaching the Nintendo generation to program. Communications of the
ACM, 45(4), pp.17-21.

Lakatos, I., 1976. Proofs and Refutations. Cambridge University Press.

Misfeldt, M. and Ejsing-Duun, S., 2015. Learning mathematics through programming: An instrumental
approach to potentials and pitfalls. In 9th Congress of European Research in Mathematics Education.
Nagarjuna, G., 2009 “Collaborative Creation of Teaching Learning Sequences and an Atlas of Knowledge”,
Mathematics Teaching-Research Journal Online, vol. 3, no. 3, p. 23.

Repenning, A., Webb, D. and loannidou, A., 2010, March. Scalable game design and the development of a
checklist for getting computational thinking into public schools. In Proceedings of the 41st ACM technical
symposium on Computer science education (pp. 265-269). ACM.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum,
E., Silver, J., Silverman, B. and Kafai, Y., 2009. Scratch: programming for all. Communications of the ACM,
52(11), pp.60-67.

Robins, R., Rountree, J. and Rountree N., 2003. “Learning and Teaching Programming: A Review and
Discussion”. Computer Science Education, vol. 13, no 2, Routledge.

Rumbaugh, J., Jacobson, I. and Booch, G., 2004. Unified Modeling Language Reference Manual, The. Pearson
Higher Education.

Rushkoff, D., 2010. Program or be programmed: Ten commands for a digital age. Or Books.



