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Abstract

The quantitative methodology derived from replicator dynamics for empirical studies
of economic evolution is becoming increasingly well developed in theory but is rarely
applied in practice. One reason is the relatively näıve nature of current methods,
which focus on the evolution of a single characteristic in a single environment. This
assumption constrains the analysis of real selection processes in which firms oper-
ate in several markets and their products have several characteristics that interact
to determine fitness. This entails that measurement of economic selection becomes
confounded: characteristics that are associated with firm growth are not becoming
more frequent in the population. The reason for confounded selection is that char-
acteristics interact to augment or constrain the rate and direction of evolution and
one-dimensional, single trait replicator dynamics cannot cope with confounded selec-
tion. The contribution of this paper is to develop an approach that serves to explicitly
analyse confounded selection. The primary elements of the method are the selection
gradients of the characteristics and the covariance matrix of the characteristics. Based
on these, the method motivates a taxonomy of selection based on the interaction of
characteristics. Applying the method to a population of firms will shed light on po-
tentially confounded selection. It will reveal the indirect effects of characteristics on
selection and the augmentation and constraints created thereby.

Keywords Replicator dynamics; Economic selection; Price’s equation; Multi-
trait selection; Statistics of evolution
Jel Codes: B52; L11; C63
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1 Introduction

Although economic evolution is in principle an easily understandable process,
in practice it is surprisingly difficult to analyse. For practical reasons, it there-
fore remains necessary to develop a formal theory of economic evolution, one
that addresses the key Schumpeterian questions, that is empirically robust at
the relevant levels of analysis, and that might illuminate the problems faced by
decision makers whether in firms or in government. Moreover, this formal the-
ory should reconcile many different pieces and make connections with existing
branches of economic theory and the pioneering insights of Schumpeter.

Within the context of how wealth is created from knowledge, the question
of how innovations impact the economic system is crucial. This is not a matter
of innovation alone, but of providing an explanation of how the system adapts
to the possibilities immanent in any innovation and how it draws them out
such that adaptation and innovation react to one another. The system must be
understood as if every solution to an economic problem only serves to open up
further problems somewhere in the system. The problems are dynamic, they
relate to process, and it is process that we have to elucidate.

To be precise, we wish to explain the rate at which innovations are absorbed
into the economic structure, displacing established methods in the process. We
are addressing creative destruction in matters small and the large, and this
involves structural change in the economy and differential growth in the use
of innovations and their rivals. Differential growth is the essence of economic
evolution, the analogue to fitness in formal biological theory.

Standard evolutionary theory gives the following formal answer for economic
systems that select with respect to only one dimension:

1. Technical characteristics of innovations are converted into economic char-
acteristics through the prevailing price system, to define effective variation
in the unit costs and qualities of products and services. Formal evolution-
ary theory analyses the varying characteristics individually.

2. Differential effective variation is the source of economic profit in Schum-
peter’s sense.

3. Differential profit is the basis of the differential growth of rival methods,
and hence two activities that have equal profitability are selected for at
the same rate. Growth and profitability are positively correlated, and this
correlation is grounded in an economic explanation of processes in single
markets. This is one of the oldest ideas in dynamic economic analysis.

This standard theory is very restricted. Selection is limited to one dimension
(typically the unit cost characteristic), and selection is analysed in the context
of only one market process, that in the product market. The theory is of great
pedagogic value, but it is far too narrow to explore the questions raised in part
1 of the above answer. One problem is that the theory emphasises differential
growth of methods, which generally translates into differential growth of firms,
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while firm turnover is neglected (Baldwin and Rafiquzzaman, 1995; Baldwin
and Gu, 2006b). Another problem is that differential growth may be caused
by structural transformations that are unrelated to differential profit (Holm,
2014). However, the main problem is that each particular process of evolution
normally involves multiple technical and economic characteristics and multiple
markets (such as markets for products, labour and capital).

Progress towards the analysis of these more complex forms of economic evo-
lution thus requires two additional steps:

4. The articulation of multiple dimensions of effective economic variation.

5. The extension of the market process to cover simultaneous selection in
multiple markets, adding labour and capital markets to the list.

When considering multiple characteristics, the correlation between the dif-
ferent characteristics is crucial for evolutionary change. Firms compete not
only for customers but also for employees and access to capital. Thus labour
and capital markets substantially condition the rate and direction of evolution
across populations of firms. The different markets do not always select upon
the same characteristics. Furthermore, some of the multiple characteristics of
a firm might be strongly correlated. For instance, an innovation that changes
a characteristic of positive relevance in the product market might be strongly
correlated with other characteristics that are valued negatively in the labour
market or capital market. Formal theory based on replicator dynamics thus
not only needs to account for different markets but also for the confoundedness
created by correlated characteristics.

With inspiration from Rice (2004), we show that it is possible and practically
feasible to quantify economic selection in empirical studies even when simultane-
ous selection on multiple characteristics of firms is confounding the relationship
between covarying characteristics and fitness. The confounding effects of in-
vestment behaviour and financial performance may be disentangled with this
methodology. However, it also has other uses such as the study of simultane-
ous selection in factor and output markets. Even in a straightforward model of
competition in which firms compete by undercutting one another’s prices, the
simple assumption that labour markets are less than perfect and that growing
firms hence must offer a relatively high wage rate to attract employees, and thus
have higher unit costs, entails that the relationship between profitability and
growth becomes confounded (Metcalfe, 1997; Baldwin and Gu, 2006a; Metcalfe
and Ramlogan, 2006). Once profits are imperfectly correlated with investment
decisions, we must go beyond traditional versions of replicator dynamics. This
is necessary because it is not assured that the most competitive firm in terms of
unit costs is also the fittest firm, in the evolutionary sense of having the fastest
rate of growth among its population of rivals. The contribution of the paper is
to extend the usefulness of replicator dynamics in both modelling and empiri-
cal studies in a way that makes replicator dynamics able to describe economic
selection when selection depends on multiple and interacting factors.
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This paper proceeds as follows. In section 2, we highlight the proliferat-
ing use of replicator dynamics for both modelling and empirical analysis, and
emphasise the limitations of current theory for analysing selection in markets.
In section 3, we present a framework and a methodology for addressing the
confoundedness produced by multivariate selection. In section 4 we apply the
methodology to simulated data. Section 5 summarises and concludes. The pa-
per is followed by an appendix with a guide for applying the proposed method
with empirical data.

2 Applications of replicator dynamics

The replicator dynamics based methodology for empirical studies of economic
evolution is becoming increasingly well developed theoretically. However, em-
pirical and simulation application remains highly limited as replicator dynamics
still only address a single variable at a time and hence only allows for analysis
of a single characteristic in a single environment. This limits the analysis of real
selection processes in which firms operate in several markets and their products
have several characteristics that interact to determine fitness. Characteristics
interact to augment or constrain selection, and one-dimensional, single trait
replicator dynamics cannot cope with such confounded selection.

Replicator dynamics represent a basic tool in evolutionary game theory and
are also widely applied in modelling in evolutionary economics (Hodgson and
Huang, 2012; Safarzynska and van den Bergh, 2010; Windrum, 2007; Metcalfe,
1998). Replicator dynamics are also linked to empirical studies, as the “selec-
tion” “reallocation” or “inter-agent” term of productivity decomposition stud-
ies is often a version of replicator dynamics (Hölzl, 2015; Holm, 2014; Metcalfe,
2008; Andersen, 2004). Simple replicator dynamics can be applied to numerous
areas, but attempts at extending either replicator dynamics or the derived de-
composition equations for empirical application have nevertheless proliferated
(Andersen and Holm, 2014; van Veelen, 2011; Safarzynska and van den Bergh,
2011). Ultimately, replicator dynamics are a formalisation of the evolution of
frequencies of strategies in a population. Replicator dynamics describe how the
change in the frequency of one strategy depends on the frequencies of other
strategies by specifying that the change in the frequency of a strategy depends
on the fitness of that strategy relative to the average fitness in the population.
Replicator dynamics can be formalised in a number of ways, but they share
the common features of being deterministic, monotonic and, often, non-linear
transformations of fitness to growth. The formalisation in equation 1 is chosen
here because it relates directly to the model employed in section 4 of the current
paper.

s′i = si
Wi

W
= siwi (1)

si is the population share of strategy i, and s′i is the population share at
a later point in time. Wi is the absolute fitness of strategy i, W =

∑
i siWi
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is the average fitness and wi is the relative fitness. Fitness is determined in a
non-linear manner based on the characteristics of the strategy, the vector zi. In
the simple case in which zi only contains one characteristic and higher values
of the characteristic monotonically translate into greater fitness, there will be
positive covariance between a strategy’s characteristic zi and the change in the
frequency of the strategy, ∆si = s′i − si. This principle is applied in empirical
decompositions in the tradition of Foster et al (1998) and related approaches,
where the contribution from economic selection to the change in the average
characteristic in a population is quantified by equation 2.

Selection effect =
∑
i

(∆si)(zi − z) = Cov(wi, zi) (2)

The close relationship between the replicator dynamics of equation 1 and the
selection effect of equation 2 is discussed in detail in Cantner (2014). Equation
2 is an example of what may be called positive directional selection, as the
average characteristic in the population is driven continuously towards higher
values by selection. Andersen and Holm (2014) derive alternative specifications
for other types of selection. In the current paper we generalise the selection
effect in equation 2 so that it can be applied in empirically more relevant cases
where fitness can depend on more than one characteristic.

In empirical application, a strategy (i) is normally a firm and its frequency,
si, is the population share of the firm measured using a relevant size variable.
In an empirical study of firm growth, it would not be reasonable to assume
that growth depends only on one characteristic. Other characteristics, which
are potentially correlated with zi, will also affect growth and hence whether the
average, z, will tend to grow in the population. Studying the relationship be-
tween correlated characteristics and the evolution of z leads us to a taxonomy of
confounded selection, which is closely linked to our methodology for empirically
accounting for such confounding effects of additional variables on the selection
effect of equation 2. In order to explore and demonstrate the method and taxon-
omy in a controlled setting allowing for pure cases we rely on simple simulated
data.

The primary elements of the method are the selection gradients of the char-
acteristics and the covariance matrix of the characteristics. Based on these, the
method motivates the taxonomy of selection based on the interaction of char-
acteristics. This is done in a formal way but thinking in terms of confounded,
augmented and constrained selection can help a variety of statistical approaches
that dig deeper into the muddles of economic evolution.

3 Analytical framework for multivariate selection

Metcalfe (1994) moved from R. A. Fisher’s specific theorem of genetics-based
natural selection to the general “Fisher Principle” to make the work of the great
statistician and evolutionary biologist relevant for evolutionary economics. The
Fisher Principle states that “in the context of a population of diverse behaviours
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across which selection is taking place in a constant environment, the rate of
change of mean behaviour is a function of the degree of variety in behaviour
across the population.” Under such circumstances, the gradually evolving mean
behaviour becomes increasingly informed about and adapted to the environ-
ment of the population. Evolutionary economists have formalised and applied
this principle in the study of simple selection and evolution in simple environ-
ments in a variety of ways, which are generalised by replicator dynamics. How-
ever, the conditions of Fisher’s Principle are seldom fulfilled. First, the stability
or lawful patterning of the environment of an economic population obviously
cannot always be taken for granted. Second, selection can work on a number
of more or less conflicting behavioural characteristics. For example, a fluctu-
ating environment may repeatedly shift the characteristics on which selection
focusses. Furthermore, the input markets and the output markets can empha-
sise conflicting population characteristics. Third, the importance of multiple
and shifting characteristics means that it is often not obvious which character-
istics of behaviour have to be recreated when old variance has been used up by
the selection process.

The development of Fisher’s Principle towards an extended and more opera-
tional toolbox for theoretical and applied evolutionary economics involves a large
research agenda. The turbulent environment and its shifting focus on different
behavioural characteristics have, to some extent, been addressed by innovation
studies. Furthermore, industrial dynamics examined the systematic change in
selective focus across behavioural characteristics during the industry life cycle.
However, we nevertheless lack general principles and statistical methods for
coping with the selection and evolution of multiple and potentially conflicting
characteristics of behaviour. The lack of analytical tools seems to have slowed
the move from the well-understood univariate analysis to the general analysis of
multivariate selection and evolution. In turn, the lack of multivariate analysis
has decreased the analytical clarity and power of evolutionary economic studies
attempting to extend Fisher’s Principle in other directions.

The move from univariate to multivariate selection has already been made
within evolutionary biology. The statistical procedures for theorising and data
analysis can be traced back to Fisher (1930), but a very helpful advance was
made by the Chicago School, a group of Chicago biologists working within quan-
titative genetics in the late 1970s and early 1980s (Lande and Arnold, 1983;
Connor and Hartl, 2004). The Chicago approach to phenotypical selection and
evolution is based on the statistical analysis of the fundamental requirements for
any evolutionary process: the variance of the characteristics of the population,
the covariance between characteristics and the reproduction of members, and the
inter-temporal inertia of the characteristics. By focusing on these requirements
for phenotypical evolution rather than on the direct study of genetic evolution,
this approach has been very successful for studying “natural selection in the
wild” (Endler, 1986; Brodie et al, 1995; Kingsolver et al, 2001; Kingsolver and
Pfennig, 2007). This use has been eased by reformulations and developments by,
e.g., Rice (2004) of the Chicago school approach in relation to the very general
analytical framework of Fisher and George Price. With some caution and modi-
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fication, the approach can also be used for the analysis of economic selection and
evolution. As we have already developed the basic analytical framework else-
where (Andersen, 2004), in the following we move quickly from Price’s Equation
to the Chicago novelties with respect to evolutionary economics.

3.1 Univariate selection as a starting point

Price (1970, 1995) worked at a deeper level than the Chicago School. He thought
in terms of a population that is studied at two subsequent points of time, t and
t′. He assumed that any member of the t′-population can be connected to a
member of the t-population. This made it possible for him to define absolute
fitness for each t-member as the number by which to multiply its size at t to
determine its representation in the t′-population. Then, Price defined evolution
as the change in the population mean of a characteristic between the two points
in time. He also defined selection as the part of evolution that can be explained
by the covariance between the characteristic values of the members of the t-
population and their fitness. The residual of the evolutionary change in the
mean characteristic is explained fully by mean intra-member change evaluated
in the t′-population. Thus Price’s Equation–or Price’s Identity–can be written
as

Total evolutionary change = Selection effect + Intramember effect (3)

Equation 3 suggests basic analyses that apply two subsequent population
censuses. As we emphasise selection, we call them the pre-selection census and
the post-selection census. When necessary, we distinguish by adding a prime to
variables that relate to the post-selection census. The two censuses provide the
basis for calculating statistics on fitness and characteristics and the relationships
between them. This procedure can be presented in three basic steps (Andersen
and Holm, 2014):

A-1 In each of the two censuses, we measure the population share of each mem-
ber. Then, we calculate the relative fitness of each member as the ratio
of its population shares after and before selection relative to the fitness of
the population as a whole. Thus the population has mean relative fitness
w = 1.

A-2 The censuses provide information on a focal characteristic, z1, of the mem-
bers of a population. In each census, we measure the characteristic value
of z1 for each member, and we calculate the member-level change in z1
between the two censuses. We then calculate the weighted means of z1 in
each of the two censuses, z1 and z′1, and the change in the mean between
censuses, ∆z1. We also calculate the weighted mean of the member-level
change in the characteristic, E(w∆z1). However, in the present paper, we
focus on selection and assume that ∆z1 = 0 for all members such that
E(w∆z1)=0.
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A-3 We use the member-level information to calculate the covariance between
fitness and the characteristic z1, Cov(w, z1), which corresponds to replica-
tor dynamics, cf. equation 2. This covariance is equal to the product of
the regression of fitness on the characteristic and the variance of the char-
acteristic, βTotal

w,z1 V ar(z1). (The superscript “Total” is used to distinguish

βTotal
w,z1 V ar(z1) from later βs which are all partial regressions coefficients.)

Much can be learned by following this procedure. For example, we can
turn to simple applications of Price’s Equation (4) for analysing the relative
importance of the selection effect and the intramember effect with respect to
individual characteristics

∆z1 = Cov(w, z1) + E(w∆z1) = βTotal
w,z1 V ar(z1) + E(w∆z1) (4)

The practical implementation of Price’s Equation (4) serves to study the
process of directional univariate selection. However, the Chicago school has pro-
moted an analytical distinction between different types of selection. Although
we have already addressed this contribution (Andersen and Holm, 2014), it is
worth repeating that it is important to add other types of selection to the di-
rectional selection implied by Fisher’s Theorem and Fisher’s Principle. While
most thinking on selection within evolutionary economics has been dominated
by the–positive or negative–directional selection that results in a change in the
mean of a characteristic, it is possible to define other types of selection that can
occur with a constant mean of the population.

3.2 Multivariate selection

The developers and users of the Chicago approach share an interest in the di-
rectional selection of Fisher and Price. However, they normally focus on more
concrete problems connected with artificial selection and natural selection in
the wild. In the context of artificial selection, the emphasis is on the selection
differential, i.e., the difference between the mean value of the parents chosen for
breeding and the mean value of all potential parents in the population. In other
words, the selection differential is the change in z1 that can be ascribed solely
to selective reproduction and thus can be modelled with replicator dynamics.
In terms of equation 4, the selection differential is Cov(w, z1). However, this
selection differential is the combined result of direct selection on the studied
characteristic and the indirect effects on that characteristic of (artificial) selec-
tion working on other characteristics. In these connections, the problems of
addressing selection on multiple characteristics are obvious. For example, when
breeders are performing artificial selection, they recognise that by selecting on a
single characteristic, they are often co-selecting unwanted characteristics. The
Chicago approach addresses this and similar problems by thinking of total evo-
lutionary change as a vector that consists of the changes in a number of different
characteristics (e.g., Lande and Arnold (1983)).

To confront such issues, the Chicago school has provided two new tools. The
first tool is the vector of selection gradients, i.e., the direct effects of selection
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on the different characteristics. While a selection differential includes both the
direct and the indirect selection on a characteristic, a selection gradient is the
partial regression of relative fitness on a characteristic. Thus the selection gradi-
ent ignores indirect selection due to other analysed characteristics and measures
only the direct selection of the characteristic in question. The selection gradient
in equation 4 is βTotal

w,z1 . As equation 4 is Price’s equations for a single charac-
teristic, there are no indirect effects and the distinction between the selection
gradient and selection differential is trivial in equation 4. The second tool for
coping with multiple characteristics is the matrix of phenotypic covariances be-
tween characteristics. This matrix reflects the fact that different characteristics
may be interdependent. For example, we have the case in which members of the
t-population that have high values of one characteristic also tend to have high
(or low) values of coupled characteristics. This means that when selection acts
directly on one characteristic, it also influences the population mean of more or
less closely coupled characteristics. The elements of the phenotypic covariance
matrix can be zero, positive, or negative.

By combining the two new tools, we can understand the strange ways in
which the process of selection on coupled characteristics might operate. For
instance, a change in the mean of the focal first characteristic is potentially
influenced by all the studied characteristics. The selection effect in equation 3
now consists of one direct effect and multiple indirect effects. The direct effect
is derived by multiplying the first element of the covariance matrix by the first
element of the vector of selection gradients. Thus, we are multiplying a covari-
ance by a partial regression coefficient. However, as we are here concerned with
the covariance of the first characteristic with itself, we are actually multiplying
the variance of the first characteristic by the efficiency of direct selection on
that characteristic. The indirect effects might involve important covariances
(and thus correlations). For example, the first indirect effect on the change in
the mean of the first characteristic is obtained by multiplying the covariance
between characteristics z1 and z2 by the selection gradient of characteristic z2.
Surprising observations can result from this multiplication because the covari-
ance might be negative and the selection gradients of characteristics z1 and z2
might have opposite signs. Thus this indirect selection of characteristic, z1,
might remove or invert a positive direct selection on characteristic z1. However,
although the effects of such couplings of characteristics have been analysed in-
tensively by evolutionary biology, discussion persists concerning the frequency
of this phenomenon in nature (Agrawal and Stinchcombe, 2009).

The Chicago approach to multivariate selection can be clarified by extending
the above procedure for studying univariate selection. We still have two censuses
and calculate statistics on fitness and characteristics as well as the relationships
between them. Furthermore, we continue to exploit the convenience of operating
in the short run. In contrast to long-term analysis, this approach allows to
concentrate on selection to a greater degree and thus minimise the importance
of some of the huge differences between economics and biology. We also believe
that the simple short-term framework helps to think clearly about concepts and
measurements of selection. Finally, in numerous countries, immensely rich data
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on each firm and each citizen have become available for relatively short-term
social science analysis.

To apply the Chicago approach, we must redefine the three steps in the
procedure.

B-1 We extend the censuses beyond the focal characteristic to cover a set of
new characteristics labelled from 2 to n. We do so by repeating steps (A-1)
and (A-2) for each additional characteristic. One of the results is that we
are provided with a vector of changes of mean characteristics

∆z =

∆z1
...

∆zn


The aim is to explain this vector with particular emphasis on ∆z1. We
have much of the information needed for this analysis, but steps (B-2) and
(B-3) provide us with crucial tools.

B-2 For the pre-selection census, we check whether the characteristics are corre-
lated by extending step (A-3) and calculating the “phenotypic” covariance
matrix

P =

P11 · · · P1n

...
. . .

...
Pn1 · · · Pnn

 =

Cov(z1, z1) · · · Cov(z1, zn)
...

. . .
...

Cov(zn, z1) · · · Cov(zn, zn)


where the diagonal represents variance, because, e.g., Cov(z1, z1) = V ar(z1).
The phenotypic covariance matrix is computed from a census rather than a
sample, and hence it is computed as a weighted population covariance ma-
trix. See the appendix for further computational issues. The remainder of
the symmetric matrix is filled with covariances, where, e.g., Cov(z1, zn) =
Cov(zn, z1).

B-3 We end the census-related work by calculating the vector of partial regres-
sions of fitness on each of the characteristics

β =

βw,z1
...

βw,zn


We have an interesting case if, for example, the selection coefficient, βw,z1 ,
differs from βTotal

w,z1 .

These redefined steps in the procedure promote the analysis of multivariate
selection. We can thus use the P matrix and the vector of selection gradi-
ents for the characteristics to describe the responses to selection pressures that
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act simultaneously on these characteristics. In condensed matrix format, the
equation is

∆z = Pβ (5)

Let us, for example, expand the mean change in the first characteristic for
the case in which there are only two characteristics, extending the assumption
that E(w∆z1) = 0 to E(w∆zj) = 0, j = (1, 2)

∆z1 = βw,z1V ar(z1) + βw,z2Cov(z1, z2)

Here, the evolutionary response to selection on the first characteristic has
two components. First, there is the direct response to selection, βw,z1V ar(z1) =
βw,z1Cov(z1, z1), which consists of the change in the mean of characteristic z1
due to selection acting directly on characteristic, z1. Second, there is the indirect
response to selection due to covariance. Thus, βw,z2Cov(z1, z2) represents the
indirect change in the mean of characteristic, z1, due to its covariance with
characteristic z2.

It is, of course, possible that the change in the mean of characteristic z1 is
entirely or largely due to the direct selection on characteristic z1. Another pos-
sibility is that the correlate response to selection on characteristic z2 dominates
the direct response. In the extreme case, direct selection tends to produce high
levels of the first characteristic, while its mean becomes smaller due to negative
covariance or to a low value of the other characteristic.

These and other possibilities are presented in table 1. Here, we distinguish
among five types of bivariate directional selection (cf. Connor and Hartl (2004),
p. 223). If we ignore the case in which bivariate selection reduces to two uni-
variate selections, we can classify the outcomes in terms of the signs of the
selection coefficients and the covariance of characteristics. For example, neg-
ative covariance of the characteristics and selection with opposite signs leads
to the negative augmentation of direct selection. However, when covariances
remain negative while coefficients have the same sign, we are facing what might
be called a correlation constraint on the evolution of the characteristics.

The taxonomy in table 1 covers only characteristics that are subject to di-
rectional selection and only one confounding characteristic. It is this latter
characteristic that augments or constrains the selection pressure that works on
the focal characteristic. However, we can nevertheless use the taxonomic labels
on the aggregate effects of several confounding characteristics. Even here, se-
lection on the focal characteristic can still be augmented by selection on other
characteristics. It can also be constrained. In the extreme case, a strong se-
lection pressure on the focal characteristic can translate into zero evolutionary
change due to selection on confounding characteristics. The taxonomy in table
1 concerns directional selection, but it can be generalised to also include stabil-
ising and diversifying selection. This would not require further categories, only
more careful and less elegant definitions and examples in which the selection
gradients are allowed to be zero. In the remainder of the paper, we focus on
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Tab. 1: Effects on evolutionary change of signs of selection coefficients and cor-
relations of characteristics

Type of directional
selection on two
characteristics

Definition Stylised example for ∆z = Pβ

Univariate selec-
tion

No covariance of
characteristics

[
∆z1
∆z2

]
=[

V ar(z1) 0
0 V ar(z2)

] [
> 0
> 0

]

Positive augmen-
tation

Positive covariance
of characteristics +
gradients with same
sign

[
∆z1
∆z2

]
=[

V ar(z1) > 0
> 0 V ar(z2)

] [
> 0
> 0

]

Negative aug-
mentation

Negative covariance
of characteristics +
gradients with op-
posite sign

[
∆z1
∆z2

]
=[

V ar(z1) < 0
< 0 V ar(z2)

] [
> 0
< 0

]

Gradient con-
straint

Positive covariance
of characteristics +
gradients with op-
posite sign

[
∆z1
∆z2

]
=[

V ar(z1) > 0
> 0 V ar(z2)

] [
> 0
< 0

]

Correlation con-
straint

Negative covariance
of characteristics +
gradients with same
sign

[
∆z1
∆z2

]
=[

V ar(z1) < 0
< 0 V ar(z2)

] [
> 0
> 0

]
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Fig. 1: The modelling strategy

the taxonomy defined in table 1 and avoid unnecessary complications following
from further generalisation.

4 Modelling and simulation results

In this section, we will demonstrate how selection may be confounded. The
modelling strategy has two steps: a data-generating algorithm and a deter-
ministic selection process. The data-generating algorithm is a set of rules for
defining the pre-selection population. It is at this step that we may introduce
correlation among the traits of business units. The selection process determines
how the pre-selection population evolves into the post-selection population. At
this step, we may implement different selection functions based on different as-
sumptions regarding the characteristics of firms. Finally, the evolution from
the pre-selection to post-selection population is analysed using the method pre-
sented in the current paper: the identity in equation 5. This step is merely a
measurement step, and we have no influence on the results at this step. The
strategy is illustrated in figure 1.

When evaluating whether selection is confounded, we compare the selection
gradients with the observed evolutionary change. Selection is argued to be
confounded when these have opposite signs. That is, z1 > 0 while βw,z1 < 0
entails that selection on z1 is confounded in the sense that firms with relatively
high values of z1 have decreasing population shares, despite that the mean of
z1 is increasing in the population. Each simulation will be repeated 100 times
for robustness and the results plotted in z1 by βw,z1 space.

The pre-selection population will consist of 100 firms. Each firm is charac-
terised by a vector of three characteristics: zi = (z1,i, z2,i, z3,i). In a more
general model, firms might enter and exit, and the characteristics of a firm
would change over time through adaptation and innovation, but these compli-
cations are not included here because they are inconsequential for the aim of
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the paper, as explained earlier. Thus, the evolution of the characteristics in the
population, ∆z, is described fully by ∆z = Pβ. Any change in the means of the
characteristics must come from the relative growth or decline of firms.

The data-generating algorithm proceeds as follows: the three characteristics
are all drawn from standard normal distributions with correlation matrix ρ. All
firms have equal population shares in the pre-selection population: si = 0.01∀i.

For the rules of the selection process, we follow the general lines applied in
Andersen and Holm (2014). This means that we specify a deterministic function
for absolute fitness. We then transform the outcome into relative fitness and
allow the population to evolve according to equation 6.

s′i = siwi (6)

Relative fitness is defined as absolute fitness divided by population fitness,
wi = Wi/W , and absolute fitness is determined by the following relationship

Wi = (1 + C)F (zi) (7)

The general fitness function specified in equation 7 is an exponential function.
The parameter C determines the pace of evolution in the sense that a firm will
grow by C ∗ 100 per cent as many times as specified by the exponent. The
specification of the exponent determines the type of selection. In the current
paper, we have chosen a specification in which there is negative directional
selection on z1 and positive directional selection on z2 and z3. The exponent is
determined as

F (zi) = −(z1,i − z1) + (z2,i − z2) + (z3,i − z3) (8)

The rules of the selection process are uniform in all of the simulations pre-
sented in the current paper. C is fixed at 0.5. This sets a relatively high pace
for evolution but allows us to disregard the possibility of multiple time periods
between the pre- and post-selection populations. The data-generation algorithm
is also the same in all simulations except for the value of ρ12 and thus also ρ21:
the correlation between the standard normal distributions from which z1 and
z2 are drawn.

ρ =

 1 ρ12 0
ρ21 1 0
0 0 1

 (9)

In all simulations, there will be positive directional selection on z3, which is
independent of the other characteristics. There will also be positive directional
selection on z2, but this characteristic will, to varying degrees, be correlated
with the characteristic, z1, upon which there is negative directional selection.

4.1 Baseline simulation (ρ12 = 0)

In the first simulation, the three traits of the firms are uncorrelated; ρ12 = 0
in equation 9 above. The pre-selection population is described by the vector of



4 Modelling and simulation results 14

∆z1
∆z2
∆z3

 =

−0.376
0.469
0.350

 =

−0.139
0.613
0.242

−
 0.239

0.145
−0.108

 =

1.174 0.042 0.190
0.042 1.108 0.051
0.190 0.051 0.929

−0.406
0.418
0.436


Fig. 2: Result from a baseline simulation

Fig. 3: 1000 baseline simulations

mean characteristics, z. After having been subject to the deterministic selec-
tion process described in equations 6 through 8, the post-selection population is
created, and it is described by z′. The evolution of the population is described
by the change in mean characteristics, ∆z (step B-1). This evolution is then
decomposed into the variance-covariance matrix of the characteristics (step B-2)
and the vector of selection gradients (step B-3). In a typical baseline simula-
tion, the results look as presented in figure 2. The mean of the characteristic
z1 has decreased by 0.376, while the means of the remaining two characteristics
have increased by approximately the same magnitude. This is in accordance
with the assumed directional selection processes. The final product on the right
is the decomposition of the selection differential, Pβ. The selection gradients
reflect the assumed selection processes and correspond to the observed evolu-
tion in means: z2 and z3 have positive selection coefficients (0.418 and 0.436,
respectively), while z1 has a coefficient of −0.406.

Figure 3 plots the results from figure 2 along with 99 additional simulations
with the baseline specification. The values of the (βw,z1 ,∆z1) pairs cluster in
the bottom left while the values of (βw,z2 ,∆z2) and (βw,z3 ,∆z3) cluster at the
top right corner.
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Figure 3 also includes three regression lines, one for each characteristic. All
three have a positive slope, indicating that there is a positive relationship be-
tween the gradient and the change in mean. The slope of the regression line
and the clustering of the data points show that selection is not confounded: ob-
serving that a characteristic is becoming more (less) frequent in the population
allows us to assume that it is positively (negatively) related to firm growth. In
a population where the change in the average characteristic is greater, we may
even assume that the significance of the characteristic for firm growth is also
greater.

4.2 Simulations with positive correlation (ρ12 > 0)

In this section, we will present the results from assuming that ρ12 6= 0. Specifi-
cally, we will let the correlation approach unity in a stepwise manner that can
be illustrated in a series of simulations. Adding correlation between z1, upon
which there is negative directional selection, and z2, upon which there is positive
directional selection, is expected to lead to confounded selection, as the selection
mechanism will drive z1 down and z2 towards ever higher values, while they are
positively correlated at the firm level. In the taxonomy introduced in section 3,
this is a case of gradient constraint selection. The correlation between z1 and
z2 constrains z1 from decreasing, and it constrains the growth in z2 to be lower
than would otherwise be the case.

The results from specifying ρ12 = 0.05 to ρ12 = 0.95 in increments of 0.3
are shown in figure 4. This yields a total of four different parameterisations.
Compared to figure 3 (where ρ12 = 0), it does not make a substantial difference
if instead ρ12 = 0.05. However, as the correlation increases, the data points
describing the evolution of z1 and z2 cluster closer and closer to the horizontal
axis. In this region, selection is confounded: ∆z1 is positive, while βw,z1 is
negative, meaning that the average of z1 is increasing in the population but
firms with high values of z1 have relatively low growth. The reason that this can
happen is that z1 is correlated with z2, upon which there is positive directional
selection, vice versa for the evolution of z2.

Figure 5 shows one of the results from the bottom-right panel of figure
4 in greater detail. The selection gradients, the final element on the right,
take approximately the same value as in figure 2. This is because evolution
follows the exact same deterministic fitness function. Any variation is due to
the stochastic data-generation algorithm. The observed evolution, however,
differs from figure 2: z2 has only increased slightly (0.127) despite the strong
selection on the characteristic, and z1 has even increased (0.079) despite strong
negative selection.

5 Conclusions

Economic evolution is the combined result of innovation in firms and selection
within and between them. Selection is often modelled using replicator dynam-
ics, and this entails assuming that selection is based on a single characteristic
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Fig. 4: Four different parameterisations for ρ12

∆z1
∆z2
∆z3

 =

0.079
0.127
0.583

 =

−0.042
0.005
0.656

−
−0.121
−0.122
0.073

 =

1.036 1.029 0.266
1.029 1.122 0.264
0.266 0.264 1.375

−0.513
0.482
0.431


Fig. 5: A result from a simulation with ρ12 = 0.95
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reflecting a single uniform selection environment in which all firms are treated
equally. This assumption constrains the analysis of real selection processes in
which the firm operates in several markets and has products with several char-
acteristics. From a simplified perspective, this means that we are facing con-
founded selection that cannot be addressed by standard replicator dynamics.
This paper develops a statistical approach that serves to analyse confounded
selection explicitly and illustrates the proposed method by means of simulation.

The results show how observed evolutionary change may not convey the
suspected information about selection gradients. As an example, consider a
population in which there is selection on, inter alia, firms’ wage costs and the
adaptability of the work force. For the former, there is negative directional
selection: lower costs mean higher growth; for the latter, there is positive di-
rectional selection: firms that can easily adapt their workforce grow more than
others. However, the correlation between these two variables – labour turnover
entails a loss of tacit knowledge and incurring retraining costs – means that
we would not be able to infer the importance of either characteristic for firm
growth from the observed change in the mean characteristic at the population
level. In this example, it is plausible that neither characteristic’s mean would
change at all, despite that a micro-level regression analysis would show that
both are important for firm growth. As in this example, the simulations show
quantitatively how population dynamics constrain the evolution of aggregate
variables towards values that would be deemed “optimal” in an atomistic study
of firm behaviour. A regression analysis does not, on the contrary, necessarily
allow for forecasting of evolutionary change. Even if the regression analysis
shows that a characteristic has a large effect on firm growth, the characteristic
will not become more frequent in the population if selection is confounded.

Despite this comparison it is important to keep in mind that methodologies
for decomposing evolutionary change are very different from regression analysis.
Regression analysis attempts to identify the effect of a characteristic on firm
growth while decomposition analysis charts the role of differential growth on the
change in average characteristic. Decomposition analyses rely on two or more
full population censuses to quantify population dynamics, whereas regression
provides estimates of effects at the level of population members from a sample
of data.

Correlation is vital in evolution. It determines the direction of change in the
characteristics of a population, but we may be mistaken if we interpret observed
change as indicating correlation, as the correlation between a characteristic and
fitness can be mediated by other characteristics, and hence the determinants of
fitness fail to actually correlate with fitness.

The simulations and the above example were constructed around a process
exhibiting gradient-constrained selection, but we could easily have included the
other types of confounded selection defined in table 1. Positive or negative aug-
mented selection would be created by setting ρ23 > 0 or ρ12 < 0, respectively.
Correlation-constrained selection could have been included by setting ρ23 < 0.
It is even possible to go beyond directional selection processes and incorporate
stabilising or diversifying selection in the simulations by adapting the F (·) func-
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tion of equation 8. It is relatively simple to illustrate confounded selection as
augmenting or constraining when selection is directional, but the phenomenon
of confounded selection is not restricted to such cases.

In this paper we have developed an approach that serves to explicitly analyse
confounded selection. The central elements are the selection gradients and the
covariance matrix of the characteristics. Based on these, the method motivates
a taxonomy of selection. The method is relatively formal but thinking in terms
of confounded, augmented and constrained selection can be useful in a variety of
different approaches to economic evolution. The discussions in this paper focus
on the evolution of a characteristic in a population of firms, but the method
is equally applicable to studies of populations of industries, regions, countries,
etc. Future research applying the methodology will invariably also contribute to
further generalisation of the method. Such research must necessarily consider
that, for the methodology and its interpretation to be applicable, it is necessary
to assume that the data are census data for the units of selection and that the
measured characteristics are stable over time. Firms, or more generally business
units, have characteristics that may be assumed to be stable. When instead
studying a population of regions or industries, such an assumption becomes
increasingly problematic, but it more likely that the data can be assumed to
be a complete census. Further studies applying the methodology will have to
discuss these assumptions and demonstrate the robustness of conclusions to the
assumptions.
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Appendix – Guide for empirical application

The starting point for any decomposition of evolution is the absolute size of
members and their characteristics, xi and zij , where i denotes the members
and j indexes the characteristics. The population share of a member is defined
as si = xi/

∑
i xi, and selection can then be discussed in terms of absolute

fitness, Wi = x′i/xi, or relative fitness, wi = Wi/(
∑

i siWi) = s′i/si. Recall that
applying a decomposition requires the use of two censuses at each time t and t′,
with t < t′, and that the prime is also used to distinguish between values taken
from each census. Relying on relative fitness rather than absolute fitness does
not make the computations more arduous, but it facilitates interpretation, and
at least in our case, it makes the decomposition equation more parsimonious.

Table 2 contains an overview of the computations necessary to conduct the
decomposition of the evolution of a vector of characteristics. A superscript T
indicates a transpose and • is the dot product. When performing the computa-
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tions, one must note that V ar(z) is the population, not the sample, variance-
covariance matrix and that the vector of selection gradients, β, is computed in a
regression that also contains an intercept, although the intercept is not included
in β, and that this is a WLS regression.

With the elements defined in table 2, it holds as an identity for any size of
the population m and any number of characteristics n that

∆z = V ar(z)β + E(w∆z) (10)

As we assume in the expositions presented in the main text that there is no
change within members, ∆z = 0, the identity becomes ∆z = V ar(z)β = Pβ as
in section 3 of the main text.

In any empirical application, the expectation term would have to be included,
and in many cases so would entry and exit in some manner. The vector of
selection gradients would be computed as

β∗ =

[
β0
β

]
=


β0
β1
...
βn

 =

(
ẑ∗

T
ẑ∗
)−1

ẑ∗ŵ (11)

where z∗ is the m× (n+ 1) matrix

z∗ =

1 z11 · · · z1n
...

...
. . .

...
1 zm1 · · · zmn

 (12)

and hats denote weighted data, i.e.,

ẑ∗ =
(√
s • Im

)
z∗ (13)
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Tab. 2: Computations for empirical applications

Element Dimensions Definition

zij

Value of zj for member i
in the early census. i =
(1 · · ·m), j = (1 · · ·n)

z
m × n ma-
trix

Values of the n characteris-
tics for the m members in
the early census

s m×1 vector
Population shares for the
m members

w = s′/s m×1 vector
Relative fitness (i.e.
growth) for each member

z = E(z) = zT s n× 1 vector
Population mean values for
the n characteristics

∆z = z′ − z n× 1 vector
Change in the n population
level means from t to t′

V ar(z) = (z − zT )T
(
(z − zT ) •

s
)

= P
n×n matrix

Weighted population
variance-covariance matrix
of the n characteristics

E(w∆z) =
(
w • (z′ − s)

)T
s n× 1 vector

Intra member change (gen-
erally assumed to be zero
in simulations; as in the
main text)

β n× 1 vector
Slopes from the WLS re-
gression w = β0 +

∑
j zβ +

error with s as weights
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