
Aalborg Universitet

The signs of change in economic evolution

An analysis of directional, stabilizing and diversifying selection based on Price’s equation

Andersen, Esben Sloth; Holm, Jacob Rubæk

Published in:
Journal of Evolutionary Economics

DOI (link to publication from Publisher):
10.1007/s00191-014-0350-z

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Andersen, E. S., & Holm, J. R. (2014). The signs of change in economic evolution: An analysis of directional,
stabilizing and diversifying selection based on Price’s equation. Journal of Evolutionary Economics, 24(2), 291-
326. https://doi.org/10.1007/s00191-014-0350-z

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1007/s00191-014-0350-z
https://vbn.aau.dk/en/publications/48fbeeb8-55dd-4dfd-a52f-5fcd0b77817f
https://doi.org/10.1007/s00191-014-0350-z


The signs of change in economic

evolution: An analysis of directional,

stabilizing and diversifying selection

based on Price's equation

Esben Sloth Andersen Jacob Rubæk Holm

Corresponding author: E. S. Andersen, esa@business.aau.dk. This is the final but
pre-proof version for JEE.

The final published version has DOI:10.1007/s00191-014-0350-z

Abstract

Neo-Schumpeterian evolutionary economics has, since the early works of Nelson and
Winter, defined evolution as the change of the mean of a characteristic of a population.
This paper trancends the previous paradigm and explores novel aspects of evolution in
economics. Within the traditional paradigm change is provided by directional selection
(and directional innovation). However, the full definition of evolutionary processes has
to include two important types of selection that change the variance without necessarily
changing the mean. Stabilizing selection removes any outlier and diversifying selection
promotes the coexistence of behavioural variants. This paper emphasizes the need for
an integrated analysis of all three types of selection. It also demonstrates that the
evolutionary algebra provided by Price’s equation increases the intellectual coherence
and power of thinking about selection and other aspects of evolutionary processes.
Directional, stabilizing and diversifying selection are then related to fitness functions
that can produce the different types of selection; and the functions are used for simple
simulations of the change of the population distribution of a quantitative characteristic.
Finally, the paper adds to evolutionary economics a novel way of using Price’s equation
to decompose the statistics of the changes of the frequency distributions. The changes
of mean, variance, skewness and kurtosis are all decomposed as the sum of a selection
effect and an intra-member effect. It is especially the signs of these effects that serve to
define and characterize the different types of selection. Both this result and the general
analysis of the types of selection are of relevance for applied evolutionary economics.

Keywords Statistics of evolution; Directional selection; Stabilizing selection; Di-
versifying selection; Evolution of variety; Fitness functions; Simulation of selection;
Price’s equation
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Fig. 1: Three types of pure selection. The solid line represent the pre-selection distri-
bution of the characteristic and is identical across the three panels. The dashed
lines represent the distribution of the characteristic after pure direction, pure
stabilizing and pure diversifying selection respectively.

1 Introduction

The analysis of directional selection is well-developed in evolutionary economics where
it is often applied in empirical research and simulations in relation to productivity. This
paper demonstrates that these analyses can be complemented by analyses of stabilizing
selection and diversifying selection. It also demonstrates that the evolutionary algebra
provided by Price’s equation increases the intellectual coherence and power of thinking
about selection and other aspects of evolutionary processes. The paper combines these
aims by analysing the types of selection by means of the algebra of evolution provided
by Price’s equation.

Neo-Schumpeterian evolutionary economics has largely been based on the para-
digm of directional evolution. From Nelson and Winter (1982) and onward, economic
evolution has implicitly been defined as the change of the mean of an evolutionarily
relevant characteristic of a population of firms. Evolution moves this mean in a par-
ticular direction; and when the mean does not change any more, evolution has come
to a halt. This interpretation has been supported by the “Fisher principle” (Metcalfe
1994) of the distance from mean dynamics (or replicator dynamics) of a population of
firms with different characteristics. Here positive directional selection can in principle
always proceed, but the emergence of positive outliers is crucial. The movement of the
mean characteristic is made by decreasing the variance. Thus evolution consumes vari-
ance as its fuel; and it comes to a halt unless new variance is supplied by innovation
or mutation. Evolution can also fade out if the intensity of selection moves towards
zero. Thus the paradigm of directional evolution is supported by a clear principle.
Furthermore, it has been formalized by many well-developed models (Hanusch and
Pyka 2007). Finally, the popularity of the paradigm is related to the (over)emphasis
on productivity change within evolutionary economics. It is normally recognized that
what evolves in a population of firms is ultimately a series of underlying characterist-
ics rather than the firm-level productivities. But it is seldom recognized explicitly that
these characteristics are not likely to progress in the same trend-like manner as the ag-
gregative phenomenon of productivity. Even “evolutionary arms races” (Dawkins and
Krebs 1979) cannot go on forever.

Although some concrete characteristics, during limited periods, will display a pro-
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gressive evolutionary trend as depicted by the paradigm of directional evolution, we
also observe two other types of evolution, as illustrated in figure 1. On the one hand,
there is stabilizing evolution that tends to remove any change away from the favoured
value of a characteristic. On the other hand, there are cases of diversifying evolution
that promotes the coexistence of different types of behaviour within a population and
may lead to the emergence of two separate populations. These two possibilities are
well-established within evolutionary biology (Futuyma 2005, pp. 304–305, 345–350).
Thus any biological analysis of natural selection would not be complete without con-
sidering the possibilities of directional, stabilizing and diversifying selection. Since
the underlying genetics is normally unknown or complex, such analyses generally play
the “phenotypic gambit” (Grafen 1984), that is, they study the change of directly ob-
servable characteristics. In the analysis of economic evolution, it is easier to apply
the methods of this phenotypic approach than the methods of the traditional genotypic
approach. But there are still difficult-to-detect assumptions that are not useful in econ-
omic contexts – such as the normality of population distributions and the randomness
of mutations. Even the fact that firms are diverse in a sustainable way is still not an
established result within economics (Syverson 2011).

2 Price's equation and its usefulness

It is very helpful to analyze the different modes of selection within the totally general
framework of Price’s equation (Rice 2004, pp. 174–178). This seems the most obvious
way of overcoming the one-sided paradigm of directional evolution within theoretical
and applied evolutionary economics. However, Price’s equation emerged from the stat-
istical analysis of directional evolution. This analysis had already been developed when
Schumpeter (2000, p. 184) in the 1930s called for “a quantitative theory of evolution”.
But he seems to have been unaware that it had already been provided by the great stat-
istician and evolutionary biologist R. A. Fisher (1930). One reason for Schumpeter’s
neglect is that he emphasized the innovative part of the evolutionary process while
Fisher emphasized directional selection. Another reason might have been that many
biologists were also unaware of the path-breaking approach.

Since Fisher was in many respects forty years ahead of his time, the biological re-
cognition and development of some of his major contributions took place in parallel
with the emergence of modern evolutionary economics. Actually, Nelson and Winter
(1982, p. 243n) remarked that their formal statistical analysis of pure selection pro-
cesses “reminded us of R. A. Fisher’s ‘fundamental theorem of natural selection’: ‘The
rate of increase in fitness of any organism at any time is equal to its genetic variance in
fitness at that time’ ” (from Fisher 1930, p. 35). However, the result of Fisher as well as
that of Nelson and Winter are most obviously relevant for the special case of pure se-
lection processes. It was instead George Price who developed a general decomposition
of evolutionary change that includes not only the effect of selection but also the effect
of mutation or innovation (see Frank 1995; 1998). For the statistics of any adequately
defined population of members, Price proved that

Total evolutionary change = Selection effect+ Intra-member effect (1)
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This is the verbal version of Price’s equation for directional evolution. The se-
lection effect can be interpreted as the intensity of selection times the variance of the
population. The intra-member effect is more difficult to interpret, but in economic evol-
ution it includes the consequences of learning and innovation within the members of
the population. Biological evolution is characterized by intra-member effects that are
many times smaller than the selection effects (Frank 2012a). In contrast, applications
of decomposition techniques that are mathematically identical to Price’s equation on
productivity data show selection effects that often amount to a relatively small share
of total evolution (Foster et al. 1998; Disney et al. 2003; Bartelsman et al. 2004; Foster
et al. 2008). This result is influenced by the problematic use of firms rather than in-
dividual routine activities as the units of selection. However, it probably also reflects
that even the most narrowly defined intra-member effects in economic evolution are
important. These effects seem to some extent to be the consequence of boundedly
rational decisions that are influenced by higher-level selection pressures. Thus there
seems to be both a direct and an indirect influence of selection. This suggests that the
apparently discouraging result on the nature of economic evolution does not warrant
an abandonment of Fisher’s and Price’s focus on the selection effect of equation (1).

The importance of Price’s decomposition of directional evolutionary change has
been difficult to understand, but during the last twenty years the situation has changed
radically both in evolutionary biology (Frank 1998; Rice 2004) and in evolutionary
economics. With respect to the latter, Metcalfe (2002, p. 90) pointed out that “[f]or
some years now evolutionary economists have been using the Price equation without
realising it.” It may be added to Metcalfe’s observation that formulations equivalent
to Price’s equation have also been used in productivity studies with few relations to
evolutionary economics (e.g., Foster et al. 1998; Foster et al. 2002; Disney et al. 2003;
Foster et al. 2008). In any case, we have arrived at a situation where the Fisher prin-
ciple can be appreciated (Metcalfe 1994; Frank 1997) and where we can extend the
application of Price’s equation in many directions.

It should be noted that important extensions (Metcalfe 1997; Rice 2004, pp. 194–
203; Metcalfe and Ramlogan 2006; Okasha 2006; Bowles and Gintis 2011, pp. 218–
222) have emerged within the directional paradigm of economic evolution. The present
paper develops a very different type of extension. The background is that Price’s equa-
tion can be used to decompose any evolutionarily relevant characteristic. The relevant
characteristic for stabilizing and diversifying evolution is the total change of the vari-
ance of the population distribution. For this case, we get the following version of
Price’s equation:

Total change of variance = Selection effect+ Intra-member effect (2)

If the selection effect of equation (2) is negative, we observe stabilizing selection. If it
is positive, we have diversifying selection.

The paper has the aims of extending the concept of selection to include stabilizing
and diversifying selection, and of demonstrating the power of Price’s equation to this
end. It starts by reviewing recent discussions in relation to Price’s equation (section
2). This review includes the presentation of a framework for analysing evolution that
then is used for the definition and analysis of directional, stabilizing and diversifying
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selection (section 3). These types of selection are then related to fitness functions that
can produce the different types of selection; and the functions are used for simple
simulations of the change of the population distribution of a quantitative characteristic
(section 4). Finally, Price’s equation is used to decompose the statistics of the changes
of the frequency distributions (section 5). Section 6 discusses the implications of the
results and venues for further research.

Although many presentations of Price’s equation (1) are available (including An-
dersen 2004; Knudsen 2004), this section of the paper presents the equation, discusses
its use and relates to recent discussions in the literature before we in the next section use
Price’s equation for the analysis of directional, stabilizing and diversifying evolution
and selection. One reason is that the increased general use of the Price equation has led
to misunderstandings and criticisms. Several criticisms have recently been summarized
by van Veelen et al. (2012) and countered by Frank (2012b). We integrate a selective
survey of this discussion in the following presentation of the equation. More import-
antly, our account for the equation may serve as an introduction to directional selection.
In addition, we introduce core concepts and mathematical notation (see table 1).

Two censuses: Evolution is a population-level process in historical time. Price’s
equation allows an arbitrary specification of the population. Thus we are not restricted
to analyse a population of firms. We can, for instance, analyse a population of regions,
but the interpretation of the results becomes difficult unless we have a theory of the
evolution of this type of population. Price’s equation analyses the evolution of the
population by means of data from two population censuses. We could have called
them the pre-evolution census and the post-evolution census. However, we will not
use these terms since Price’s equation normally focuses on selection. The first census
takes place at time t and can be called the pre-selection census of the pre-selection
population P. The second census at time t ′ can be called the post-selection census of
the post-selection population P′. There are no constraints on the choice of t and t ′, but a
relatively short time span seems preferable because the environment of the population
as well as the evolutionary mechanism are subject to change.

It was probably not least the assumption of having two censuses that led Price
(1972, p. 485) to emphasize that his equation is “intended mainly for use in deriving
general relations and constructing theories, and to clarify understanding of selection
phenomena, rather than for numerical calculation”. This is still true. Nevertheless,
the conditions for making numerical calculations have radically improved since Price’s
equation was formulated. We now have census data of several biological populations
and some economic systems.

Mapping between P and P′: Price (1995) emphasized the necessity and difficulty of
coupling the members of P and P′. If we consider a particular pre-selection population
member indexed i, then all related members of P′ should also be indexed by i. In the
case of firm i of P, the i-indexed representatives in P′ might be itself and its spin-offs.
And a merged firm can be split in proportion to the initial sizes of firm i and firm j.
Thus the evolutionary concept of a “member” of the post-selection population needed
for the application of Price’s equation is not always that of the same firm in the next
period.

Firms that enter the population from the outside or are created from scratch cannot
be included in the described mapping procedure – and thus need separate treatment.
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This treatment has been provided by Kerr and Godfrey-Smith (2009) for the case of
the biological species of an ecosystem. But the solution is really quite straightforward.
We simply add an entry effect in Price’s equation (1). For reasons of symmetry we may
also add the exit effect:

Evolutionary change = Entry effect+Exit effect
+Selection effect+ Intra-member effect

Data and calculations: We now come to the data that need to be collected for
the pre-selection census at time t and the post-selection census at time t ′ – as well as
the statistical variables that we calculate from these data (see table 1). Let us briefly
consider fitnesses and characteristics as well as the covariance between fitness and
characteristic.

The data of the first census includes the size of each pre-population member xi.
From the data of the second census we calculate the size of each member of the post-
population x′i. Then we for all i-indexed members of the two populations calculate the
population shares si and s′i (in each population summing to unity). We also calculate
the members’ absolute fitness wi = x′i/xi and the population’s mean fitness w = ∑siwi.
The members’ relative fitness (often called fitness) is obtained by dividing absolute
fitness by the mean absolute fitness of the population: ωi = wi/w. Thus the mean of
relative fitness ω = 1.

For each member i, the census data provide us with information on the quantitative
characteristic whose evolution we want to analyse. We can study the evolution of any
quantitative characteristic, including mathematical transformations of the data of the
population. In any case, let these values of the characteristic be zi and z′i. The fact that
members of economically relevant populations are often of very different sizes em-
phasizes the need of using the weighted mean characteristic z in the analysis. Price’s
equation decomposes the change of the weighted mean characteristic of the population
∆z. This change can come from the aggregate effect of intra-member change of char-
acteristic ∆zi. But it can also be the result of the different fitnesses of members with
different characteristics. Crucial for the latter effect is the pre-selection population
variance of the characteristic Var(z).

The core part of Price’s partitioning of ∆z is the statistical relationship between
member fitnesses and their characteristics. Let us assume that we operate in terms of
absolute fitnesses wi. The data of the two censuses can be used to calculate Cov(w,z),
that is, the weighted covariance of wi and zi. This covariance can be interpreted as
the part of evolutionary change that is caused by selection. The interpretation can be
helped by the rewrite Cov(w,z) = βw,zVar(z). Here variance provides the fuel for selec-
tion while the regression coefficient is a measure of the intensity with which selection
exploits this fuel. It has been argued (van Veelen et al. 2012) that we are not facing
a “real” covariance because of lacking explicit foundations in statistics and probability
theory. But as can be seen from table 1 the covariance element of Price’s equation is
not the sample covariance estimator of population covariance but rather the formula for
population covariance. Thus when Price’s equation is applied to population censuses
rather than a sample the selection effect is population covariance divided by population
fitness.
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Tab. 1: Core variables of Price’s analytical framework

Variable Definition Interpretation

xi Size of member i in pre-selection census

si xi/∑i xi Population share of i in pre-selection census

x′i Size of member i in post-selection census

s′i x′i/∑i x′i Population share of i in post-selection census

wi x′i/xi Absolute fitness of i

w ∑i x′i/∑i xi Mean absolute fitness

ωi wi/w (= s′i/si) Relative fitness of i

zi Characteristic of member i in pre-selection census

z ∑i sizi Weighted mean of z in pre-selection census

Var(z) ∑i si(zi− z)2 Weighted variance of z in pre-selection census

z′i Characteristic of member i in post-selection census

∆zi z′i− zi Change in characteristic of i

z′ ∑i s′iz
′
i Weighted mean of z in post-selection census

∆z z′− z Change in z

Cov(w,z) ∑i si(wi−w)(zi− z) Weighted covariance of wi and zi

βw,z Cov(w,z)/Var(z) Slope of simple regression of wi on zi

βz′,z Cov(z′,z)/Var(z) Slope of simple regression of z′ on zi

E(w∆z) ∑i siwi∆zi Expectation of wi∆zi

Price’s equation with relative fitness: We are now ready to consider the formally
provable specification of Price’s equation that was informally presented in equation (1).
Since the proof of the equation is widely available (e.g., Frank 2012b), the problem is
rather to identify the most useful version for evolutionary analysis. Price’s equation
in terms of relative fitness, ωi, focuses squarely on the core issue of the analysis of
evolutionary processes. The primary issue of evolutionary analysis is not the aggregate
growth of the population but its structural change due to the differential growth of
members with different values of the characteristic.

Total change

∆z =
Selection effect
Cov(ω,z) +

Intra-member effect
E(ω∆z) = βω,zVar(z)+E(ω∆z) (3)

There are evolutionary problems in which population-level does matter and where
it thus may be more instructive to use Price’s equation in terms of absolute fitness rather
than the elegant equation (3) but such problems are not considered in the current paper.

The left-hand side of equation (3) is the change of the mean characteristic of the
population. The selection effect is basically expressed as the covariance between rel-
ative fitness and characteristic. This covariance can be rewritten as the product of the
selection intensity βω,z and the variance Var(z). There will be no selection effect if
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either βω,z = 0 or Var(z) = 0. For a given Var(z) > 0, the size of the effect depends
on the slope of the linear regression line. The intra-member effect is more difficult to
interpret because the change of characteristic within each member is multiplied by its
relative fitness. In any case, it disappears if ∆zi = 0 for all members of the population.

3 Three types of selection

When working with Price’s equation it is tempting to define evolution solely as the
change of the mean value of a directly observable characteristic of a population. This
gives no problems as long as we work within the directional paradigm of evolutionary
economics. But the consequence of the definition is that we exclude the pure forms of
stabilizing and diversifying evolution that do not change the population mean. It is not
useful to apply a concept of evolution that excludes the processes that keep a population
near a local optimum or that bring forth the coexistence of population members with
very different behaviours and characteristic values. To include these types of change we
need to define evolution as any change of the frequency distribution of a characteristic
of a population.

Evolution and pure selection: The change of the frequency distribution is the out-
come of the combined effects of selection and intra-member change. The primary
reason why this combination is so important in economic evolution is that the two
effects here often work in the same direction. The intra-member change is not the
outcome of random mutations, but of the efforts of boundedly rational firms and indi-
viduals. The recognition of this fact might give the analysis of economic evolution a
“Lamarckian” flavour (Nelson and Winter 1982, p. 11). In any case, the intra-member
change effect can often be interpreted as reflecting reactions to the selection pressure.
This is the reason why the two effects often work in the same direction. In other words,
selection produces not only the selection effect on the characteristics of the initial pop-
ulation; it also produces parts of the reactions that lead to the intra-member effect
between the two censuses. This important problem, however, is beyond the scope of
the present paper. Here we will instead focus on the ordinary selection effect.

Directional selection: The most obvious way of changing the frequency distribu-
tion is through directional selection. Two ways of approaching directional selection
are illustrated by figure 2. In both panels, the pre-selection frequency distribution is to
the left and the post-selection distribution is to the right. The left panel moves the fre-
quency distribution such that the mean increases while the variance is left unchanged.
Thereby it in the simplest possible way illustrates the definition of directional selection
as the change of the mean characteristic (here in the positive direction). It is achieved
through a combination of selection favouring higher values of the characteristic and
intra-member processes adding novel, higher values of the characteristic to the popu-
lation. In contrast, the right panel illustrates the effect of a directional fitness function
that influences both the mean and the variance of the distribution and where no novel
values of the characteristic are introduced. While the left panel illustrates directional
selection in its pure form, the right panel depicts the stabilizing effect of a purely dir-
ectional fitness function. The concept of directional selection represents an aspect of
the evolutionary process that can be combined with stabilizing selection or other types
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Fig. 2: Pure directional selection and the effect of a directional fitness function. The
left panel depicts the concept of directional selection by leaving the variance
unchanged. The right panel depicts the effect of a directional fitness function
such as that of replicator dynamics, where ∆zi = 0.

of selection (Endler 1986; Rice 2004). This distance-from-mean dynamics implies
that members with higher than mean value of the characteristic will have high relat-
ive fitness while those with low values will have lower fitness. The consequence is
that the mean of the distribution increases while its variance decreases. (Endler 1986;
Rice 2004). This possibility is left open if we define directional selection in terms of
∆z = z′− z. If ∆z = 0, there cannot be directional selection. If ∆z 6= 0, we use the co-
variance term in equation (3) to determine whether this is due to directional selection.
If Cov(ω,z) > 0 we observe positive directional selection. If Cov(ω,z) < 0, we have
negative directional selection.

The Chicago approach: Although we have used Price’s equation to define direc-
tional selection, this idea can be traced back to the Chicago school approach to pheno-
typic evolution (Lande and Arnold 1983; Conner and Hartl 2004, ch. 6). This approach
can be expressed in relation to Price’s equation (Rice 2004). Thus it emphasizes the
variance of the characteristics of the population, covariance between characteristics
and the reproduction of members, and the intertemporal inertia of the characteristics.
By focusing on these requirements for phenotypic evolution rather than on the direct
study of genetic evolution, this approach has been very successful for studying “natural
selection in the wild” (Endler 1986; Brodie et al. 1995; Kingsolver et al. 2001; Conner
and Hartl 2004, ch. 6; Kingsolver et al. 2001; Kingsolver and Pfennig 2007).

Estimating the types of selection: The Chicago approach provides a simple way of
detecting the relative importance of directional selection and variance selection. This
importance is estimated by multiple regressions for a large number of populations. The
task is to estimate the relative fitness Yi = ωi = wi/w as the result of the additive effects
of a linear term and a nonlinear term. The linear term is X1 = zi and the nonlinear term
is X2 = (zi− z)2. Thus the multiple regression equation is

Y = a+b1X1 +b2X2 + error (4)

where b1 estimates the effect of directional selection and b2 estimates the effect of
variance selection. If b1 is different from zero, there is directional selection. If b2 is
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negative, we observe stabilizing selection. If b2 is positive, we have diversifying selec-
tion. The two latter types of selection are often combined under the heading of variance
selection (Endler 1986). We often see that variance selection coexists with directional
selection. Although the formalism of equation (4) is simple, the production of studies
that applies it is by no means easy. Nevertheless, the development of evolutionary eco-
nomics would benefit significantly from a large number of such studies and their use for
the evaluation of the relative importance of directional selection, stabilizing selection,
and diversifying selection.

Defining the types of selection: Although the Chicago approach is empirically ori-
ented, its definitions of the types of selection are what matters in the present context
(Rice 2004, p. 176). The definitions can be expressed on terms of covariances or of the
regression coefficients of equation (4)

• Directional selection involves a change of the mean of the frequency distribution
that is explained by the covariance Cov(ω,z) = βω,zVar(z). Directional selection
is a nonzero linear regression of fitness on the characteristic. If βω,z > 0, we have
positive directional selection. If βω,z < 0, we have negative directional selection.

• Stabilizing selection is a negative change of the variance of the frequency distri-
bution produced by a negative βω,(z−z)2 . This implies that Cov(ω,(z− z)2)< 0.

• Diversifying selection is a positive change of the variance of the frequency dis-
tribution produced by a positive βω,(z−z)2 . This implies that Cov(ω,(z−z)2)> 0.

Directional selection is defined independently of the two other types of selection.
This means that directional selection can coexist with stabilizing selection or diversi-
fying selection.

Stabilizing selection and directional selection: Fisher (1930) started his famous
book by stating that “Natural Selection is not Evolution.” Here he referred to the pure
directional selection. His statement emphasized that biological selection can not only
cause directional change but also bring this type of change to a halt at a fitness peak.
Here stabilizing selection serves to weed out mutants that do not have the locally op-
timal value of the characteristic. If mutations tend to push the population in a partic-
ular direction, then stabilizing selection has to be sufficiently strong to keep ∆z = 0.
In terms of Price’s equation (3), the balancing condition is that Cov(ω,z) =−E(ω∆z).
However, this is not the only way stabilizing selection can keep the population near
the characteristic with maximum fitness (Frank 2012a). Since biological mutations are
random, they normally increase the variance of the characteristic around the fitness
peak. To avoid evolutionary chaos, stabilizing selection has to be sufficiently strong to
counter this increase of variance.

Comparing types of selection: We have now defined directional selection in terms
of the change of the mean of the frequency distribution. Similarly, we have defined
stabilizing selection as the process that decreases the variance of the distribution and
diversifying selection as the process that increases the variance. These definitions mean
that directional selection can work together with one of the two types of variance se-
lection. But the definitions also allow comparison between the pure types of selection.
This comparison is provided by figures 2 and 3. The solid lines depict the frequency
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Fig. 3: The two pure types of variance selection. The solid curve depicts the initial
frequency distribution while the dashed curves depict the results of different
types of variance selection by presenting the post-selection distributions. Left
panel: pure stabilizing selection. Right panel: pure diversifying selection.

distribution of the pre-selection population. The dashed lines depict the post-selection
distributions. As already mentioned, figure 2 depicts a selection process in which only
the mean characteristic is changing. The two panels of figure 3 keep the mean un-
changed while the variance changes. In the case of stabilizing selection the variance
decreases. The variance increases with a process of diversifying selection.

Combining the types of selection: We have already noted that the directional fitness
function of replicator dynamics combines directional selection with stabilizing selec-
tion. More general issues of combination can be discussed concisely if we assume the
existence of a nonlinear fitness function for the population (Endler 1986). The upward
sloping part of the function of figure 4 represents predominantly positive directional
selection. Furthermore, the part of the curve around the maximum represents stabiliz-
ing selection and the downward sloping part represents negative directional selection.
The effect of this function depends on the composition of the pre-selection population.
The population largely faces positive directional selection if the characteristics of its
members are distributed to the left of the dashed line. We have stabilizing selection if
the population is distributed to the right of the dashed line. However, the population
faces a mix of directional and stabilizing selection if it is distributed over the entire
range represented by the horizontal axis of the figure.

We encounter similar issues if the fitness function of figure 4 is changed to includ-
ing a U-shape. However, polarization cannot go on forever. Therefore, the assumed
function would have to include downward bends at each of the extreme values. Assum-
ing that the fitness function is stable, the ultimate result of this diversifying selection
will be two separate subpopulations that are both facing stabilizing selection.

Two-dimensional fitness function: Although this paper concentrates on the evolu-
tion of a single characteristic, it is helpful to consider how we can represent a two-
dimensional fitness function graphically. The result is a graph that will look familiar
to students of microeconomics. We start by constructing a two-dimensional space of
characteristics. Each point in this space represents a potential location of a member of
the pre-selection population. This member has the value z1

i of characteristic 1 and z2
i
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Fig. 4: The population composition and the type of selection. The curve depicts a non-
linear fitness function. We have directional selection if the population is placed
to the left of the dashed line and stabilizing selection to the right of the dashed
line. If the population is distributed over the entire horizontal axis we have
mixed selection pressures.

of characteristic 2. Then we (perhaps based on estimates) assume the fitness level that
corresponds to each point in the two-dimensional space of characteristics. The result
is a fitness surface. Figure 5 depicts this surface as isofitness curves in the space of
characteristics. These curves represent selection as working on the combined effect of
the two characteristics; and the fitness maximum is marked by +. Fitness increases
when we move from the origin toward the fitness maximum; but it decreases when we
continue from the maximum towards the upper right corner.

Figure 5 allows us to understand some of the complexities of selection in a two-
dimensional space of characteristics. Let us assume that the fitness maximum originally
was placed in the middle of the gray area. Furthermore, we assume that the population
has moved to this area, where it has been subject to stabilizing selection with respect
to both of its characteristics. However, fitness surfaces are generally not stable, though
they may appear to be so, as they potentially move back and forth and from a longer-
term perspective can appear to be fixed. Populations are thus facing the Sisyphus work
of performing lagged adaptations to ever-changing selection pressures. The problem
for the population in figure 5 is that the isofitness curves have moved so that the new
maximum is the peak marked by + while the heterogeneous population is represented
by the gray area. While this population was relatively well adapted to a previous situ-
ation, it has become maladapted because the isofitness curves have moved. The gray
pre-selection population is still subject to stabilizing selection with respect the second
characteristic. But in the new situation it confronts a combination of directional and
stabilizing selection with respect to the first characteristic.

Further discussion of the topic of two-dimensional fitness surfaces is beyond the
limits of this paper. But it should be noted that although we to some extent relate
to Sewall Wright’s (1932) famous formalization of selection in terms of “fitness land-
scapes”, the two concepts are not exactly the same. While each point in Sewall Wright’s
landscapes in principle represents the analysed mean of a small and localized popula-
tion, the fitness function surfaces of the Chicago school are based on data for a single
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Fig. 5: Example of isofitness curves for two characteristics z1
i and z2

i . The fitness peak
is marked by +. At an earlier point of time, the isofitness curves had its peak
in the middle of the gray area. This area represents a population that was rel-
atively well adapted to a previous situation, but which has become maladapted
because of the exogenous movement of the isofitness curves. With the depicted
position of the curves, the population faces stabilizing selection with respect to
characteristic z2

i and a mix of directional and stabilizing selection with respect
to characteristic z1

i .

population (Conner and Hartl, 2004, pp. 210–211). However, both approaches serve to
emphasize that we have to complement the well-known process of directional selection
with an analysis of the processes of stabilizing selection and diversifying selection.
Furthermore, we have to be very cautious when we are analyzing the evolution of a
single characteristic of a population.

4 Three types of �tness functions

The understanding of the problems and methods related to the analysis of selection
can be enhanced through examples of selection processes that have known properties
because they are produced by explicit fitness functions. This approach has for evol-
utionary biology been emphasized by Endler (1986, pp. 260–271), and there is much
need of producing simulated examples of selection processes in evolutionary econom-
ics. To be helpful, these examples have to be produced by simple fitness functions. In
this section we define and simulate a directional fitness function, a stabilizing fitness
function, and a diversifying fitness function.

Our fitness functions are all constructed so that they can produce such discrete-time
simulations. To run these simulations we normally – apart from the initial population
P – need the values of a couple of parameters. But the simulations are simplified by
the fact that we do not provide any mechanism of intra-member change. Instead we
assume ∆zi = 0. The consequence is that only the selection term of Price’s equation (3)
needs to be examined when we, in section 5, turn to the analysis of the change of mean
characteristic. However, both terms of the equation are needed for the analysis of the
change of variance, skewness and kurtosis of the frequency distributions.

The initial population: For the present purposes, we do not need to be realistic when
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defining the initial population P. On the contrary, what are needed are the simplest data
data that provide the different types of fitness functions with lots of variance. We obtain
such data by assuming a large population in which all values of the characteristic within
a specified range are represented equally. Population P consists of 1000 members,
and this number does not change during the simulations. Each member has a fixed
value of its characteristic zi. As the total size of the population is inconsequential to
the simulations we specify each member to have an equal initial population share of
si = 1/1000, and we can then refrain from considering member size, xi, at all. The
values of the characteristic are uniformly distributed over the interval [min(z),max(z)].
Thus the distance between members is d = (max−min)/999, and z1 = min(z),z2 =
min+d,z3 = min+2d, . . . ,z1000 = max(z). For the following simulations we specify
the fitness function for absolute fitness, wi = w(zi), and the population then evolves
according to:

s′i = si
wi

w
= siωi (5)

By using equation 5 we are assuming that the change in population share of member
i is entirely determined by relative fitness but in empirical applications it is likely that
population shares exhibit persistence. This could be explicitly modelled by allowing
s′i to be the weighted average of si and siωi. However, as our simulations are meant to
provide simple illustrations of the evolutionary processes the only consequence would
be that we would have to run the simulations for additional rounds for the results to
stand out clearly. Results can be seen after just 1 round of simulation with equation 5
and after 4 rounds they stand out very clearly.

Standardized presentation of results: The simulation results can best be visualized
as changes in the frequency distribution of the values of the characteristic. We em-
ploy a standardization of the range for zi that has become widespread in the parts of
evolutionary biology which are influenced by the above mentioned Chicago school ap-
proach to phenotypic evolution. This method has several advantages, including the
increased ease of comparing different types of selection. Therefore, the initial uni-
form distribution of the characteristic has in our simulations been defined to have
mean zero and standard deviation one. Since the variance of a uniform distribution
is 1

12 (max−min)2, zi in our initial population P has a continuous uniform distribu-
tion U(min = −

√
3,max =

√
3). In terms of standard deviations this implies that our

population covers about 1.7 standard deviations on each side of the mean of zero.
Directional fitness function: It is possible to define an unrealistic directional fitness

function in which a particular value of the characteristic zi under all circumstances
gives the same absolute fitness wi. However, we normally think of a process of positive
directional selection in which the relative fitness ωi of a member with characteristic zi
depends on its distance from a changing population mean z. The logic of this fitness
function is that ωi = 1 if zi− z = 0; but if zi− z > 0, then ωi > 1; and if zi− z < 0, then
ωi < 1. Furthermore, ωi should be proportional to the distance from the mean. What is
called replicator dynamics or distance-from-mean dynamics has these properties. Thus
we can use the following directional fitness function:

ωi =
zi + k

E(zi + k)
=

zi + k
zi + k

=
wi

w
(6)
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The constant k is added to avoid negative fitness values and to avoid dividing by
zero. The results of simulating the directional fitness function of equation (6) are de-
picted in the upper panel of figure 6, page 26. The dotted line represents the frequency
distribution of the initial population (that was described above). The standardized mean
is zero. This implies that the right half of the population has above mean fitness and the
left half has below mean fitness. The result of the first round of selection is indicated
by the dashed line. This round increases or shrinks the member shares in proportion to
the distance from the mean of zero. The second round of selection is not depicted but it
is based on z > 0. The fourth round is based on an even higher z. Its result is shown by
the full line of the panel. However, it should be noted that a directional fitness function
cannot on its own produce pure directional selection as selection necessarily consumes
variance. Compared with the initial uniform distribution, the four rounds of apply-
ing the directional function have moved the mass of the distribution so that increasing
mean and kurtosis is one consequence and decreasing variance and skewness is another
consequence. As an example, assume that we are studying work organisation in a large
factory paying a piece rate. Workers have complete discretion in organising their work
so whatever practices result in a higher physical efficiency will spread to other workers
(assuming that there is no collusion among workers). If workers can be more product-
ive by stacking their goods higher then the average hight of the stack of goods next
to each worker’s station will evolve according to a directional fitness function. This
process obviously cannot go on for ever but, as already mentioned, this is a typical
element of directional selection.

Stabilizing fitness function: Let us consider the properties of simple fitness func-
tions that are able to produce stabilizing selection. The basic requirement is that there
is maximum fitness related to a particular value of the characteristic, z∗. The logic of
stabilizing fitness functions is that ωi has its maximum if zi = z∗. Furthermore, if zi < z∗

or if zi > z∗, then ωi is smaller than its maximum. Finally, ωi should be decreasing in
some relation to the numerical distance |zi− z∗|. These requirements for a stabilizing
fitness function is fulfilled by a second degree polynomial with maximum at z∗; that is
wi =−z2

i +2z∗zi + k.

ωi =
−z2

i +2z∗zi + k
E(−z2

i +2z∗zi + k)
=

wi

w
(7)

Again it is necessary to add k for computational reasons. This stabilizing fitness
function resembles the directional fitness function of equation (6). But whereas equa-
tion (6) is linear, equation (7) has a maximum at zi = z∗ and decreases symmetrically
for higher and lower values of zi.

The discussion in relation to figure 4 suggested that the outcome of applying a sta-
bilizing fitness function depends on the localization of the characteristics of the pop-
ulation relative to the fitness maximum, z∗. We get pure stabilizing selection if the
population is located symmetrically around the mean z. The other possibility is that
z∗ 6= z, and this possibility will be discussed below. Presently we consider the case in
which z∗ = z. Given that ∆zi = 0 for all members, this implies that equation (7) does
not change the mean of the frequency distribution.

The middle panel of figure 6 depicts the result of using equation (7) with z∗ = z on
the uniformly distributed pre-selection population specified above. This fitness func-
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tion gradually brings the population closer to its fitness maximum by decreasing the
variance and increasing the kurtosis of the frequency distribution. After many more
rounds of simulation, the distribution will end up as being concentrated on the char-
acteristic with maximum fitness, z∗. As an example consider again the large factory
paying a piece rate and assume that a 5 minute break after an hour’s work results in
the highest physical efficiency. A shorter break means that the worker becomes tired
and works slower towards the end of the day while a longer break entails squandering
working time. So the mean break length per hour of work will converge on 5 minutes
throughout the factory in a process of stabilizing selection.

Diversifying fitness function: In principle, the specification of a diversifying fitness
function assumes that there are two values of the characteristic that have maximum
fitness, a lower value and a higher value. However, if these maxima are located outside
the range of characteristic values that are represented in the population, then it is suf-
ficient to know the location of the fitness minimum at z̃. We specify our diversifying
fitness function in a way that is closely related to the specification of equation (7). This
diversifying function is

ωi =
z2

i −2z̃zi + k
E(z2

i −2z̃zi + k)
=

w′i
w

(8)

Equation (8) produces a U-shaped parabola with minimum when zi = z̃. Thus fit-
ness increases on both sides of this fixed location of minimal fitness. To ensure com-
parability, we apply the positive constant k that was used in equations (6) and (7).

The diversifying fitness function produces pure diversifying selection if the popu-
lation is located symmetrically around the mean and this mean is equal to the minimum
fitness z̃. This is the case for the above specified initial population. The results of one
and four rounds of using equation (8) are shown in the lower panel of figure 6. In
our standardized presentation of the data z̃ = z = 0. The shares of members near the
mean steadily decrease while the fitness of those with extreme characteristics increase.
Compared with the initial one, the distribution after four rounds is characterized by an
increase of variance and a decrease of kurtosis. For an example of diversifying selec-
tion return once again to our factory. Workers have a choice of two different methods
for fitting together two components. Some workers will initially be switching back and
forth for a bit of variation but unless a worker uses the same method each time she
misses out on the opportunity of specialisation. So over time the probability that any
one methods is used across the factory will evolve in accordance with a diversifying
fitness function.

Mixed selection: The simulations of the quadratic fitness functions have served
to illustrate pure forms of stabilizing selection and diversifying selection. A quick
glance on these illustrations might give the impression that equations (8) and (7) will
always produce pure forms of selection. This impression is false for both equations,
but we will emphasize the stabilizing fitness function. Figure 4 demonstrated that such
a function can produce stabilizing selection, directional selection, and a mix between
the two. In this figure the varying results depend on the composition of the population.
But we can also (as in figure 5) move the fitness function. In the univariate case of
equation (7), we obtain a similar result by changing from z∗ = 0 to z∗ = 0.7 (so that
z < z∗). The consequences are shown in figure 7 on page 27. Here the stabilizing
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fitness function has produced a mix of stabilizing selection and directional selection.
More specifically, the function moves the frequency distribution closer to the maximum
of 0.7 by increasing the mean, decreasing the variance, decreasing the skewness, and
increasing the kurtosis.

5 Analyzing the �tness functions through Price's equation

After having discussed Price’s equation and types of selection, the remaining task is
to demonstrate and analyse the relationship between the types of selection and the
fitness functions defined above by application of Price’s equation. It is demonstrated
in this section how Price’s equation provides an exact and fruitful way of analysing
the dynamics created by the fitness functions. We have in section 2 seen how Price’s
equation (3) can be used to decompose the total change of the mean characteristic of
the population. However, Price (1995, p. 391) pointed out that his equation can be
used for the analysis of any “change produced by the selection process in a population
property X related to property x of individual set members. (For example: X might
be the arithmetic mean of the xi or their variance, and correspondingly for X ′ and
the x′i values.)” This comprehensiveness of Price’s equation is crucial for the analysis
of the dynamics of the different fitness functions. This analysis is supported by the
additional use of the equation to decompose the frequency distributions’ change of
variance, change of skewness, and change of kurtosis. As an introduction it is helpful
to consider the descriptive statistics of the frequency distributions presented in figures 6
and 7.

Statistics of the distributions: The figures of section 4 visualize how the different
types of selection can be represented by different changes in the initial population’s
frequency distribution of the characteristic z. Table 2 presents the statistics needed for
comparing the distribution in P with the different distributions in P′′′′. The statistical
characteristics of the initial distribution are given in the first data column of table 2.
The following columns present the statistics of the new distributions after four rounds
of using the fitness functions.

By subtracting the first from the second data column of table 2, we see that the
directional fitness function has complex effects. In four rounds it has moved the mean
in the positive direction by 0.69 standard deviations. At the same time it has decreased
the variance of the frequency distribution by nearly a third, provided a strong negative
skewness, and increased the kurtosis of the distribution.

The third and fourth data column show the results of using the stabilizing fitness
function (7) with z∗ = 0 and the diversifying fitness function (8) with z̃ = 0. By sub-
tracting the first column from each of them we see that these fitness functions work
only through the change of variance and kurtosis. The difference is that while stabiliz-
ing selection decreases variance and increases kurtosis, diversifying selection increases
variance and decreases kurtosis. These results are based on the locations of the max-
imum fitness of the stabilizing function z∗ and the minimum fitness of the diversifying
function z̃. Both were placed at the mean of the distribution z.

The last column of table 2 shows the result of the stabilizing fitness function when
the maximum fitness z∗ is moved 0.7 standard deviations in the positive direction. Then
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Tab. 2: Statistics of the standardized distributions of figures 6 and 7

Initial After four rounds of
distribution Directional Stabilizing Diversifying Mixed

Mean of z 0.00 0.69 0.00 0.00 0.59
Variance of z 1.00 0.68 0.45 1.56 0.39
Skewness of z 0.00 −0.85 0.00 0.00 −0.27
Kurtosis of z 1.80 2.93 2.48 1.37 2.40

Note: The table presents statistics of the initial distribution and of the distributions produced by four
rounds of the different types of fitness functions. Directional is the distribution produced by the dir-
ectional fitness function (6). Diversifying is produced by the diversifying fitness function (8). Sta-
bilizing and Mixed are produced by stabilizing fitness function (7) with two locations of maximum
fitness, z∗ = 0 and z∗ = 0.7. It should be noted that the paper analyses the changes of these statistics.
For instance, in the mixed case ∆z = 0.59−0.00 = 0.59 and ∆Var(z) = 0.39−1.00 =−0.61.

four rounds of using equation (7) produce results that are rather similar to those pro-
duced by the directional function (6). The mean is moved by 0.59 standard deviations,
variance is decreased, we see negative skewness, and kurtosis is increased. This sim-
ilarity emphasizes that caution is needed when we try to characterize overall fitness
functions as representing different types of selection.

Moments of the distributions: The method of moments was introduced by the stat-
istician and evolutionary biologist Karl Pearson (by a concept borrowed from physics).
We consider the central moments of frequency distributions with characteristic z at the
random variable. Then the mth central moment of the distribution is defined as

E
[
(zi− z)m]= ∑

i
si(zi− z)m

The second central moment (m = 2) is the variance of the distribution. When the
third central moment is divided by σ3

z , we get the statistical concept of the skewness
of the distribution. When the fourth central moment is divided by σ4

z , we get one of
the statistical concepts of kurtosis. The central moments characterize different aspects
of the shape of the distribution. Odd moments (m = 3,5, . . .) measure the asymmetry
of the distribution while even moments (m = 2,4, . . .) measure the symmetric spread
around the mean. With increasing m the importance of outliers increases. Since outliers
are crucial for evolutionary processes, the higher moments here have an importance that
is not found in non-evolutionary uses of statistics (emphasized by Metcalfe 1994; and
Rice 2004, p. 227).

Change of moments and Price’s equation: As already mentioned, Price’s equation
can be used for the partitioning of the change of the mean of any quantitative character-
istic C. The only requirement is that we define the member values of the characteristic
Ci such that C is the mean and ∆C is the change we want to decompose. In the case of
variance, the characteristic (zi− z)2 gives the expectation ∑(zi− z)2 = Var(z). In the
case of skewness, the characteristic is (zi− z)3/σ3

z since the expectation is the skew-
ness of the distribution. In the case of kurtosis, the characteristic is (zi− z)4/σ4

z since
the expectation is the kurtosis of the distribution. Thus we can use Price’s equation (3)
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to decompose the change of the variance, skewness and kurtosis of the frequency dis-
tribution. The decompositions of the change in the distribution’s variance, skewness
and kurtosis are thus provided by

∆Var(z) =Cov
[
ω,(z− z)2]+E

[
ω∆(z− z)2]

=Cov(ω,υ)+E(ω∆υ) (9)

∆Skew(z) =Cov
[
ω,(z− z)3/σ

3
z
]
+E

[
ω∆((z− z)3/σ

3
z )
]

=Cov(ω,γ)+E(ω∆γ) (10)

∆Kurt(z) =Cov
[
ω,(z− z)4/σ

4
z
]
+E

[
ω∆((z− z)4/σ

4
z )
]

=Cov(ω,κ)+E(ω∆κ) (11)

By moving from decomposing the change of the mean in Price’s equation (3) to
decomposing the change of the variance in equation (9)), we have started the analysis
of the recursive process of selection. The original Price’s equation deals only with the
change from the pre-selection population to the post-selection population, but equa-
tion (9) provides us with a measure of the fuel that this change leaves for the movement
of the mean between the post-selection population and the post-post-selection environ-
ment. If the amount of fuel is being gradually reduced the selection process will after
many rounds of selection come to a halt – unless a change of the environment changes
the fitness function or new fuel is provided by mutation or innovation.

There are three aspects of the selection process that are not adequately covered
by the analysis of the change of the variance of the distribution. First, the outliers of
the distribution of characteristics are crucial and they can be emphasized more than
in the measure provided by the squared distances from the mean. We can also study
higher central moments such as those dependent on (zi− z)3 and (zi− z)4. Second,
the asymmetry of the distribution, as reflected by moments with odd powers, is also
of importance for the selection process. Third, some types of selection can only be
defined by reference to changes in the higher moments of the distribution. In general,
we have to recognize that the statistics of the higher moments play a much larger role
in evolution than in most other subjects. Therefore, it is important that we can use
Price’s equation to decompose the change of all these moments as demonstrated by
equation (10) for skewness and equation (11) for kurtosis.

Analysing the change of the distributions: The mean, variance, skewness and kur-
tosis of the initial distribution and the distributions produced by four rounds of applying
the different fitness functions were shown in table 2. The overall changes of these stat-
istics have already been discussed. Now we turn to analysis of these changes by means
of Price’s equation: as the sums of covariance terms and expectation terms. The results
are shown in table 3. Let us start by the decomposition of the change of the mean.
Since ∆zi = 0, the expectation term is zero and the whole change of 0.69 standard de-
viations produced by the directional fitness function is accounted for by the covariance
term. The same is the case for the mixed type of selection produced by the stabilizing
fitness function with maximum fitness different from the mean. In contrast, the pure
types of stabilizing and diversifying selection do not change the mean.

The decompositions of the changes of variance are more interesting. From table 2
we know that the directional fitness function produces an overall change of the variance
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Tab. 3: Statistical components of the selection dynamics in figures 6 and 7

Statistical change
that is
decomposed

Term in
Price’s
equation

After four rounds of
Directional Stabilizing Diversifying Mixed

∆ Mean Cov(ω,z) 0.69 0.00 0.00 0.59
E(ω∆z) 0.00 0.00 0.00 0.00

∆ Variance Cov(ω,υ) 0.16 −0.55 0.56 −0.26
E(ω∆υ) −0.48 0.00 0.00 −0.35

∆ Skewness Cov(ω,γ) 1.26 0.00 0.00 0.83
E(ω∆γ) −2.11 0.00 0.00 −1.11

∆ Kurtosis Cov(ω,κ) 0.40 −1.31 1.51 −0.65
E(ω∆κ) 0.72 1.98 −1.94 1.25

Note: The total change of the different statistics can be found in table 2. For instance, in the mixed
case ∆Var(z) = −0.61. This change is the sum of the covariance term and the expectation term:
−0.61 =−0.26+(−0.35).

of −0.32. However, the covariance term of table 3 shows a positive selection effect
of 0.16 while the expectation term shows a negative intra-member effect of −0.48.
We have accounted for the overall change of variance since −0.32 = 0.16− 0.48, but
we now recognize the complexities of the process produced by the directional fitness
function. We also recognize the difference between the directional function and the
stabilizing function that has a maximum different from the mean. The latter also has an
overall negative change of variance, but this change is produced by two negative terms
(−0.61 = −0.26− 0.35). In contrast, the changes of variance by pure stabilizing and
diversifying selection are solely produced by the covariance term.

The concepts of pure directional and pure stabilizing selection do not include the
skewness of the frequency distribution. However, a change of skewness is found in the
distributions produced by the directional fitness function (6) and the stabilizing fitness
function (7) with maximum different from the mean. They both produces a negative
change of skewness that is caused by a positive covariance term that is smaller than the
negative expectation term.

The signs of change: Although the details of the statistics of the decomposed overall
changes of mean, variance, skewness and kurtosis are important, the different fitness
functions can to a large extent be characterized by the signs of the covariance terms
and the expectation terms. These signs are presented in table 4. Let us start by compar-
ing the results of applying the stabilizing function and the diversifying function with
optima at z. The pattern of signs is opposite. With respect to change of variance, the
results of the stabilizing function have a negative covariance term while the diversifying
function produces a positive covariance term. The same is the case for the covariance
terms of the change of kurtosis. However, the change of overall kurtosis is also in-
fluenced by the positive expectation term of the stabilizing function and the negative
expectation term of the diversifying function.
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Tab. 4: Signs of the components of the analysed examples of selection dynamics

Statistical change
that is
decomposed

Term in
Price’s
equation

Type of fitness function
Directional Stabilizing Diversifying Mixed

∆ Mean Cov(ω,z) POS 0 0 POS
E(ω∆z) 0 0 0 0

∆ Variance Cov(ω,υ) POS NEG POS NEG
E(ω∆υ) NEG 0 0 NEG

∆ Skewness Cov(ω,γ) POS 0 0 POS
E(ω∆γ) NEG 0 0 NEG

∆ Kurtosis Cov(ω,κ) POS NEG POS NEG
E(ω∆κ) POS POS NEG POS

Note: The signs are from table 3.

The comparison of the changes in the distribution produced by the directional func-
tion and the stabilizing function with a displaced maximum contains more elements.
However, they have the same signs except in the case of the decomposition of the over-
all change of kurtosis. For the directional function the covariance term and the expect-
ation term are both positive. However, for the mixed function of stabilization only the
covariance term is positive while the expectation term is negative. We have not repor-
ted results for simulating negative directional selection but changes in the distribution
of the characteristic induced by negative directional selection would not be identical
to those induced by positive directional selection. In the case of negative rather than
positive directional selection the mass of the distribution would shift towards the left
tale rather than the right. The decompositions of the changes in mean and skewness
would show the opposite signs when compared to positive directional selection. The
decompositions of the changes in variance and kurtosis, however, would show the same
signs.

The discussion of the current section highlights how quick recognition of the traces
of the different fitness functions is facilitated by focusing on the pattern of signs of
the two terms of Price’s equation. However, further simulations are much needed for
producing closer approximations to real evolutionary processes. First, different fitness
functions might concurrently contribute to more realistic cases of selection. Second,
real selection normally works concurrently on several characteristics of the members
of the population. Third, we have to analyse the consequences of abandoning the as-
sumption that ∆zi = 0.

6 Conclusion

The research underlying this paper had two closely connected aims. The first aim was
to demonstrate how the well developed analysis of directional selection within evol-
utionary economics can be complemented by analyses of stabilizing selection and di-
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versifying selection. The second aim was to demonstrate that the evolutionary algebra
provided by Price’s equation increases the intellectual coherence and power of thinking
about selection and other aspects of evolutionary processes.

The first aim of the paper serves to counter the predominant directional paradigm
within evolutionary economics that has led to a neglect of processes of evolution that
are influenced by stabilizing selection and diversifying selection. Actually, these types
of selection still lack generally acknowledged definitions. We suggested that – like
in evolutionary biology – they should be defined by their influence on the variance of
the population distribution of the values of a characteristic. Stabilizing selection is the
negative change of this variance and diversifying selection is the positive change of
variance. In contrast, directional selection is defined as the positive or negative change
of the mean.

These definitions do not necessarily represent what is normally thought of as the
different types of selection. This is one of the reasons why we complemented the basic
concepts with the definitions of fitness functions that can produce the different types of
selection. For instance, replicator dynamics provides a fitness function that is normally
considered a core example of directional selection. It nevertheless not only influences
the mean but also the variance. Similarly, the fitness functions that best represent sta-
bilizing selection and diversifying selection only produces a change in variance without
influencing the mean when we assume that it is very special characteristic values that
produce maximum fitness and minimum fitness in these functions. Actually, the three
fitness functions can produce so many patterns of change that there is a strong need
of finding methods for detecting which processes have produced a particular pattern of
change. We produced detectable patterns by using Price’s equation to decompose the
change produced by the different types of fitness functions with different parameters.
Then the possible fingerprint is the set of eight signs of the two Price equation effects
for the change of the mean, variance, skewness and kurtosis produced under different
conditions by the different types of fitness functions.

The paper could not confront the more important issue of using the basic definitions
of the types of selection to estimate the relative importance of directional selection,
stabilizing selection and diversifying selection in economic evolution. The reason is
that this estimation is an empirical problem beyond the scope of the current paper.

The second aim of this paper was to demonstrate the surprising analytical power
of Price’s equation, and a main contribution thus is the combination of discipline and
flexibility that we got from thinking in terms of this equation. However, our review of
recent controversies on Price’s equation serves to emphasize the difficulties involved
in its comprehension and application. We contributed to surmounting some of these
by reviewing the different versions of Price’s equation as well as specifying the ana-
lytical framework in which it can be used. This framework includes two censuses of
a population, a mapping between the members of the pre-selection population and the
post-selection population, the analysis of changes in the frequency distribution of a
selected characteristic, the calculation of fitnesses, the decomposition of the changes
of the distribution into the sum of selection effects and intra-member effects, and the
analysis of these effects. The handling of these and other issues require the use of
mathematical notation, and we largely used the standard notation that has developed in
relation to Price’s equation.
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Although our exposition includes a number of novelties, we have basically been
presenting the state of the art. The most concrete contribution to the literature is the
analysis of the signs of the Price equation decomposition of the change of skewness
and kurtosis. In any case, a main conclusion of this paper is that Price’s algebra of
evolution helps in improving the intellectual coherence and power of thinking about
selection processes in economic life. Through multi-level analysis it can also help to
disentangle parts of evolution that are not immediately revealed as being based on se-
lection. The third condition for a long-term evolutionary process, besides from variance
and replication, is novelty. In economics this generally means learning and innovation
and it has here been confined to the intra-member effect but such processes also contain
an element of selection among alternatives.

It remains to be seen whether the concepts of directional, stabilizing and diversi-
fying evolution can also help the analysis of learning and innovation. If this is the
case, there might be a chance of analyzing systematically broad ideas such as techno-
economic paradigms, regimes and trajectories of evolution, and the distinction between
radical and incremental innovation.
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Fig. 6: Effects of one and four rounds of selection by different fitness functions. The
upper panel is produced by the directional fitness function (6), the middle panel
by the stabilizing function (7) with z∗ = 0, and the lower panel by the diversify-
ing function (8) with z̃= 0. Characteristics data are standardized to have a mean
of zero and a standard deviation of unity initially. The curves are constructed as
kernel density estimates over zi in the simulated data and thus the distributions
appear rounded near the minimum and maximum. From the viewpoint of evol-
utionary modelling this behaviour can be considered an artefact that should be
ignored.
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Fig. 7: Effects of one and four rounds of selection by the stabilizing fitness function
with changed fitness maximum. The results are produced by equation (7) with
z∗ = 0.7. Characteristics data are standardized to have a mean of zero and
a standard deviation of unity initially. The curve is constructed as a kernel
density estimate over zi in the simulated data and thus the distribution appears
rounded near the minimum and maximum. From the viewpoint of evolutionary
modelling this behaviour can be considered an artefact that should be ignored.


