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ABSTRACT 

Purpose: Non-invasive imaging of oxygen uptake may provide a useful tool for quantification of 

energy expenditure during human locomotion. A novel thermal imaging method (optical flow) 

was validated against indirect calorimetry for estimation of energy expenditure during human 

walking and running. Methods: Fourteen endurance-trained subjects completed a discontinuous 

incremental exercise test on a treadmill. Subjects performed 4-min intervals at 3, 5 and 7 km 
.
hr

-1
 

(walking) and at 8, 10, 12, 14, 16 and 18 km 
.
 hr

-1
 (running) with 30 s of rest between intervals. 

Heart rate, gas exchange and mean accelerations of ankle, thigh, wrist and hip were measured 

throughout the exercise test. A thermal camera (30 frames 
.
 s

-1
) was used to quantify optical flow, 

calculated as the movements of the limbs relative to the trunk (internal mechanical work), and 

vertical movement of the trunk (external vertical mechanical work). Results: Heart rate, gross 

oxygen uptake (mL 
.
 kg

-1
 
.
 min

-1
) together with gross and net energy expenditure (J 

.
 kg

-1 .
 min

-1
) 

rose with increasing treadmill velocities, as did optical flow measurements and mean 

accelerations (g) of ankle, thigh, wrist and hip. Oxygen uptake was linearly correlated with 

optical flow across all exercise intensities (R
2
 = 0.96, P<0.0001; VO2 (mL 

.
 kg

-1
 
.
 min

-1
) = 7.35 + 

9.85 × optical flow (arb. units)). Only 3-4 s of camera recording were required to estimate an 

optical flow value at each velocity. Conclusions: Optical flow measurements provide an 

accurate estimation of energy expenditure during horizontal walking and running. The technique 

offers a novel experimental method of estimating energy expenditure during human locomotion, 

without use of interfering equipment attached to the subject.  

 

 

Key Words: Oxygen Uptake, Walking, Running, Accelerometry, Thermal Optical Flow 
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INTRODUCTION 

Direct and accurate quantification of energy expenditure (EE) during human movement can be 

obtained through oxygen uptake measurements. Early investigations of oxygen uptake during 

exercise were performed using the Douglas bag method (1, 21, 37) and more recently metabolic 

carts have been validated and used for measurements of oxygen uptake (7, 10). However, the 

equipment necessary to quantify oxygen uptake may interfere with the normal locomotive 

pattern of the subject. 

Indirect quantification of EE during exercise typically involves heart rate monitors (12), 

accelerometers (12), and GPS (22) or combinations of these devices (3, 12), which have been 

validated against oxygen uptake (12). In most cases heart rate monitors requires attachment of a 

chest strap and a wristwatch for data collection. Heart rate measurements may introduce 

inaccuracy because emotional stress, environmental stress (i.e. cold, heat and altitude exposure) 

and training status can affect the association between oxygen uptake and heart rate, especially at 

low exercise intensities (12, 30, 32).  

Accelerometers are used to quantify accelerations of the body and are widely used to quantify 

EE during activities of daily living (for review see ref. 29). Quantification is normally achieved 

with an accelerometer positioned close to the body’s center of mass (i.e. hip or lower back). 

However, accelerometers have some well-known limitations. Uniaxial accelerometer counts 

have been shown to predict oxygen uptake during walking (4, 12) but accelerometer counts does 

not change significantly with increased speed during slow and fast running (4, 12). Precision can 

be improved further by using triaxial accelerometers (12). With uniaxial accelerometers 

positioned at the ankle, counts are higher compared with hip placed accelerometers (15). This 
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indicates that acceleration counts from body segments involved in running locomotion will 

reflect change in speed of locomotion, and therefore provide a valid registration of energy 

expenditure during walking and running. 

So far, both direct (oxygen uptake) and indirect (heart rate registration, accelerometry, GPS) 

quantification of EE during walking and running requires equipment attached directly to the 

person disposed for examination. Furthermore, oxygen uptake- and heart rate measurements 

normally require 2-3 min of data collection before valid steady state measurements can be 

obtained. Therefore, a fast method of measuring EE would be relevant for estimating EE in many 

sports activities involving walking and running. 

Within the field of computer vision, human motion analysis aim to track and detect people as 

well as interpret their motions (36, 39). Motion interpretation can be used within medical 

diagnosis, public health and sports analysis. Lately, thermal imaging has been introduced as a 

relevant method for quantification of movement (14). Thermal cameras are applied in this field 

for two reasons. Firstly, thermal cameras measure the amount of thermal radiation of objects in a 

scene. As long as the temperature of the person is different from the environment, a thermal 

camera is a valid tool to detect and track people, because the background separation is almost 

given by the input data. Absolute and relative temperature changes as such are therefore not 

quantified by the method. Secondly the identities of individuals are hidden in thermal data and 

hence open up a range of applications in public areas without violating any privacy issues. 

Furthermore, thermal cameras are relatively inexpensive to purchase and data collection requires 

no interfering equipment attached to the subject during test. 
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Optical Flow is defined as the movement of entities in succeeding images (23). As long as the 

movements take place in a plane parallel to the image plane in the camera, the optical flow is a 

direct measure of movement. Thermal optical flow is defined as optical flow estimated in 

succeeding thermal images (33). The different algorithms behind optical flow are all based on an 

assumption that an image entity has the same appearance in two consecutive images. This 

assumption is often violated and different optimization methods are therefore used (6).  

The acceleration and lift of a person’s centre of mass is defined as external mechanical work (8) 

and referred to as global movement in digital analysis, whereas movement of the limbs relative 

to the person’s trunk is defined as internal mechanical work (8)and referred to as local 

movement. The total amount of local movement is used in this investigation as a measuring 

system for motion of body segments (i.e. arm and leg movement) in relation to the torso. 

Dynamic high intensity exercise such as fast running require fast motion of body limbs, while 

low energy consuming motions require fewer and slower movements of arms and legs. Early 

work has described methods to determine if a person is walking or running by analyzing their 

cyclic motion pattern (13, 17). These previous studies mostly focus on labeling postures and 

activities while general descriptive methods about human motion or energy costs are lacking. 

The aim of this project was therefore to validate a novel camera-based method for measuring EE 

during human locomotion without the use of any type of equipment hindering movements and 

performance. The camera-based method was validated against steady state oxygen uptake during 

horizontal walking and running. In addition, the time required to obtain valid estimations of EE 

through optical flow was examined. It was hypothesized that optical flow would demonstrate a 

strong linear relationship with oxygen uptake. 
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METHODS 

Subjects: Thirteen male and one female subjects, age 28.1 ± 8.2 yr, weight 69.9 ± 7.5 kg, height 

177.6 ± 7.8 cm, BMI 22.1 ± 1.7 kg 
.
 m

-2
 (mean ± SD) completed the study. All participants were 

recreational distance runners and had practiced distance and interval training for more than 2 yr. 

All subjects were fully informed of any risks associated with the study before giving their 

informed consent. The protocol was approved by the regional Ethics Committee (N-20140076). 

Exercise testing. Exercise tests were performed on a motorized treadmill (Woodway Pro XL, 

Woodway Inc., Wisconsin, USA). All subjects were familiarized with treadmill running and had 

previously been involved in treadmill testing. Each exercise period was 4 min, separated by 30 

sec rest. The duration of each exercise period was designed to elicit steady state oxygen 

consumption. Subjects covered three walking intervals at 3, 5 and 7 km 
.
 hr

-1
 and six running 

intervals at 8, 10, 12, 14, 16 and 18 km 
.
 hr

-1
. Velocities increased from slowest to fastest as 

described by Fudge and co-workers (12). Heart rate, oxygen uptake, optical flow and 

accelerations of body segments were measured continuously. Subjects were instructed to refrain 

from caffeine intake and exercise three hours prior to testing. 

 

Techniques 

Pulmonary VO2 and VCO2 were measured by an automated on-line breath-by-breath system 

(Oxycon Pro, Jaeger, CareFusion, Hoechberg, Germany). Mean output values of 15 s. obtained 

at 2:45-3:45 of each exercise period were used for regression analysis. 

of each exercise period to quantify the oxygen uptake at each speed. The volume transducer 

(Triple V) was calibrated using the internal flow generator (12 – 120 L 
. 
min

-1
) and gas analysers 

were calibrated before and after each test using a calibration gas of known composition (O2% = 
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15.10; CO2% = 5.00%) and ambient air (O2% = 20.93; CO2% = 0.03%). Gross EE during each 

exercise period was calculated on the basis of (40). Calculation of net EE was done by 

subtracting estimated resting energy consumption (18) from gross EE. 

Heart rate was recorded continuously with a RS800CX heart rate monitor (Polar Elektro Oy, 

Kempele, Finland).  

Tri-axial accelerometry was used to quantify limb and torso (center of gravity) accelerations 

(wGT3X-BT, ActiGraph). Accelerometers were positioned at the subjects’ right side. 

Accelerometer positions were proximal to the lateral malleolus (ankle), frontal between 

trochanter major and epicondyles lateralis (thigh), proximal to iliac crest (hip) and proximal to 

the styloid process (wrist). Accelerometers sampled at 80 Hz and vector magnitude accelerations 

were downloaded and calculated based on 10 s epochs using the Actigraph, ActiLife 6 software. 

Average accelerations (1g subtracted) obtained at min 2:50-3:50 of each exercise period were 

used for regression analysis. The time period for analysis was chosen in order to overlap with 

steady state oxygen uptake measurements. 

Thermal imagery - Optical flow was measured using a thermal camera (AXIS Q1922, AXIS 

Communications, Sweden). Temperature sensitivity < 100 mK, with a sampling rate of 30 

frames 
.
 s

-1
. The camera was placed 6 m from the treadmill and 1 m off the ground, facing the left 

side of the subject. Thermal cameras register thermal radiation from a person as pixel intensity. 

In registration of thermal flow only the position of the pixels constituting the subject in each 

frame is needed for calculation of optical flow. Due to automatic gain adjustment of the camera 

no ceiling effects exist within the physiological range. Furthermore, pixels, per se, are only used 
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for identification of the subject of interest. Noise related to electrical mains has not been reported 

(14) and therefore low pass filtering was not performed. 

The analysis of optical flow relies on a second time derivative on a two-dimensional lattice 

topology of a squared region of interest, with a grid that spans only the person in the image. The 

algorithm is self-normalizing with camera resolution, distance and body size. The grid is 

specified by 60x60 pixels on the thermal image of 640x480 pixels. The differences in mean pixel 

position between frames and the frame rate generate the optical flow level. The movement of a 

subject’s torso along the horizontal and vertical axis is referred in the following as global 

movement whereas movement of body segments (arm and leg movement) in relation to the torso 

is referred to as local movement. Optical flow measurements were calculated at min 2:45-3:45 of 

each exercise period. Furthermore, optical flow measurements were calculated at the beginning 

of each velocity in order to establish response time for valid optical flow measurements. 

Camera detection of the person exposed for examination: To support background removal 

techniques and subsequent calculation of local movement, a histogram normalization of the 

video data, based on histogram data of the first frame, was performed. This approach enhances 

the quality of the video and gives a sharp contour of the subject. Because thermal imagery is 

based on the heat of objects, histogram normalization creates an equal starting position for 

different situations and conditions. Basing normalization on the first frame ensures similar 

conditions over time. Afterwards a threshold-based segmentation, improved with the help of 

morphology closing operation (33), was used to find the person in the image and create a binary 

mask (fig. 1A).  
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Estimation of Global Movement: To determine the global movement, a non-rigid object tracking 

was performed. The global movement of a person was defined as the movement of center of 

gravity. Because a stable center of gravity of a person in motion is hard to find, the center of 

gravity is approximated to be located in the chest of the person. This limits the tracking problem 

to a small area of the person’s upper body. The tracking method used to determine the global 

movement is based on Speeded Up Robust Features (SURF) (2) with a Kanade-Lucas-Tomasi 

tracker (KLT) (31, 38). Displacement vectors of a non-rigid body produced by a KLT tracker are 

generally too diverse to estimate its global displacement. Limiting the tracking to the chest by 

using only SURF points of the upper body part produces more equal displacement vectors. To 

ensure that tracking points are not lost over time, the bidirectional error threshold is set to 

infinity. The bidirectional error measures the validity of displacement vectors by tracking the 

SURF points back and measuring the distance between their original position and the position 

found by backwards tracking. Ignoring invalid displacement vectors naturally produces outliers. 

To remove these as well as outliers produced by e.g. rapid hand movements a RANdom SAmple 

Consensus (RANSAC) (9) subset of displacement vectors is calculated. Finally the global 

movement between two frames is estimated by averaging the RANSAC subset of displacement 

vectors. For greater stability a threshold in the RANSAC procedure is used that prefers groups of 

vectors with small magnitudes. This helps the method picking the vector group of the actual 

body, as it is more likely to move slower than any other group coming from an arm or a leg. 

Additionally, errors can be corrected by looking at magnitude values of the global movement 

over a certain time frame.  

Fig. 1B and 1C show the presented method for one frame and calculated values of one second 

(30 frames), respectively. It can be seen in fig. 1C that running on a treadmill produces a cyclic 
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movement in the vertical plane and an irregular movement in the horizontal plane. The 

movement in the vertical direction is an integrated part of walking and running and requires a 

large amount of energy that must be included to make correct estimations of activity. After 

calculating the global movement, the image sequence can be stabilized and cropped to a region 

of interest (ROI). This is done by a perspective translation and scaling resulting in a situation, 

where all motion is caused by local movement. This produces a similar situation to a laboratory 

setup, where a participant is running on a treadmill, as in accelerometer studies (for review see 

ref. 25) and it therefore becomes easy to verify our results with accelerations of the limbs. Due to 

the importance of the vertical direction, only the global horizontal movement is removed, while 

global vertical movements are not compensated.  

Estimation of local movement: After stabilizing the scene the local motion can be determined and 

mapped to EE. To determine the movement of the body limbs the optical flow between two 

frames is calculated. Most current optical flow techniques are based on the energy minimization 

framework of Horn and Schunck (23) and the concept of coarse-to-fine image warping 

introduced by Lucas and Kanade (31), and perform a local optimization of down sampled 

images. The down sampling removes information and causes the flow not to be found, when the 

structures are smaller than their displacement. Descriptor matching in contrast is able to estimate 

large displacement vectors, but is lacking a geometric relationship and is only able to estimate a 

small number of correspondences. Furthermore, outliers are very likely. This dilemma has been 

described and addressed by Brox et al. (5) and extended by Brox and Malik (6). The resulting 

method is combining optical flow with descriptor matching being capable of calculating the 

Large Displacement Optical Flow (LDOF) for large and small structures. The method proposed 

(6) is used for calculating the optical flow of the body limbs. Due to the stabilization of the ROI 
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as well as noise in the input data and errors in the calculation of the LDOF values, not only flow 

caused by the person is detected. To compensate for this error all values in the LDOF results that 

lie outside the detected region of a person are set to zero. Fig. 1D shows two thermal images with 

overlaid amount of local movement of a person running and walking. 

Estimating Energy Values: After calculating the optical flow values between frames, an N ×M 

grid with a tile size of sx × sy pixels of mean values is created, eq. 1. The difference of the grid 

values between two frames   and   − 1 represent a local change in flow (acceleration), eq. 2. The 

means of the magnitude accelerations between frame-sets eq. 3 express an energy value per 

frame.  

           
   
    

           

       

       

       

                                         

             
 
                                           

         
    
   

         

              

   

     

                                               

      
     

   

   
                                                                   

Where: 

                                                i     I is the i-th frame of I frames 

    (x     X, y     Y) is the pixel position in an image with the dimensions (X,Y) 

                           (n     N, m     M) is a tile index of N x M tiles 

                                               (sx, sy) is the dimension of a tile 

                                                      fxy is the flow of a position (x, y) 

                                                   vinm is the mean velocity of tile (n,m) in frame i 

                                                   ainm is the mean magnitude acceleration of tile (n,m) in frame i 
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                                                       Ei is the estimated energy value of frame i 

                                                        r is the ratio between body size and image dimensions 

                                                     mi is the binary mask of frame i 

The resulting values resemble cyclic functions of different frequencies and amplitudes for 

corresponding walking and running speeds as demonstrated in fig. 2. 

The grid acts hereby as a weighting function. Fine meshed grids support the influence of smaller 

body parts, while coarse-meshed grids suppress their influence as well as the influence of local 

errors in the LDOF calculation. This is caused by larger structures being less fragmented in 

coarse-meshed grids. The calculated results are not comparable as they are depending on the 

body size of the person as well as the size of the ROI and therefore they need to be normalized. 

With a standardized ROI comparable values can be achieved with compensating for the body 

size by multiplying the energy values with the factor r, eq. 4. The ratio r expresses the relation 

between the body size and the ROI. The cyclic movement of walking and running, as used in the 

example, should allow the estimation of oxygen uptake within a very short time period.  

 

Data analysis and statistics: Data are presented as mean ± SEM, if not otherwise stated. For 

comparisons of mean values at different exercise intensities one-way analysis of variance 

(ANOVA) repeated measures was performed. Between and within subject variances are reported 

as mean sum of squares (MSbetween and MSwithin, respectively). Post hoc comparisons were made 

using Bonferroni correction.  

Linear regression analysis and Pearson’s product-moment correlation (R) was used to assess the 

relationship between optical flow, oxygen uptake, energy expenditure, accelerations and running 
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speed. Pooled initial number of frames at all velocities for each subject (first frames at each 

velocity) required for optic flow measurements to reach consistency was analyzed for each 

subject. 

P values below 0.05 were considered as significant in all analyses. All analyses were performed 

using statistical analysis software (IBM SPSS Statistics version 22.0, SPSS, Chicago, IL, USA). 

 

RESULTS 

All subjects completed all intervals from 3 to 16 km 
.
 h

-1
 , but 2 subjects failed to complete the 4 

min interval at 18 km 
.
 h

-1
. Data obtained during the final completed minute at 18 km 

.
 h

-1
 were 

used for these two subjects.  

Mean heart rate, oxygen uptake, oxygen uptake in relation to body weight, gross and net energy 

expenditure increased with increasing treadmill velocities (Table 1). Increase in speed was 

linearly associated with oxygen uptake (R
2
 = 0.93; P < 0.0001), oxygen uptake in relation to 

body weight (R
2
 = 0.98; P < 0.0001), gross energy expenditure (R

2
 = 0.97; P < 0.0001) and net 

energy expenditure (R
2
 = 0.97; P < 0.0001). During running, heart rate on average increased with 

10.1 -15.8 beats 
.
 min

-1
 with each exercise period and the lowest increase of 10.1 beats 

.
 min

-

1
occurred from 16.0 to 18.0 km 

.
 h

-1
. Oxygen uptake on average increased with 332 – 516 ml O2 

.
 

min
-1

 with each exercise period and the lowest increase of 332 ml O2 
.
 min

-1
 occurred from 8.0 to 

10.0 km 
.
 h

-1
, however, also a minor increase of 395 ml O2 

.
 min

-1
 occurred at the high velocities 

of 16.0 to 18.0 km 
.
 h

-1
. Respiratory exchange ratio (RER) increased with higher walking and 

running speeds. During walking mean RER increased from 0.828 to 0.876 and during running 

RER continued to increase from 0.882 at 8 km 
.
 h

-1
, reaching 1.062 at 18 km 

.
 h

-1
 (Table 1). Mean 
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RER values exceeded 1.0 when speed increased from 14.0 to 16.0 km 
.
 h

-1
. Both gross and net 

EE increased with increasing speed (Table 1) 

Mean vector magnitude accelerations are shown in fig. 3A-D. Highest values were obtained from 

the ankle and lowest from the hip. Wrist and thigh accelerometers showed similar values of 

vector magnitude accelerations. All mean vector magnitude accelerations increased with running 

speed and showed a strong linear relationship with oxygen uptake (fig. 3; P < 0.0001): wrist (R
2
 

= 0.84), hip (R
2
 = 0.85), thigh (R

2
 = 0.93) and ankle (R

2
 = 0.94). Summarizing acceleration data 

from all four sites showed a strong correlation with optical flow (R
2
 = 0.93; P < 0.0001). 

The optical flow values also increased with increasing speed (Table 1). Although optical flow 

was not significantly different between 16 and 18 km 
.
 h

-1
, a trend for increase in optical flow 

was apparent from 16 to 18 km 
.
 h

-1
. The mean magnitude optical flow changes from a single 

subject observed through a 3 s period (90 frames) are presented in fig. 2. 

Average values of optical flow for all 14 subjects demonstrated a strong correlation with oxygen 

uptake across all exercise intensities (Fig. 4; R
2
 = 0.96; P<0.0001). Out of 126 observations, only 

two outliers were observed. 

Number of frames necessary to assess a constant optical flow value reflecting walking and 

running speeds were examined using linear regression (Fig. 5). With the temporal resolution of 

30 frames per s, less than 100 frames were required to give a valid calculation of the optical 

flow. Also, all individual R
2
-values exceeded 0.9 and did not improve further by increasing 

number of frames.  
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DISCUSSION 

The main finding in the present study is that EE during treadmill locomotion can be estimated 

fast and precisely (1-2 s. of processing per frame on a single tread) using thermal cameras 

without any need of mechanical or electronic equipment attached to the person observed. The 

process can be faster and close to real time using parallel computing. 

Oxygen uptake and energy expenditure in relation to optical flow 

Optical flow values demonstrated a strong correlation with gross oxygen uptake across all 

exercise intensities, and all individual associations also showed strong correlations (fig. 4). 

Optical flow was not significantly different between 16 and 18 km 
.
 h

-1
. However, a trend for 

increase in optical flow was apparent from 16 to 18km 
.
 h

-1
. This increase is substantiated by the 

confidence intervals (CI -0.169 to 0.719). As both VO2 and accelerations at distal placed 

accelerometers increased with speed, it appears that the current methodology has limitations at 

higher running speed.  

Energy expenditure values are gross values and resting EE was not measured during the lab 

session. Net EE was therefore estimated by subtracting standard resting EE (18) from gross EE 

(Table 1). Resting EE to gross EE is greater at lower exercise intensities (walking) compared 

with higher exercise intensities. Measuring actual resting EE would therefore have provided 

more precise net EE values.  

Oxygen uptake and heart rate rose linearly with increasing walking and running velocities, as 

previously reported in studies examining indirect estimation of EE and accelerometry (4, 12). 

Even though heart rate is a valid indicator of EE, training status may influence the relationship 

between oxygen uptake and heart rate (20). Similarly, day-to-day variation in heart rate during 
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(28) and cardiac drift during exercise (19, 27) may also affect prediction of energy expenditure 

using heart rate measurements. With the present methodological approach only movements of 

body segments are evaluated and therefore the above-mentioned aspects of heart rate variation 

will not affect the estimation of EE. 

Mean RER values for all subjects during the two final bouts (16 and 18 km 
.
 h

-1
) exceeded 1.0 

but did not reach 1.1 (Table 1), indicating an increase in anaerobic energy contribution. 

However, the individual increase in oxygen uptake was still significant between bouts, indicating 

that VO2peak had not been reached by any subjects prior to the final 18 km 
.
 h

-1
 exercise bout. 

Excluding the values from the two subjects who did not complete the 18 km 
.
 h

-1
 bout from the 

analyses did not affect the relationship between oxygen uptake and optical flow. 

Optical flow and accelerations of the limbs 

In the present investigation optical flow was validated against oxygen uptake. As optical flow 

values primarily are generated through local movements (movement of limbs), accelerometer 

data was used to quantify limb movements of ankle, thigh and wrist and not for estimating 

energy consumption per se. Accelerations increased with higher speeds at all three limb positions 

verifying the linear relationship between ankle accelerations and speed as previously reported by 

Guinhouya and colleagues (15). These results suggest that optical flow, oxygen uptake and limb 

movements are closely related (fig. 3 and fig. 4), as also observed when ankle movements are 

related to activities of daily living (35). Furthermore, summarizing acceleration data from all 

four sites showed a strong correlation with optical flow (R
2
 = 0.93; P < 0.0001), providing an 

additional criterion measure for the thermal imaging measure of energy expenditure. It is 

noteworthy that the change from walking to running resulted in an irregular increase in 
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accelerations, indicating that accelerometers positioned distally at the limbs may be imprecise in 

estimating EE when this transition occurs. Accelerations at the hip ( center of gravity) also 

showed a linear increase with oxygen uptake and therefore confirm previous investigation where 

accelerations (collected from a force treadmill) increased up to 16 km
 .
 h

-1
 (24). 

Response time for valid Optical flow measurements 

Another main finding is the response time for quantifying EE using optical flow measurements. 

Fig. 5 shows that less than 100 frames are needed in order to get stable optical flow 

measurements across the speeds. Within 3-4 sec the optical flow thus reflects EE during walking 

and running. Traditionally, studies investigating steady state oxygen uptake have used exercise 

bouts of minimum 2-3 min during both walking (34) and running (11, 16) in order to establish 

steady state conditions. The method therefore provides a very low response time for quantifying 

aerobic EE of locomotion.  

Perspectives and conclusions 

While the design of the method allows free movement in space and any type of activity, a 

controlled setup was used during the tests to prove the concept and directly compare to known 

methodologies. The setup in the present study shows the potential of the method with 

constrained error sources. Hence, the optical flow measurements predict oxygen uptake and EE 

with high accuracy during horizontal treadmill walking and running. Even though this 

methodology provides a novel, non-invasive approach of measuring EE it has some limitations 

compared to well-established methods such as indirect calorimetry. The fractional rate of 

substrate utilization cannot be identified with the current methodology and therefore small 

differences in EE between subjects are not detected when moving at the same velocity. 
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Differences in walking and running economy may therefore be difficult to detect. The next step 

will be to estimate EE using optical flow with a single person performing specific movement 

patterns (e.g. walking, running) outside the laboratory. Additional future investigations should 

involve optical measurements during free-living activities, which will address challenges related 

to the camera angles with respect to the field and the direction of the person. One approach could 

be to combine two thermal cameras in order to estimate 3D motion (26) and then extract optical 

flow changes and correlate that with oxygen consumption obtained by a portable metabolic cart. 

In conclusion, optical flow obtained using thermal imagery gives a precise estimation of the 

aerobic EE (oxygen uptake) during horizontal walking and running. Furthermore, the estimation 

is effective within 3-4 sec of a given walking or running velocity, which gives a very fast 

response time compared to a steady state oxygen uptake. The fact that the method requires no 

wearable devices enables new forms of investigation in the field of sports and movement 

research. In particular, this approach will make it more feasible to perform analyses of EE during 

exercise. 
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FIGURE LEGENDS 

 

FIGURE 1. A: Input frame and segmentation. B: SURF points (cross), RANSAC subset (circle) 

and scaled displacement vectors (line), which are used for estimating the global movement of a 

subject. C: The displacement per frame of the subset of feature points, marked in fig. 1B, in 

horizontal (X) and vertical (Y) direction. D: The optical flow between two frames augmented on 

the latter frame to visualize the actual optical flow registered.  

 

FIGURE 2. Calculated mean magnitude flow change values for a subject covering one walking 

velocity (5.0 km 
.
 h

-1
) and two different running speeds (8.0 and 18.0 km 

.
 h

-1
). 

 

FIGURE 3. Mean GT3X output (± SEM), plotted against relative oxygen uptake. GT3X outputs 

are sampled at A) wrist, B) hip, C) thigh and D) ankle. 

 

FIGURE 4. Individual oxygen uptake measurements in relation to optical flow during walking 

(3-7 km 
.
 h

-1
) and running (8-18 km 

.
 h

-1
). Solid black regression line represents pooled data of all 

subjects (R
2
 = 0.96; P<0.0001). Individual subject data are illustrated by different symbols  

 

FIGURE 5. R
2
 values plotted against the first numbers of thermal camera frames included in 

correlation analysis. Each line represents average values from one subject. 100 frames (3.33 s), 

marked by dashed vertical line indicate response time for quantifying aerobic energy expenditure 

by optical flow. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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TABLE 1: Heart rate, oxygen uptake, RER-values, energy expenditure and optical flow 

(mean±SE) at increasing treadmill velocities. ANOVA variance between and within subjects is 

expressed as mean sum of squares (MSbetween and MSwithin, respectively ). 
α
n = 13. * Significantly 

different from previous value (p<0.05). 

 

  

Walking 

 

Running 

  

 

ANOVA 
 

Treadmill velocity 

(km 
.
 h

-1
) 

 

 

Treadmill velocity 

(km 
.
 h

-1
) 

 

3.0 5.0 7.0 8.0 10.0 12.0 14.0 16.0 18.0 
MSbetweem 

MSwithin 

 

Heart rate
α 

(bpm) 

 

74.3 

±2.8 

82.8* 

±3.1 

97* 

±3.4 

116.5* 

±3.7 

128.5* 

±4.3 

144.3* 

±4.9 

158.0* 

±4.4 

171.7* 

±3.7 

181.8* 

±3.8 

1397 

15389 

 

Gross Oxygen 

uptake 

(L O2 
.
 min

-1
) 

 

0.82 

±0.03 

1.06* 

±0.03 

1.53* 

±0.05 

2.11* 

±0.08 

2.44* 

±0.09 

2.86* 

±0.10 

3.33* 

±0.10 

3.85* 

±0.11 

4.24* 

±0.12 

0.68 

1.53 

 

Gross Oxygen 

uptake 

(ml O2 
.
 kg

-1
 
.
 min

-1
) 

 

11.79 

±0.27 

15.21* 

±0.29 

21.96* 

±0.44 

30.14* 

±0.52 

34.94* 

±0.62 

40.87* 

±0.57 

47.73* 

±0.53 

55.14* 

±0.56 

61.21* 

±0.87 

20.6 

155.2 

 

RER 

 

 

0.83 

±0.02 

0.84 

±0.01 

0.88 

±0.02 

0.88 

±0.01 

0.91* 

±0.01 

0.92 

±0.02 

0.95* 

±0.02 

1.01* 

±0.02 

1.06* 

±0.01 

0.02 

0.03 

 

Gross energy 

expenditure 

(J 
.
 kg

-1
 
.
 min

-1
) 

 

237.4 

±5.3 

307.1* 

±5.4 

449.2* 

±8.9 

616.8* 

±10.3 

726.0* 

±12.9 

849.1* 

±11.7 

995.6* 

±12.2 

1165.2* 

±12.7 

1300.4* 

±17.0 

8339 

69910 

 

Net energy 

expenditure 

(J 
.
 kg

-1
 
.
 min

-1
) 

 

165.7 

±5.4 

235.5* 

±5.5 

377.6* 

±9.2 

545.1* 

±10.7 

654.4* 

±13.1 

777.5* 

±11.9 

923.9* 

±12.2 

1093.6* 

±12.5 

1228.8* 

±17.3 

8417 

69906 

 

Optic flow 

(arb. units) 

 

0.39 

±0.01 

0.85* 

±0.03 

1.48* 

±0.03 

2.26* 

±0.11 

2.93* 

±0.07 

3.66* 

±0.06 

4.21* 

±0.060 

4.79* 

±0.10 

5.06 

±0.07 

0.16 

1.60 
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