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Abstract—Energy detection (ED) is an attractive technique for
symbol detection at receivers equipped with a large number of
antennas, for example in millimeter wave communication systems.
This paper investigates the performance bounds of ED with
pulse amplitude modulation (PAM) in large antenna arrays under
single stream transmission and fast fading assumptions. The
analysis leverages information-theoretic tools and semi-numerical
approach to provide bounds on the information rate, which are
shown to be tight in the low and high signal-to-noise ratio (SNR)
regimes, respectively. For a fixed constellation size, the impact of
the number of antennas and SNR on the achievable information
rate is investigated. Based on the results, heuristics are provided
for the choice of the cardinality of the adaptive modulation scheme
as a function of the SNR and the number of antennas.

I. INTRODUCTION

The introduction of large (massive) antenna arrays at
wireless transceivers may bring significant enhancement in
communication throughput and reliability [1]. Such systems not
only maintain the benefits introduced by traditional multiple-
input-multiple-output (MIMO) systems, but also allow for the
employment of linear processing techniques which reduce the
computation complexity and potentially increase the energy
efficiency [2], [3]. The requirement on sufficiently accurate
channel state information (CSI) to facilitate coherent pro-
cessing at multiple antennas appears to be crucial for the
performance of massive MIMO systems [2]. In addition, the
issue of CSI acquisition is the main reason why cellular
massive MIMO systems (at least in the frequency bands below
6 GHz) are restricted to operate in TDD mode, instead of the
more (industry-)friendly FDD mode.

While the application of millimeter wave (mm-wave) fre-
quencies in communication systems enables both base stations
and small terminals to carry a large number of antennas, the
deployment of large antenna arrays operating in this portion
of the frequency spectrum comes with certain challenges. For
example, for the same mobility, in mm-wave systems the
coherence time will be an order of magnitude shorter due to
higher Doppler spread, which may reduce both spatial multi-
plexing and CSI acquisition capabilities. In addition, hardware
implementation may be quite different from what has been
considered in the Massive MIMO literature.

These observations motivate the use of alternative com-
munication and signal processing techniques which are robust
to CSI imperfections. A prominent example are the so-called
“non-coherent” communication/processing techniques which
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do not rely on (explicit) CSI acquisition/estimation. Energy
detection (ED) (in combination with an appropriate transmis-
sion/modulation technique) is an example of a noncoherent
signal processing technique which does not rely (at least not
explicitly) on CSI acquisition. Due to its phase-independent
property and low implementation complexity, ED lends itself
as tangible solution for mm-wave signal processing. As result,
PAM-ED is selected for wide-band mm-wave short range com-
munication standards, such as Ecma-387 and IEEE 802.15.3
[4]. When employed at a large antenna array receiver, ED
allows for symbol detection performed without the knowledge
of the instantaneous channel coefficients. In fact, with a large
antenna array, ED may even operate without explicit knowledge
of the channel statistics, as signal squaring and averaging
performed over the excessive number of receive antennas
provides a sample mean-based estimate of the channel energy.
Meanwhile, due to noise hardening, additive noise contribution
asymptotically approaches to a deterministic term.

For these reasons, ED-based systems intended for mm-
wave applications have been in the focus of recent research
efforts. In [5], the authors show that energy detection achieves
comparable symbol-error-rate (SER) against coherent detection
in which the CSI is assumed to be perfectly known. In [6],
threshold values are optimized to reduce the SER based on
Gaussian approximations of the energy detector output. Using
SER as an optimization criteria, asymptotically optimal signal
energy constellation design are proposed in [7]. While SER
is a sensible measure for the performance of ED systems
equipped with massive antennas, performance limits in terms
of achievable information rates are still not well-investigated.

In this contribution we derive performance bounds of PAM-
ED systems with large antenna arrays under single stream
transmission. We use information-theoretic tools and semi-
numerical analysis to evaluate an upper and lower bound on
the mutual information. The results, which are valid for the
whole SNR range, illustrate that the gap between the bounds
vanishes in the low-SNR and in the high-SNR regime. For
fixed constellation size, we analyze the impact of the number
of antennas and SNR on the achievable rate. In addition, we
provide heuristics for the selection of adaptive modulation
techniques which appropriately match the cardinality of the
constellation to the SNR and the number of antenna elements.
Finally, we compare the obtained bounds against the capacity
of the memoryless fading SIMO channel studied in [8], which
serves as benchmark for the performance of any SIMO scheme
(including ED) which operates under fast, memoryless fading.
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II. SYSTEM MODEL

ED can be seen as a special form of processing where the
received signal at each antenna is passed through a squaring
device followed by integration and sampling. As ED is re-
stricted to nonnegative modulation alphabets, we assume that
the transmitted signal is /z (instead of x). We focus on
PAM such that x is selected from the energy constellation set
X ={0,€1,€2,...,ep_1}, where €, = cp > 0, and ¢ denotes a
normalization constant. Equipped with this notation, the output
of the energy detector is written as

1 M 2
= MZ"H\/E-FW’ (1
1 1:41 1 M 9 M
:MZ|hi|2w+MZ|ni|2+MZ§R(hin;‘)\/5
i=1 i=1 =1

Sh Sn w

We assume that the channel coefficients are i.i.d complex
Gaussian, h; ~ CN(0,07). Hence, the sample mean ¢, =

ﬁ Zf\il |hi|? has the same distribution as %g’h, where &,
is Gamma distributed with shape M and scale 2/M, ¢, ~
['(M,2/M) '. The noise coefficients are i.i.d Gaussian with
zero mean and variance cr%/} n; ~ CN(0,02). As result, the
sample mean ¢, = 1 >..", |n;* has the same distribution
as %ig_n, where ¢,, is Gamma distributed with shape M and
scale 2/M, &, ~ I'(M,2/M). For M large, as result of the
Central Limit Theorem (CLT), one can invoke a Gaussian
approximation for the variables ¢;, and ¢,,:

G N (o /M) 6~ N (o). @)

Similar argumentation holds for the statistics of w

2 & .
= ; R(hi(k)n; (k))

We note that the Gaussian approximations are well justified
when M is sufficiently large, which is a preferable operating
region for massive MIMO systems. An important consequence
of the detection process is that, as long as requirements
for the applicability of CLT are fulfilled, signal processing
based on ED is robust both with respect to the channel and
noise statistics. Indeed, one may observe that as M — +oo,
the (random) channel variables s, §, and w become more
deterministic, as ¢, — 03, ¢, — o2 and w — 0. This
indicates that, for large antenna array systems, the first and
second moments of the channel and noise may be sufficient
to characterize the output of the energy detector. Due to
this asymptotic behaviour, reliable detection of the transmitted
symbol /x may be performed using the statistics of <, ¢,
and w. With this implementation, estimation of the individual
channel coefficients or the individual channel amplitudes (as
it is the case with conventional energy detection with a small
number of antennas) is not required, which is a remarkable
feature of ED schemes with massive receiver arrays.

~ N(0,20%02/M).  (3)

For h; ~ CN(0,0%),

=2 |hy|? is chi-square distributed with 2 degrees
of freedom. "

206

III. PERFORMANCE LIMITS OF ED

An exact information-theoretic characterization of the chan-
nel described by (1) is difficult in general, mainly due to
the technicalities in the evaluation of the involved differential
entropies under the assumption of no a-priori knowledge of
the channel variables. In the following we evaluate lower and
upper bounds on the mutual information I(x; z) by relying on
(simple) bounding techniques and semi-numerical analysis.

A. Lower Bounds

1) Conditioning on g, The mutual information between x
and z may be lower-bounded as

I(x; 2) = h(z) — h(z|z) > h(z|sh) — h(z|z), 4)

where h(-) denotes differential entropy and the inequality
follows from the fact that conditioning on ¢, does not increase
the entropy of z. To compute h(z|x), we write

h(zlx) = Eg [h(z|x = )], (5)

where E, denotes that the expectation is taken over the random
variable . Note that the pdf f.(z|x = ) is Gaussian with

2 2 2
first moment o7 + o2 and second moment LW

Hence, h(z|x) reads
1 2re(ofa® 4+ of + 20702 %)
h(z|x) = §]Em [ln < i . (6)
To derive h(z|sp), we proceed by writing
h(zlsn) = Eq, [h(z|sn = 1]

—/fch(%)/fz(ZlCh = o) logy fz(2[sn = cn)dzde,
N

where f, (sn) is a Gaussian pdf, see (2). By the law of total
probability, f,(z|sp = <) can be computed as

ZP

where P, ( ) is the probability mass function of x. Given g,

and z, z 1s Gaussian with first moment ¢, x + a and second
o +20h17

f=(zlsn = sn) (zlsh =sn,x=x), (8)

moment . As (8) is a Gaussian mixture, we rely on
Monte Carlo averaging to obtain an accurate approximation of
h(z|sn = sp). Similarly, Monte Carlo averaging can be applied
to evaluate the outer integral in (7).

2) Conditioning on w: Alternatively, a lower bound on
I(x; z) may be obtained by conditioning on w:

I(xz; z) > h(z|lw) — h(z|x). )

The difference with respect to (4) is in the first term on the
right hand side of (9). In fact, the motivation to evaluate these
lower bounds is that expectation that (4) and (9) may represent
an accurate low-SNR, respectively high-SNR approximation of
I(x; z). This conclusion is motivated by the observation that in
the low-SNR regime, the entropy of z is dominated by the term
x and h(z) = h(z|sp). Similarly, in the high-SNR regime,
sp2 dominates the entropy of z and thus h(z) = h(z|w).

The term h(z|w) reads
h(z|lw) = E,

—/fw(w)/fz(z|w:w)lnfz(z|w:w)dzdw, (10)

[h(z|w = w)]
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with the pdf of the Gaussian mixture f.(z|w = w) given by
2Pl

where f.(z|lw = w,z = x) is Gaussian with first moment
4.2 4
o, +o,

f2(zlw=w) = (zlw=w,xz=x), (1)

o2z +w\/x + o2 and second moment

B. Upper Bounds

Upper bounds on I(x; z) may be computed if the instan-
taneous realization of ¢;, or w is known. This may be seen as
a form of coherent, i.e. genie-aided detection.

1) An upper bound based on the knowledge of ¢n: We
assume that the (instantaneous) realization of ¢; is known to
the receiver (meaning that the estimate of 67 is perfect). In this
case, it holds

I(z; z) < I(z; z|sn) = h(z|sn) — h(z|sh, ). (12)

As h(z|sp) has already been evaluated in (7), it remains to
evaluate

h(z|sp,

) =3 Pua) / S () (2lSH = Sho = ) dp.

(13)
Given ¢;, and z, 2z is Gaussian with mean ¢, x+02 and variance

2
% Thus, we obtain

1 In 2me(20302x + o)
2 M '

Due to the independence of h(z|s, = ¢p, @ = x) on ¢, (13)
simplifies to

‘ghv ZP

Compared to (6), the difference is that the channel energy
dependent term is omitted, which reduces the entropy of z.
The results in Section IV suggest that (12) and (4) coincide in
the low-SNR regime due to the dominance of 2.

hzlsp =sp,x =) =

2re(20i02x + o)
o o). (14
( Vi (14

2) An upper based on the knowledge of w: Alternatively,
an upper bound on I(x; z) may be derived by assuming that
the receiver knows the (instantaneous) realization of w

I(z; z) < I(z; z|lw) = h(z|lw) — h(z|lw,z).  (15)

Having already evaluated h(z|w), it remains to compute
h(z|w, x) ZP / fw(w

Given w and T, 2 is Gaussian with mean o7z + w\/x + 02

(zlw = w,z = z) dw.

and variance %h MJFU” It is straightforward to show that
2re(ofz? + ok)
Py( It Sl e 72 16
(2w, @) Z ( o (16)

In the high SNR regime, i.e. with vanishing noise, conditioning
on w has negligible impact on the entropy of z. Therefore, it
is expected that the lower bound evaluated in (4) and the upper
bound evaluated in (15) will be close to each other.
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C. SIMO Capacity as a Performance Benchmark

Although ED is robust to the channel statistics, we choose
to compare its performance (in terms of achievable rate) with
the capacity of the SIMO channel with memoryless (i.e. fast)
Rayleigh fading. This model is motivated by the fact that, in
the presented form, ED relies on symbol-by-symbol detection
and does not exploit channel correlation in time (if any). In
addition, the short coherence time in mm-wave systems justifies
a fading model (e.g. Gauss-Markov) with small temporal
correlation. When M > 1, a closed-form expression for the
capacity of the memoryless Rayleigh fading SIMO channel
with both peak and average power constraint has been derived
in [8]. For average power constraint and signal-to-noise ratio
p, the capacity reads

1 M
C(p) = 5 log, <2W> +logla) + gt (D)

where a is a normalization constant related to the capacity-
achieving distribution provided in [8]). The expression (17)
reveals a logarithmic scaling behaviour as function of the
number of antennas M and is used as comparison benchmark
for the achievable information rate of PAM-ED.

IV. PERFORMANCE EVALUATION

We evaluate the proposed bounds on the achievable infor-
mation rate for the PAM-ED schemes. We remark that, for
discrete input constellations, the achievable information rate is
(trivially) upper-bounded by the cardinality of the modulation
scheme. The simulation setting and notation are reported in
Table 1. We plot the “composite” curve which is obtained by

Table 1. SIMULATION SETTINGS AND NOTATIONS

[m] , Px (z) : Uniform distribution.

o2 =1,SNR =

Notations:
LB:H (W) Lower bound conditioned on g5 (w).
UB:H (W)  Upper bound conditioned on ¢, (w).
LB: = max(LB:H, LB:W), UB: = min(UB:H, UB:W)

taking the maximum of the two lower bounds for each value of
the SNR. Similarly, from the two upper bounds, we select the
minimal value at each SNR point, yielding a composite upper
bound. In this way, we obtain a single lower and a single upper
bound (denoted as LB, respectively UB). The (semi)numerical
results indicate that the newly obtained bounds become close
to each other (i.e. tight) in the low-SNR, respectively high-
SNR regime, leaving a small gap in the intermediate-SNR
regime. Fig. 1 illustrates the impact of the SNR and the number
of antennas M on the mutual information of a 8-PAM-ED
system. We observe that: 1) the mutual information increases
significantly with the increase of M; 2) as expected, the lower
bound in (4) and the upper bound in (15) represent tight
approximations on the mutual information in the high-SNR
regime. Meanwhile, the lower bound in (9) and the upper bound
in (12) are tight in the low-SNR regime; 3) the (composite)
lower bound (LB) and the (composite) upper bound (UB) are
tight in the low-SNR, respectively high-SNR regime; 4) as SNR
increases, UB and LB saturate to a point defined by M and
for a sufficiently large M they reach the maximum information
rate log, (| X|).

Fig. 2 reports the impact of the modulation order on the
obtained bounds. It also provides insights about the choice of
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Mutual Information

P
K9 M =10
05r 4 --UB:H
y - UB: W
0 . . . . . . == UB | . )
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Figure 1. Mutual information bounds for PAM-ED: P = 8.
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Figure 2. Mutual information for different modulation order: M = 200.

the alphabet size as a function of the SNR and M. For example,
at SNR = 6dB, it is justified to choose 8-PAM over 16-PAM
as it achieves (almost) 3 bits/channel use (the maximum with
8-symbol alphabet), while 16-PAM achieves a smaller fraction
of the maximal achievable rate (3.5 out of 4 bits/channel use).
The observations in Fig. 2 serve as heuristics for the choice of
a modulation scheme where the cardinality of the constellation
is adopted to the SNR and M. A way to select the appropriate
constellation size is to define an acceptable performance loss
defined as the ratio between the achievable rate (as obtained
from UB and LB) and the maximal rate log,(|X]). In Fig.
3 the achievable rate of this adaptive technique is compared
against the capacity of the memoryless Rayleigh fading SIMO
channel reported in [8] which provides an absolute bound for

51
4t
E}
2,
<
@)
21
1t ——LB
——UB
—e— Abs bound
0 . . . . . . . . . . )
6 -4 -2 0 2 4 6 8 10 12 14 16

SNR

Figure 3. Mutual information with adaptive modulation: M = 200.
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all schemes (including ED), under the same channel model.
The comparison reveals that PAM-ED seems to follow the
log M scaling behavior of the SIMO capacity. However, there
is a gap (albeit SNR-independent) between the achievable rate
of the scheme and the SIMO capacity reported in [8]. This
behaviour, we think, may be attributed mainly to two effects.
First, while ED (implemented by averaging over all antennas)
benefits from the “hardening” effects of both channel and noise,
it does not fully exploit the multiple receive antennas. Second,
a fraction of the performance loss may be attributed to the
suboptimality of PAM. Nevertheless, due to its robustness and
the low implementation complexity, ED is definitely justified.

V. CONCLUSIONS

In mm-wave systems with a large number of antennas,
PAM-ED schemes potentially offer a low-complexity, robust
solution to deal with challenges in CSI acquisition. We have
investigated the impact of the number of antennas and SNR
on the achievable information rate and provided bounds on the
performance. We have shown that, when applied in an adaptive
fashion, the performance of PAM-ED scales accordingly with
the number of antennas and the SNR. The performance,
together with the robustness and the simple implementation,
justify the proposed use of ED in practical mm-wave systems.
It remains for future work to evaluate the performance of
ED when implemented at each receive antenna separately.
Although more complex in the implementation, we suspect that
this implementation may bridge the gap to the SIMO capacity.
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