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Abstract— State feedback decoupling allows to achieve a 

better dynamics for Voltage Source Inverters operating in 

isolated microgrids or UPS systems. The design of current and 

voltage regulators is performed in the discrete-time domain 

since provides better accuracy and allows direct pole 

placement. As the bandwidth of the innermost loop is mainly 

limited by computation and PWM delays, a structure based on 

a lead compensator is proposed to overcome this limitation. 

The design of the voltage regulator is based on the Nyquist 

criterion, verifying to guarantee a high sensitivity peak. 

Discrete-time domain implementation issues of an anti-wind up 

scheme are discussed as well. Laboratory tests in compliance 

with the standard for UPS systems are performed to verify the 

theoretical analysis. 

Keywords—voltage and current regulators; power quality; 

microgrids 

I. INTRODUCTION 

The increasing share of renewable energy sources 
interfaced via power converters requires even more severe 
dynamics performance of voltage and current regulators. 
With reference to hierarchical control in microgrids [1], the 
performance of the overall control system can degrade 
significantly if the inner loops at primary control level have 
poor dynamics. The primary control of voltage source 
inverters for islanded applications usually consists of 
cascaded loops, the innermost one being the current 
regulator. This latter is responsible for dynamics and 
characterized by a bandwidth as wider as possible, mainly 
limited by computation and PWM delays in digital 
implementations. On the other hand, the outer voltage loop 
tracks the commanded reference with a much slower 
dynamics. A possible design choice consists in selecting the 
inductor current and capacitor voltage as state variables. The 
coupling between the two controlled states significantly 
degrades the performance of the inner regulators. 

For the above reasons, an active control action to 
decouple the controlled states is needed. The damping of the 
system and command tracking capability are significantly 
improved, even with just a proportional controller as current 
regulator. Ideally, the system becomes not dependent on the 
disturbance, i.e. the output current. In practice still the 
computation and PWM delays that are not compensated for 
on the decoupling path do not allow to ideally decouple the 
states, such that the state feedback decoupling action is less 
effective. 

The design of the regulators can be performed in the 
continuous-time domain with Laplace-domain models, 
which can be useful to provide a general perception of 
system dynamics [2]. Subsequently, some discretization 
method is used for digital implementation of the regulators. 
However, the mapping from the s-domain to the z-domain 
can introduce some discrepancy in the poles location [3], in 
particular for discretization of high-frequency harmonic 
compensators. On the other hand, the direct design of digital 
compensators in the discrete-time domain provides more 
accuracy. In fact, the use of Impulse Invariant Z-transform 
allows to treat the latch/zero-order hold effect and time lag 
accurately [4], without the need of using approximated 
rational transfer functions for modelling the system delays 
[5]. Other advantages are the following: i) design for direct 
pole-placement [6]; ii) improved dynamic performance and 
robustness of the regulators [7], especially if the current 
regulator is designed to achieve wide bandwidth [8]; iii) ease 
of implementation to track commanded arbitrary trajectories. 
According to the previous discussion, direct design in the 
discrete-time domain can be considered convenient. 

As recently proved in [9], the state feedback decoupling 
action can be improved by leading the capacitor voltage on 
the state feedback decoupling path. However, the analysis is 
performed in the continuous-time domain and the possibility 
to widen the current loop bandwidth by means of a lead 
compensator on the forward path is not investigated. 

This paper is organized as follows. In Section II the 
system is described with focus on its block diagram 
representation. In Section III the current regulator is designed 
in the discrete-time domain along with the lead compensator 
to achieve a wider bandwidth. In Section IV the tuning of the 
voltage regulator is performed by means of Nyquist criterion. 
The design of an anti-wind up scheme is also proposed. 
Finally, in Section V results from laboratory tests are shown 
to support the theoretical analysis. 

II. SYSTEM DESCRIPTION

In standalone applications, the VSI is equipped with an 

LC filter at its output. In general, it operates in voltage 

control mode with the capacitor voltage and inductor 

currents being the controlled states. 
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Fig. 1. Block diagram of a three phase VSI with voltage and current loops 

In Fig. 1 the block diagram including a three-phase 

inverter with its inner loops is presented. The aim of the 

inner current loop is to track the commands from the outer 

voltage loop and ensure fast dynamic disturbance rejection 

within its bandwidth [10]. 

The simplified block diagram of the closed-loop system 

in the continuous-time domain is shown in Fig. 2, where 

𝑽𝐶𝛼𝛽
∗  and 𝑰𝐿𝛼𝛽

∗  are the voltage and current reference vectors 

and 𝑰𝑜𝛼𝛽  is the output current vector, which acts as a 

disturbance to the system. 𝐺𝑖(𝑠)  and 𝐺𝑣(𝑠)  represent the 

current and voltage regulators transfer functions (TF) in the 

continuous-time domain. A first order Padé approximation 

of the type 𝐺𝑃𝑊𝑀(𝑠) ≅ [1 − (𝑇𝑑/2)𝑠]/[1 + (𝑇𝑑/2)𝑠] is 

used to model the computation and PWM delays, where 

𝑇𝑑 = 1.5/𝑓𝑠 , being 𝑓𝑠  the switching frequency. 𝐺𝑑𝑒𝑐(𝑠)  is 

the TF related to the decoupling of the cross-coupling states. 
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Fig. 2. Simplified block diagram of the closed-loop system in the 

continuos-time domain 

A similar closed-loop diagram can be derived in the 

discrete-time domain, as shown in Fig. 3. Compared to Fig. 

2, the system delays are exactly modelled by one sample 

delay due to the implemented regular sample symmetrical 

PWM strategy [11] and the latch interface from the digital 

compensators to the physical plant. 
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Fig. 3. Simplified block diagram of the closed-loop system in the discrete-
time domain 

III. CURRENT REGULATOR DESIGN 

The design of the controllers is based on serial tuning 
which means that initially the innermost loop must be tuned, 
i.e. the current loop in this case. To provide a general 
perception of the effects of voltage decoupling, the analysis 
is firstly made in the continuous-time domain. Moreover, the 
system parameters in Table I are used for analysis. 

TABLE I.  SYSTEM PARAMTERS 

Parameter Value 

Switching 

frequency 
𝑓𝑠 = 10 𝑘𝐻𝑧 

Filter 

inductance 
𝐿𝑓 = 1.8 𝑚𝐻 

Filter capacitor 𝐶𝑓 = 27 µ𝐹 

Inductor ESR 𝑅𝑓 = 0.1 Ω 

Linear load  𝑅𝑙 = 68 Ω 

Non linear load 

𝐶𝑁𝐿 = 235 µ𝐹 

𝑅𝑁𝐿 = 155 Ω 

𝐿𝑁𝐿 = 0.084 𝑚𝐻 
  

A. Continuous-time domain modelling 

The proportional gain 𝑘𝑝𝐼 was selected to achieve the 

desired bandwidth (𝑓𝑏𝑤). By neglecting the delays of the 
system, the regulator gain can be calculated by 

 𝑘𝑝𝐼 = 2𝜋𝑓𝑏𝑤𝐿𝑓 . 

For the overall delay of the system 𝑇𝑑 = 1.5𝑇𝑠 = 150 𝜇𝑠, 
a bandwidth of 1 𝑘𝐻𝑧, this gain is approximately 𝑘𝑝𝐼 =
11.32. With reference to the root locus in Fig. 4, it can be 
noticed that as the gain is increased, i.e. the bandwidth is 
widen, higher damping is achieved. This is in contrast with 
the results where computation and PWM delays are not 
neglected. 
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Fig. 4. Root locus for the inner current loop with P regulator and without 

voltage decoupling: x – open loop poles; ■ closed-loop poles for 𝒌𝒑𝑰 =

𝟏𝟏. 𝟑𝟐; o – zeros 

When computation and PWM delays are considered, the 
regulator gain for the same bandwidth is 𝑘𝑝𝐼 = 5.61. 
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Fig. 5. Root locus for the inner current loop with P regulator and without 

voltage decoupling: x – open loop poles; ■ closed-loop poles for 𝒌𝒑𝑰 =

𝟓. 𝟔𝟏; o – zeros 



From the root locus in Fig. 5, it can be seen that if the 
states are not decoupled the system has low damping and 
high overshoot. This is true whatever gain is selected. 
However, as expected, increasing the gain effectively 
reduces the system damping. 

If voltage decoupling is performed (see Fig. 6), the order 
of the system is lowered by one degree and higher damping 
is achieved with less overshoot for the same bandwidth. 
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Fig. 6. Root locus for the inner current loop with P regulator and voltage 

decoupling: x – open loop poles; ■ closed-loop poles for 𝒌𝒑𝑰 = 𝟔. 𝟒𝟐; o – 

zeros 

B. Discrete-time domain modelling 

With reference to Fig. 3, the input voltage is the latched 
manipulated input to the physical system. A simple P 
controller and a RL load modelled in the discrete-time 
domain are considered [8], as shown in the block diagram of 
Fig. 7. This model can be used for analysis since decoupling 
ideally the controlled states determines no dependence on the 
load. 
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Fig. 7. Simplified block diagram of the current loop closed-loop system in 
the discrete-time domain 

The closed-loop TF of the inner current loop system in 

Fig. 7 is 
𝐼(𝑧)

𝐼∗(𝑧)
=

𝑘𝑝𝐼𝑏

𝑧2 − 𝑎𝑧 + 𝑘𝑝𝐼𝑏
. 

Where 𝑏 = (1 − 𝑒
−

𝑇𝑠
𝜏𝑝)/𝑅; 𝑎 = 𝑒

−
𝑇𝑠
𝜏𝑝. 

The root locus is shown in Fig. 8. 
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Fig. 8. Root locus of RL load including the lag introduced by PWM 

update 

Because of the delay, there is a limitation in the gain to 
achieve a system with enough damping. Since there are two 
poles and just one variable ( 𝑘𝑝𝐼 ) that can change their 

locations, it is not possible to place the roots at any desired 
location. The designed gain to achieve a damping of 
𝜉 = 0.662 is 𝑘𝑝𝐼 = 6.42, as reported in Table II. 

To widen the system bandwidth and still achieve a 
reasonable damped closed-loop system, a lead compensator 
as shown in Fig. 9 is designed, also referred to as ‘Delay 
prediction and Feedback’ [12]. 

Iab (z)+

-

*

Lead Compensator

Iab (z)
kpI

1

1 + kL z
-1

 z-1

1 – e        z
-1-Ts /tp

1

R

-Ts /tp(1 – e       ) z
-1

 

Fig. 9. Model of RL load including the lag introduced by PWM update, 

with the model of the lead compensator 𝐺𝐿 = 1/(1 + 𝑘𝐿𝑧−1) 

The closed-loop TF becomes 
𝐼(𝑧)

𝐼∗(𝑧)
=

𝑘𝑝𝐼𝑏

(𝑧 + 𝑘𝐿)(𝑧 − 𝑎) + 𝑘𝑝𝐼𝑏
. 

The poles of this TF must satisfy the relationship 

𝑧2 − (𝑝1 + 𝑝2)𝑧 + 𝑝1𝑝2 = 𝑧2 + (𝑘𝐿 − 𝑎)𝑧 − 𝑘𝐿𝑎 + 𝑘𝑝𝐼𝑏. 

Where 𝑝1, 𝑝2 are the desired pole locations, defined as 

𝑝1,2 = 𝑒−𝜉𝜔𝑛𝑇𝑠[cos(𝜔𝑑𝑇𝑠) ± 𝑗𝑠𝑖𝑛(𝜔𝑑𝑇𝑠)] 

 𝜔𝑑 = 𝜔𝑛√1 − 𝜉2. 

Solving the system leads to 

𝑘𝐿 = 𝑎 − (𝑝1 + 𝑝2) 

𝑘𝑝𝐼 = (𝑝1𝑝2 + 𝑘𝐿𝑎)/𝑏. 

Given 𝜔𝑛 = 2𝜋3000 𝑟𝑎𝑑/𝑠  and 𝜉 = 0.707 , the poles 

are located at 𝑝1,2 = 0.0632 ± 𝑗0.254.  The controller and 

lead compensator gains are also presented in Table II. The 
corresponding root locus with the lead compensator 𝑘𝐿 =
0.868 is shown in Fig. 10. The poles location is more on the 
left compared to Fig. 8, which means the system is faster. 
Therefore, the proposed technique provides a wider 
bandwidth for almost the same damping factor. 
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Fig. 10. Root locus of RL load including the lag introduced by PWM 

update, with the lead compensator: 𝑘𝐿 = 0.868 

 

 



TABLE II.  CURRENT REGULATOR PARAMETERS 

Parameter Value 

Proportional gain w/o lead  𝑘𝑝𝐼 = 6.42 

Proportional and lead gains 

@𝜔𝑛 = 4000𝜋 rad/s 
{
𝑘𝑝𝐼 = 16.82

𝑘𝐿 = 0.868
 

IV. VOLTAGE REGULATOR DESIGN 

The voltage regulator is based on PR controllers with a 

lead compensator structure. The proportional gain 𝑘𝑝𝑉 

determines the bandwidth of the voltage regulator, and is 

designed for a bandwidth around 300 Hz. It is possible to 

achieve such a wide bandwidth because the inner current 

loop bandwidth can be increased by means of the lead 

compensator structure. The design criteria is based on [9], 

such that the trajectories of the open loop system on the 

Nyquist diagram, with the PR regulators at fundamental, 5
th
 

and 7
th

 harmonics, guarantee a sensitivity peak 𝜂 higher than 

a threshold value, e.g. 𝜂 = 0.4  in this work. The voltage 

regulator parameters are shown in Table III. 

TABLE III.  VOLTAGE REGULATOR PARAMETERS 

Parameter Value 

Proportional gain 𝑘𝑝𝑉 = 0.06  

 @50Hz 𝑘𝑖𝑉,1 = 40 𝜑1 = 3.3° 
Integral gains 
and lead angles 

@250Hz 𝑘𝑖𝑉,5 = 15 𝜑5 = 37° 

@350Hz 𝑘𝑖𝑉,7 = 15 𝜑7 = 44° 

 

The Nyquist diagram with the harmonic compensators at 

5
th
 and 7

th
 harmonics is shown in Fig. 11. The sensitivity 

peak is higher than 0.4, thus fulfilling the design 

requirements. 
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Fig. 11. Nyquist diagram of the system in Fig. 3 

A discrete anti-wind up scheme must be implemented to 

avoid the saturation of the integral term in the voltage 

regulator. No anti-wind up scheme is needed for the current 

loop since a P controller is used as regulator. The anti-wind 

up scheme is shown in Fig. 12 [13]. 
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Fig. 12. Anti-wind up scheme based on [13] 
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Fig. 13. Anti-wind up implementation in the discrete-time domain during 

normal operation 

According to [13], the controller 𝐶(𝑠)  should be: i) 

biproper, i.e. zero relative degree between the TF numerator 

and denominator; and ii) minimum phase. If this is the case, 

the controller can be split into a direct feedthrough term (𝐶∞) 

and a strictly proper transfer function 𝐶̅(𝑠): 

𝐶(𝑠) = 𝐶∞ + 𝐶̅(𝑠) 

For the particular case of an ideal PR controller: 

𝐶∞ = 𝑘𝑝𝑉;        𝐶̅(𝑠) = 𝑘𝑖𝑉

𝑠

𝑠2 + 𝜔𝑜
2
 

𝐶(𝑠) = 𝑘𝑝𝑉 + 𝑘𝑖𝑉

𝑠

𝑠2 + 𝜔𝑜
2
 

In normal operation (𝑢𝑚𝑖𝑛 < �̂�(𝑡) < 𝑢𝑚𝑎𝑥), the closed-loop 

TF (within the dotted line in Fig. 12) is equal to 𝐶(𝑠) . 

During saturation the input to the controller states is 

bounded. 

As the anti-wind up scheme is implemented in the 

discrete-time domain, some interesting issues arise. In 

general, the discrete-time implementation of the feedback 

path in normal operation (without the saturation block) takes 

the form in Fig. 13. If 𝑏0 ≠ 0, an algebraic loop arises. This 

is directly related to the discretization method used for 𝐶̅(𝑠). 

A possibility to avoid the algebraic loop can be to use as 

discretization methods Zero-Order Hold (ZOH), Forward 

Euler (FE) or Zero-Pole Matching (ZPM), which assure 

𝑏0 = 0. However, the performance of the voltage controller 

is degraded if FE is used as discretization method [14] (zero 

steady-state error is not achieved). This can be seen in Fig. 

14, where the frequency response of the controller 

discretized with these methods is shown. The gain at 

resonant frequency is no more infinite if FE is used as 

discretization method. 
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Fig. 14. Frequency response of the resonant controller using ZOH, ZPM 
and FE 

V. EXPERIMENTAL RESULTS 

The power system of Fig. 1 was tested to check the 

theoretical analysis presented. For this purpose, a low scale 

test-bed has been built using a Danfoss 2.2 kW converter, 

driven by a dSpace DS1006 platform. The LC filter 



parameters and operational information are presented in 

Table I. In all the tests voltage decoupling is performed as 

shown in Fig. 3. 

In order to compare the proportional gain with/without 

lead compensator schemes in terms of dynamic response, a 

step change of the inductor current is performed. For the 

system with the proportional gain only (see Fig. 7), the step 

response is degraded as 𝑘𝑝𝐼 is increased [see Fig. 15(a)]. This 

result also shows that due to additional losses the setup has 

more damping than expected. In Fig. 15(b) the step response 

is even less damped and more oscillatory for 𝑘𝑝𝐼 = 11.56. 

Nevertheless, it is clear that there is a limitation in bandwidth 

due to the system delay. 
If the control structure with a lead compensator is used 

(see Fig. 9), the bandwidth can be increased in comparison to 
the case with just the proportional controller for the same 𝑘𝑝𝐼 

value, without degrading the dynamic performance. The step 
response for 𝜔𝑛 = 6000𝜋 𝑟𝑎𝑑/𝑠 , i.e. 𝑘𝑝𝐼 = 16.82 , is less 

oscillatory, as shown in Fig. 16(a). 
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Fig. 15. Step response – P controller: (a) 𝑘𝑝𝐼 = 6.42, reference (5 A/div), 

real (5 A/div) and inductor current error (2 A/div) (α-axis); (b) 𝑘𝑝𝐼 =

16.82, reference (5 A/div), real (5 A/div) and inductor current error (2 
A/div) (α-axis) 
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Fig. 16. Step response – P controller with lead compensator: 𝑘𝑝𝐼 = 16.82, 

𝑘𝐿 = 0.868, reference (5 A/div), real (5 A/div) and inductor current error 
(2 A/div) (α-axis). 

All the following results (Fig. 17 and Fig. 18) regarding 
the voltage loop are obtained with voltage decoupling, P 
controller as current regulator, lead compensator and the 
anti-wind up scheme proposed in the previous section. 

In Fig. 17(a) a 100% linear step load change is shown. 
The results obtained are compared to the envelope of the 

voltage deviation 𝑣𝑑𝑒𝑣  as reported in the IEC 62040 standard 
for UPS systems [see Fig. 17(b)]. It can be seen that the 
system reaches steady-state in less than half a cycle after the 
load step change. The dynamic response is within the limits 
imposed by the standard. 
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Fig. 17. Linear step load changing (0 – 100%): (a) reference (200 V/div), 

real (200 V/div) and capacitor voltage error (50 V/div) (α-axis); (b) 
Dynamic characteristics according to IEC 62040 standard for linear loads: 

overvoltage (𝑣𝑑𝑒𝑣 > 0) and undervoltage (𝑣𝑑𝑒𝑣 < 0) 

A diode bridge rectifier with an LC output filter 

supplying a resistive load is used as non-linear load. Its 

parameters are presented in Table I. A 100% non-linear step 

load change is performed with the harmonic compensator 

(HC) at fundamental only [see Fig. 18(a)]. Subsequently, the 

test is performed with the HC tuned at 5
th

 and 7
th

 harmonics 

[see Fig. 18(b)]. The results are in accordance with the 

standard IEC 62040 even for linear loads. 
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Fig. 18. Step response of the reference voltage: (a) without anti-windup 

scheme, reference (200 V/div), real (200 V/div) and capacitor voltage error 

(50 V/div) (α-axis); (b) with anti-wind up scheme, reference (200 V/div), 
real (200 V/div) and capacitor voltage error (50 V/div) (α-axis) 



VI. CONCLUSIONS 

An active control action based on state feedback 

decoupling has demonstrated to achieve better dynamics of 

power converters for stand-alone applications. The analysis 

proposed investigates other design and implementation 

features related to the islanding application. Firstly, in order 

to enhance the current regulator dynamics, a lead 

compensator structure is added in the forward loop. Its 

feasibility to widen the system bandwidth while still achieve 

high damping has been demonstrated. This improvement in 

the inner current control allows to widen the bandwidth of 

the voltage loop. As the bandwidth of the voltage loop is 

increased, an anti-wind up scheme becomes even more 

important. The proposed design in the discrete-time domain 

avoids algebraic loops, which could arise depending on the 

discretization method. 
Experimental tests based on step response and step load 

change have been performed to verify the compliance with 
the standard IEC 62040 for UPS systems. 
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