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Abstract—This paper describes a theoretical and simulation 
study on a control strategy for the parallel operation of three-
phase current source inverters (CSI), to be applied to 
uninterruptible power systems (UPS). A circulating current 
suppression strategy for parallel CSIs is proposed in this paper 
based on an auxiliary current control loop used to modify the 
reference currents by compensating the error currents between 
parallel inverters. The proposed method is coordinated together 
with droop and virtual impedance control. In this paper, droop 
control is used to generate the reference voltage of each inverter, 
and the virtual impedance is used to fix the output impedance of 
the inverters. In addition, a secondary control is used in order to 
recover the voltage deviation caused by the virtual impedance. 
and the auxiliary current control loop is added to acquire a 
better average current sharing performance among parallel 
CSIs, which can effectively suppress the circulating current. 
Simulation results are presented in order to verify the 
effectiveness of the proposed control methodology. 

Keywords—parallel; current source inverter; circulating 
current; uninterruptible power system 

I.  INTRODUCTION 

The current-source inverter (CSI) offers advantages over 
voltage source inverter (VSI) in terms of inherent boosting and 
short-circuit protection capabilities, direct output current 
controllability, and ac-side simpler filter structure [1], [2]. 
These features make it attractive in many UPS applications [3], 
such as high speed elevators, high-power electric drives and 
distributed generation systems as an interface between the 
utility grid and distributed power sources [4]. 

The topology of CSI is shown in Fig.1. It consists six 
IGBTs and six diodes to avoid current flowing from AC side to 
DC side. But with the rapid developments of the reverse-
blocking IGBTs, the CSI may become a potentially 
predominant choice due to reduced conduction losses [5]. 

As the rating of switching devices is often limited or 
constrained by technical or economic considerations, parallel 

architecture is often adopted to increase the power rating [6], 
[7]. In a parallel system, one of the main problems is the 
circulating current [7]. 

A traditional current-sharing solution is the frequency and 
voltage droop method with the feature of wireless control 
among UPS units [8], [9]. But the droop-method performance 
is particularly sensitive to the output impedance of the parallel 
inverters [9]. Virtual impedance is proposed in [10] to modify 
the output impedance, contributing to good power-sharing 
accuracy. However, in a practical paralleled inverters system, 
the parameters of the inverters, line impedance, and so forth, 
are unknown. Therefore, it is difficult to design proper virtual 
impedance for inverter which prepares to connect into system 
[11]. And if poorly designed or implemented, the virtual 
impedance method may introduce current distortions and 
therefore adversely affect the system stability and dynamics 
[12]. 

There are many reviews on the control strategies in 
inverter-based applications. The role of the controller in 
parallel inverters is to have good current sharing while 
maintain the system stability. Also the controller must achieve 
synchronization, and to guarantee that the frequency and the 
voltage are within the allowed limits, the control strategies can 
be classified into centralized, master-slave and decentralized 
and distributed control strategies. 

The main disadvantage of the centralized strategy is the 
single point of failure and the need for sending the reference 
voltage to all the inverters in the network, which requires high 
bandwidth communication link. Additionally, the system is 
sensitive to nonlinear loads. 

The master slave control strategy is classified as a quasi-
decentralized control which can be a compromise between the 
centralized and the decentralized control strategy. 

In the distributed control strategy, the average unit current 
can be determined by measuring the total load current and then 
divide this current by the number of units in the system [13]. 

www.microgrids.et.aau.dk



There are excellent features of the current/power sharing, the 
load sharing is forced during transient and the circulating 
currents are reduced. 

One of the most widely used decentralized control is the 
Droop control. The main idea is to regulate the voltage and the 
frequency by regulating the reactive and the active power 
respectively which can be sensed locally. The Droop control 
method has many desirable features such as expandability, 
modularity, redundancy, and flexibility. There are as well some 
drawbacks such as, slow transient response and possibility of 
circulating current. And the performance of droop-method is 
sensitive to the output impedance of the inverters. 

In order to solve the problems of above mentioned control 
strategies, this paper presents a control method based on a third 
current control loop with droop and virtual impedance control. 
This method can be seen as a combination of droop control and 
distributed control. In the control strategy, the droop control is 
used to generate the reference voltage of each inverter, and the 
virtual impedance is used to regulate the output impedance of 
the inverters combined with a secondary control to recover the 
voltage drop, and a third output current control loop is added to 
analysis the current difference between parallel inverters, this 
concept is based on the distributed control strategy. And it is 
like another secondary control to compensate the output current 
of each inverter with the error current, finally to reach the 
purpose of average current-sharing between parallel inverters. 
More details will be introduced in section III. 

This paper is organized as follows: In Section II, the 
circulating current analysis for paralleled current source 
inverters is discussed. Then a control method based on a third 
current control loop with droop and virtual impedance control 
is presented in Section III.  In Section IV, simulation results are 
implemented which verify the effectiveness of the presented 
method. The conclusions are given in Section V. 
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Fig. 1.  Topology of the current source inverter.

II. THE PROPOSED CONTROL STRATEGY

A. The anayisis of circulating current 

This paper takes a system of two parallel-connected CSIs 
for an example to analyze the circulating current. The 
circulating current will flow from one inverter to another 
through the common AC bus. Figure 2 shows the probably 
circulating current path when IGBTs S12 and S21 are turned on. 
The circulating current will flow through the blue line, then 
across the solid red line or dotted red line based on the IGBTs 
which are in ON state. The parallel three-phase inverters 
considering the output impedances can be simplified as Fig.3 
because of the similar principle of three-phase and single-phase 
inverters. In Fig.3, Z1 and Z2 are the output impedances of the 

two parallel inverters respectively, ZL is the load impedance, E1 
and E2 are the outputs voltage of the two inverters, I1 and I2 are 
the output currents, Eo is the load voltage and Io is the load 
current. According to literature [14], the circulating current Icir 
can be defined as (1). Assuming that the output impedances of 
the parallel inverters are equal to each other, Z1=Z2=Z, then 
based on Fig.3, the circulating current can be calculated as (2). 
In a practical system, Z1 and Z2 will be different because of the 
different parameters of filters and line impedances or stray 
parameters. So virtual impedance can be used to modify the 
output impedance of the parallel inverters.  

( ) / 2cir 1 2I = I - I  (1) 

( - )2cir 1 2I E E Z=  (2) 
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Fig. 2.  The circulating current path in two parallel CSIs. 
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Fig.3.  Equivalent circuit of two parallel CSIs.

B. The proposed control strategy 

Figure 4 shows the block diagram of the control 
architecture for one of the parallel three-phase CSIs, the other 
one CSI will use the same control principle. In the control 
architecture, droop control is used to generate the reference 
voltage, the virtual impedance is used to modify the output 
impedance of the inverters, and in order to increase the stability 
of the droop control, at the meantime, a secondary control is 
added to recover the output voltage. Rv1 and Lv1 are the virtual 
resistor and virtual inductor respectively. The proposed 
auxiliary current control loop is marked with purple line. The 
basic concept is to appropriately revise the reference current 
from voltage control loop by sum of the error currents of d-axis 
and q-axis currents between the two parallel inverters which 
are named Idoffx and Iqoffx, x=1,2. With this compensation, new 
reference currents will be generated. 
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Fig. 4.  The control architecture of parallel CSIs. 

Take the generation of Idoff1 and Iqoff1 for example. Id1, Iq1, Id2 
and Iq2 are the d-axis and q-axis currents from the Clark and 
Park transformation of the output currents Iabc1, Iabc2 of CSI1 
and CSI2. Idr1, Iqr1, Idr2 and Iqr2 are the reference currents from 
the outer voltage control loop. Idr1*, Iqr1*, Idr2* and Iqr2* are the 
new reference currents after compensation with the error 
current between the real output currents of CSI1 and CSI2. With 
(3) and (4), the d-axis error current Idoff1 and q-axis error 
current Iqoff1 between CSI1 and CSI2 are obtained. Note that this 
calculation is in the controller of CSI1, so Id1 and Iq1 are in the 
position of dividend in (3) and (4). Then the error currents 
between Id1, Id2, Iq1 and Iq2 will be compared with 0 because if 
there is no circulating current between parallel inverters, the 
error currents Idoffx and Iqoffx (x=1,2) will be 0, and the other one 
purpose is to define the direction of the compensation. The 
gain “1/2” is from the circulating current calculation formula 
(1). And Goffxs (x=1,2) is the controller in the auxiliary current 
control loop. For example, if Id1>Id2, the direction of 
compensation should be decreasing Idr1 and increasing Idr2. 
Based on (3) and (5), the calculation results will be Idoff1<0, 
Idoff2>0. Institute (3) to (7), (5) to (9), compared with Idr1, Idr2, 
the new d-axis reference current Idr1* will be decreased, and 
Idr2* will be increased which indicates the right compensation 
direction. With proper controller design in the current 
compensation loop, the circulating current can be effectively 
suppressed. 

[0 ( )] / 2d1 d2 doff1I I I− − =      (3) 

[0 ( )] / 2q1 q2 qoff1I I I− − =      (4) 

[0 ( )] / 2d2 d1 doff2I I I− − =      (5) 

[0 ( )] / 2q2 q1 qoff2I I I− − =  (6) 

*
dr1 doff1 dr1I I I+ =   (7) 

*
qr1 qoff1 qr1I I I+ =      (8) 

*
dr2 doff2 dr2I I I+ =      (9) 

*
qr2 qoff2 qr2I I I+ =    (10) 

III. SIMULATION RESULTS

In order to verify the effectiveness of the proposed control 
strategy, a simulation model consists of two parallel-connected 
CSIs was built in Matlab/Simulink, using the proposed control 
strategy. Both of the linear and nonlinear loads were 
considered in the simulation. The nonlinear load was a rectifier 
connected with a resistor (5Ω) and a capacitor (235uF). The 
maximum phase current of each inverter will be 32.5A with the 
linear load. The simulation results with linear load are shown in 
Fig.5~Fig.6, and Fig.7~Fig.8 are the simulation results when 
nonlinear load is connected. Figure 5 and Fig.7 are the 
simulation waveforms with the proposed control strategy, 
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(a) 

(b)

(c) 

(d) 

Fig. 5:  Simulation results with the compensation control strategy when linear 
load is connected. 

(a) 

(b) 

(c) 

(d) 

Fig. 6:  Simulation results without the compensation control strategy when 
linear load is connected

(a) The A phase currents and the circulating current between parallel CSIs. (b) The zoomed in A phase circulating current. (c) The RMS value of the A phase 
circulating current. (d) The THD analysis of the output voltage. 
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(a) 

(b) 

(c) 

Fig. 7.  Simulation results with the compensation control strategy when 
nonlinear load is connected.

(a) 

(b) 

(c) 

Fig. 8.  Simulation results without the compensation control strategy when 
nonlinear load is connected. 

(a) The A phase currents and the circulating current among parallel CSIs. (b) The zoomed in A phase circulating current. (c) The RMS value of the A phase 
circulating current. 

Fig.6 and Fig.8 are the waveforms with the conventional 
control method.  

Compared with the conventional droop and virtual 
impedance control method, the circulating current can be 
effectively suppressed with both linear and nonlinear load 
using the proposed control strategy. When the parallel CSIs 
supplied a linear load, the RMS value of the circulating current 
is about 120 mA, the number will be about 300mA when 
sharing a nonlinear load. It is much smaller than the 
conventional strategy as shown in the simulation waveforms. 
Therefore, a better average current-sharing performance is 
obtained. 

IV. CONCLUSION

Parallel inverters are widely used in the UPS applications 
for high power demand, and the average current-sharing 
scheme is necessary. A control strategy based on an auxiliary 
current control loop with droop and virtual impedance control 
is proposed in this paper. It combined the concept of droop 
control and the distributed control strategy. Simulation has 
been done when parallel-connected inverters were sharing 
linear or nonlinear load. The results demonstrate that, the 
circulating current among the parallel CSIs can be effectively 
suppressed, and the average current-sharing is realized. 
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