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SPACES OF DISTRIBUTIONS WITH MIXED LEBESGUE

NORMS

G. CLEANTHOUS, A. G. GEORGIADIS, AND M. NIELSEN

Abstract. We consider smoothness spaces of distributions on Rn with mixed
Lebesgue norms, where different level of integrability is used for every coor-

dinate. In this note we will state our recent results in this area and we will

present some new properties of mixed-norm Besov and Triebel-Lizorkin spaces.

1. Introduction

The theory of spaces of functions and distributions forms an integral part of
functional analysis. Here we aim to present some recent and some new properties
of smoothness spaces. Besov and Triebel-Lizorkin spaces form two closely related
families of smoothness spaces with numerous applications in approximation theory
and functional analysis, see [12, 27, 30]. The construction of the above mentioned
spaces is based on a dyadic decomposition of the frequency space, and their proven
usefulness for applications relies to a large degree on the fact that universal and
stable discrete decomposition systems exist for the two families of spaces.

The significance of these spaces can be partially understood by the fact that sev-
eral spaces of functional analysis, with their own history, are recovered for specific
values of the parameters in the definitions of Besov and Triebel-Lizorkin spaces.
Some examples are Lebesgue, Hardy, Sobolev and Lipschitz spaces.

The study of Besov and Triebel-Lizorkin spaces has been expanded significantly
since the introduction of the so called ϕ-transform by Frazier and Jawerth in their
seminal papers [10–12]. As solid bases for introduction in the study of these spaces
we refer the reader to the books of Peetre [27], Triebel [30] and the booklet of
Frazier, Jawerth and Weiss [13].

The influence of [10–12] on mathematical analysis has been impressive. Any
citation database will show a huge number of citations to the above papers. More-
over these papers have guided researchers with specialities in distribution spaces,
wavelets, and approximation theory. Some related works on R

n are [4–6, 22, 24].
For decompositions on other settings such as on the ball, on the sphere and the
interval, see for example [20, 21,23,26,28].

In this paper we present some recent and some new results for Besov and Triebel-
Lizorkin spaces in a mixed-norm setting. The content of the article has been pre-
sented by the first named author during the fifteenth Panhellenic conference of
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2 G. CLEANTHOUS, A. G. GEORGIADIS, AND M. NIELSEN

mathematical analysis which took place in Heraklion between 27 and 29 of May of
2016.

Recently, there has been significant interest in the study of inhomogeneous Besov
and Triebel-Lizorkin spaces with mixed Lebesgue norms, see [15–19].

In [7] we introduced and studied homogeneous mixed-norm Besov spaces Ḃs
~pq,

for s ∈ R, ~p = (p1, . . . , pn) ∈ (0,∞)n and q ∈ (0,∞]. The homogeneous spaces
are defined over the class S ′/P of tempered distributions modulo the polynomials.

Homogeneous mixed-norm Triebel-Lizorkin spaces Ḟ s
~pq, are introduced in the recent

preprint [14].

Here we present some first properties on Ḃs
~pq spaces proven in [7] and we offer

some new results as well. Namely we will prove the connection between inhomoge-
neous and homogeneous mixed-norm Besov and Triebel-Lizorkin spaces.

Notation: Through the article, positive constants will denoted by c and they
may vary at every occurrence. The Fourier transform of a (proper) function f will

be stated by f̂(ξ) =
∫
Rn f(x)e

−ix·ξdx. The set of positive integers will be denote
by N := {1, 2, . . . }. For two quasi-normed spaces X,Y we will denoted by X →֒ Y
a continuous embedding.

2. Preliminaries

In this section we present some background needed for the development of mixed
norm Besov and Triebel-Lizorkin spaces.

2.1. Schwartz functions and distributions. Let us recall some basic facts about
Schwartz functions and distributions. We denote by S = S(Rn) the Schwartz space
of rapidly decreasing, infinitely differentiable functions on R

n. A function ϕ ∈ C∞

belongs to S, when for every k ∈ N ∪ {0} and every multi-index α ∈ (N ∪ {0})n,

(2.1) Pk,α(ϕ) := sup
x∈Rn

(1 + |x|)k|Dαϕ(x)| <∞.

The dual S ′ = S ′(Rn) of S is the space of tempered distributions.
We will further denote

S∞ := S∞(Rn) =
{
ψ ∈ S :

∫

Rn

xαψ(x)dx = 0, ∀α ∈ (N ∪ {0})n
}
.

We note that S∞ is a Fréchet space, because it is closed in S and its dual is
S ′∞ = S ′/P, where P the family of polynomials on R

n.
We will define inhomogeneous mixed-norm Besov spaces for elements of S ′ and

the homogeneous ones for tempered distributions modulo polynomials S ′/P.

2.2. Mixed norm Lebesgue spaces. In our setting, the integrability will be
measured in terms of the mixed Lebesgue norms which we present immediately.

Let ~p = (p1, . . . , pn) ∈ (0,∞)n and f : Rn → C. We say that f ∈ L~p = L~p(R
n)

if
(2.2)

‖f‖~p := ‖f‖L~p(Rn) :=



∫

R

· · ·

(∫

R

(∫

R

|f(x1, . . . , xn)|
p1dx1

) p2
p1

dx2

) p3
p2

· · · dxn




1

pn

<∞,

The quasi-norm ‖ · ‖~p, is actually a norm when min(p1, . . . , pn) ≥ 1 and turns
(L~p, ‖ · ‖~p) into a Banach space. Note that when ~p = (p, . . . , p), then L~p coincides
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SPACES OF DISTRIBUTIONS WITH MIXED LEBESGUE NORMS 3

with Lp. More properties of L~p, can be found for example in [1–3, 9, 25, 29]. For
smoothness spaces with mixed Lebesgue norms we refer the reader to [15–17, 25]
and their references.

3. Inhomogeneous mixed-norm Besov and Triebel-Lizorkin spaces

Inhomogeneous mixed-norm Besov and Triebel-Lizorkin spaces have been exten-
sively studied the last years, see for example [15,18,19] and the references therein.
Let us recall their definitions.

Let a function φ0 ∈ S(R
n) satisfying

(3.3) supp φ̂0 ⊆ {ξ ∈ R
n : |ξ| ≤ 2},

and

(3.4) |φ̂0(ξ)| ≥ c > 0 if |ξ| ≤ 23/4.

Let also φ ∈ S(Rn) satisfying

(3.5) supp φ̂ ⊆ {ξ ∈ R
n : 1/2 ≤ |ξ| ≤ 2},

and

(3.6) |φ̂(ξ)| ≥ c > 0 if 2−3/4 ≤ |ξ| ≤ 23/4.

We set φν(x) := 2νnφ(2νx), ∀ν ∈ N.

Definition 3.1. Let s ∈ R, ~p = (p1, . . . , pn) ∈ (0,∞)n, q ∈ (0,∞] and φ0, φ as
above.

(i) The inhomogeneous mixed-norm Besov space Bs
~pq, is the collection of all

f ∈ S ′ such that

(3.7) ‖f‖Bs
~pq

:=
( ∞∑

ν=0

(2νs‖φν ∗ f‖~p)
q
)1/q

<∞,

with the ℓq-norm replaced by the supν if q =∞.
(ii) The inhomogeneous mixed-norm Triebel-Lizorkin space F s

~pq, is the collection

of all f ∈ S ′ such that

(3.8) ‖f‖F s
~pq

:=
∣∣∣
∣∣∣
( ∞∑

ν=0

(2νs|φν ∗ f(·)|)
q
)1/q∣∣∣

∣∣∣
~p
<∞,

with the ℓq-norm replaced by the supν if q =∞.

4. Homogeneous mixed-norm Besov spaces

In this section we present the extension of the classical homogeneous Besov spaces
(see Triebel [30], Peetre [27] and Frazier-Jawerth [10]), which we developed in [7]
using mixed-norms.

We will say that a test function ϕ ∈ S is admissible when it satisfies (3.5) and
(3.6). Furthermore, we set ϕν(x) := 2νnϕ(2νx), ∀ν ∈ Z. We present the following:

Definition 4.1. [7] For s ∈ R, ~p = (p1, . . . , pn) ∈ (0,∞)n, q ∈ (0,∞] and ϕ

admissible, we define the homogeneous mixed-norm Besov space Ḃs
~pq, as the set of

all f ∈ S ′/P such that

(4.9) ‖f‖Ḃs
~pq

:=
(∑

ν∈Z

(2νs‖ϕν ∗ f‖~p)
q
)1/q

<∞,
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4 G. CLEANTHOUS, A. G. GEORGIADIS, AND M. NIELSEN

with the ℓq-norm replaced by the supν if q =∞.

Remark 4.2. Several remarks regarding the homogeneous mixed-norm Besov spaces
defined above and some results proven in [7] are in order.

(α) By (3.6) we have that ‖f‖Ḃs
~pq

= 0⇔ f ∈ P, which is why we work over the

quotient S ′/P.

(β) When ~p = (p, . . . , p), then Ḃs
~pq, coincides with Ḃ

s
pq, the standard homogeneous

Besov space.
(γ) Homogeneous mixed-norm Besov space Ḃs

~pq is quasi-Banach for all s ∈

R, ~p = (p1, . . . , pn) ∈ (0,∞)n and q ∈ (0,∞]. The triangle inequality does not

hold in general in Ḃs
~pq. Instead we have the sub-additivity

‖f + g‖r
Ḃs

~pq

≤ ‖f‖r
Ḃs

~pq

+ ‖g‖r
Ḃs

~pq

, where r := min(1, p1, . . . , pn, q).

Furthermore Ḃs
~pq is a Banach space when ~p ∈ [1,∞)n, q ∈ [1,∞].

(δ) The quasi-norm in the definition of Ḃs
~pq depends on the choice of the admissi-

ble function ϕ, but for different admissible functions, we get equivalent quasi-norms.
Therefore Ḃs

~pq space is independent of the admissible function ϕ.

(ε) All the construction has been based on the dyadic decomposition of the fre-
quency space. We can use instead, any other number β > 1 in all the procedure of
Subsection 2.2, as well as in the Definition 4.1 of Besov spaces (replace 2νs by βνs)
and get the same spaces with equivalent norms.

(στ) Some embeddings between homogeneous mixed-norm Besov spaces, provided
in [7] are presented below:

(στ1) Let s ∈ R, ~p ∈ (0,∞)n and 0 < q < r ≤ ∞. Then we have the embedding

Ḃs
~pq →֒ Ḃs

~pr,

coming from the well known embedding between the sequence spaces; ℓq →֒ ℓr.
(στ2) Homogeneous mixed-norm Besov spaces and the classes S∞,S

′
∞ are con-

nected in the following way:

Proposition 4.3. Let s ∈ R, ~p = (p1, · · · , pn) ∈ (0,∞)n and q ∈ (0,∞]. Then

S∞ →֒ Ḃs
~pq and Ḃs

~pq →֒ S ′∞.

(στ3) Spaces of different smoothness levels are connected as below:

Proposition 4.4. Let s, t ∈ R, ~p = (p1, · · · , pn), ~r = (r1, . . . , rn) ∈ (0,∞)n and
q ∈ (0,∞] be such that

t < s, p1 ≤ r1, . . . , pn ≤ rn, and s−
1

p1
− · · · −

1

pn
= t−

1

r1
− · · · −

1

rn
,

then
Ḃs

~pq →֒ Ḃt
~rq.

Specifically we have the following relation between mixed and unmixed spaces:
Let s ∈ R, ~p = (p1, · · · , pn) ∈ (0,∞)n and q ∈ (0,∞].We set pm := min(p1, . . . , pn)

and pM := max(p1, . . . , pn), then

Ḃt
pmq →֒ Ḃs

~pq →֒ Ḃτ
pMq,

where

t = s−
( 1

p1
+ · · ·+

1

pn

)
+

n

pm
and τ = s−

( 1

p1
+ · · ·+

1

pn

)
+

n

pM
.
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4.1. Homogeneous mixed-norm Triebel-Lizorkin spaces. The development
of homogeneous mixed-norm Triebel-Lizorkin spaces has been obtained in [14]. Let
us present here only the definition of these spaces.

Definition 4.5. [14] For s ∈ R, ~p = (p1, . . . , pn) ∈ (0,∞)n, q ∈ (0,∞] and ϕ

admissible, we define the homogeneous mixed-norm Triebel-Lizorkin space Ḟ s
~pq, as

the set of all f ∈ S ′/P such that

(4.10) ‖f‖Ḟ s
~pq

:=
∣∣∣
∣∣∣
(∑

ν∈Z

(2νs|ϕν ∗ f(·)|)
q
)1/q∣∣∣

∣∣∣
~p
<∞,

with the ℓq-norm replaced by the supν if q =∞.

Note that the remarks we presented for the case of homogeneous mixed-norm
Besov spaces, apply for Ḟ s

~pq spaces too.

5. Comparison of inhomogeneous and homogeneous spaces

In this section we give some new results, inspired by the unmixed case presented
in [13]. We give the relation connecting the inhomogeneous and homogeneous
mixed-norm Besov and Triebel-Lizorkin spaces, but let us first justify the title
“homogeneous” which we use for some of our spaces.

Let f ∈ S ′. We set fµ(x) := 2µnf(2µx) for every µ ∈ Z and x ∈ R
n. We will

show that

(5.11) ‖fµ‖Ḃs
~pq

= 2µN‖f‖Ḃs
~pq
, ∀s ∈ R, ~p = (p1, . . . , pn) ∈ (0,∞)n, q ∈ (0,∞],

where N is an exponent depending only on the parameters s, ~p, q.
Indeed, let ν, µ ∈ Z and x ∈ R

n. By changing variables we obtain that

(5.12) ϕν ∗ fµ(x) = 2µn
(
ϕν−µ ∗ f

)
(2µx).

Now the mixed Lebesgue norm of
(
ϕν−µ∗f

)
(2µx), by changing the variables 2µxj =:

yj , for every direction j = 1, . . . , n, equals to

(5.13) ‖(ϕν−µ ∗ f)(2
µ·)‖~p = 2−µ

(
1

p1
+···+ 1

pn

)
‖ϕν−µ ∗ f‖~p.

From (5.12) and (5.13), it follows that

‖fµ‖Ḃs
~pq

=
(∑

ν∈Z

(2νs‖ϕν ∗ fµ‖~p)
q
)1/q

=
(∑

ν∈Z

(
2νs2µn2−µ

(
1

p1
+···+ 1

pn

)
‖ϕν−µ ∗ f‖~p

)q)1/q

= 2µ
(
s+n−

(
1

p1
+···+ 1

pn

))(∑

ν∈Z

(
2(ν−µ)s‖ϕν−µ ∗ f‖~p

)q)1/q

= 2µ
(
s+n−

(
1

p1
+···+ 1

pn

))
‖f‖Ḃs

~pq
.

So (5.11) holds true for N := s+ n−
(

1
p1

+ · · ·+ 1
pn

)
. Note that (5.11) remains

true for the homogeneous mixed-norm Triebel-Lizorkin spaces as well (with the
same N) and does not hold for the inhomogeneous spaces.

The exponent N is called the homogeneous dimension of Ḃs
~pq (or Ḟ s

~pq) space.
Note that for the unmixed case the homogeneous dimension we derived turns to
N = s+ n

(
1− 1

p

)
as in [13].
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6 G. CLEANTHOUS, A. G. GEORGIADIS, AND M. NIELSEN

Now let us present the relation connecting the inhomogeneous and homogeneous
spaces with mixed-norms, inspired by the classical, unmixed, situation, see [13].

Theorem 5.1. Let s > 0, ~p = (p1, . . . , pn) with min(p1, . . . , pn) ≥ 1 and 0 < q ≤
∞. Then

(i) Bs
~pq = L~p ∩ Ḃ

s
~pq and (ii) F s

~pq = L~p ∩ Ḟ
s
~pq.

Proof. (i) Let f ∈ Bs
~pq. Let also φ0, φ ∈ S satisfying (3.3)-(3.6) be such that

∑

ν≥0

φ̂ν(ξ) = 1, for every ξ ∈ R
n.

Then

f =
∑

ν≥0

φν ∗ f (convergence in S ′).

Using the fact that min(p1, . . . , pn) ≥ 1 and hence ‖ · ‖~p turns to a norm, it follows
that

‖f‖L~p
=

∥∥∥
∑

ν≥0

φν ∗ f
∥∥∥
~p
≤
∑

ν≥0

‖φν ∗ f‖~p

≤
∑

ν≥0

2−νs sup
µ≥0

2µs‖φµ ∗ f‖~p

= cs sup
µ≥0

2µs‖φµ ∗ f‖~p ≤ c‖f‖Bs
~pq
,(5.14)

where for the last equality, we used the assumption s > 0.
Let now ϕ ∈ S satisfying (3.5) and (3.6). By Penedek-Panzone [3, Theorem 1.b,

p. 319] and by the fact that min(p1, . . . , pn) ≥ 1, we have the following behaviour
for the mixed-norms of convolution operators:

(5.15) ‖ϕν ∗ f‖~p ≤ ‖ϕν‖1‖f‖~p = c‖f‖~p, for every ν ∈ Z,

since we can easily observe that ‖ϕν‖1 = ‖ϕ‖1, for every ν ∈ Z and hence we get
immediately

‖f‖Ḃs
~pq

=
(∑

ν∈Z

(2νs‖ϕν ∗ f‖~p)
q
)1/q

≤ c
(∑

ν≤0

(2νs‖ϕν ∗ f‖~p)
q
)1/q

+ c
(∑

ν>0

(2νs‖ϕν ∗ f‖~p)
q
)1/q

≤
(∑

ν≤0

2νsq
)1/q

‖f‖~p + c‖f‖Bs
~pq

≤ c(‖f‖~p + ‖f‖Bs
~pq
),(5.16)

where we used again the fact that s > 0. Combining (5.14) and (5.16) we have the
embedding

Bs
~pq →֒ L~p ∩ Ḃ

s
~pq.
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For the other direction, note that (5.15) holds true for the functions φν , ν ≥ 0
as well. Then,

‖f‖Bs
~pq

=
(∑

ν≥0

(2νs‖φν ∗ f‖~p)
q
)1/q

≤ c‖φ0 ∗ f‖~p + c
(∑

ν>0

(2νs‖φν ∗ f‖~p)
q
)1/q

≤ c(‖f‖~p + ‖f‖Ḃs
~pq
),

which guarantees the embedding

L~p ∩ Ḃ
s
~pq →֒ Bs

~pq.

(ii) We will follow [13]. Let f ∈ S ′ and φ0, φ ∈ S satisfying (3.3)-(3.6) be such

that {φ̂ν}ν≥0 to be a partition of unity. Then

(5.17) f =
∑

ν≥0

φν ∗ f (convergence in S ′).

We turn to estimate ∑

ν≥1

|φν ∗ f(x)|.

We distinguish the cases q ≥ 1 and q < 1.
Case α : 1 ≤ q ≤ ∞. By Hölder’s inequality, denoting by q′ the conjugate index

of q, we obtain

∑

ν≥1

|φν ∗ f(x)| ≤
(∑

ν≥1

2−νsq′
)1/q′(∑

ν≥1

(
2νs|φν ∗ f(x)|

)q)1/q

≤ cs,q

(∑

ν≥1

(
2νs|φν ∗ f(x)|

)q)1/q
,

thanks to the assumption s > 0.
Case β : 0 < q < 1. Using the q-triangle inequality and the fact that s > 0, we

derive
∑

ν≥1

|φν ∗ f(x)| ≤
∑

ν≥1

2νs|φν ∗ f(x)| ≤
(∑

ν≥1

(
2νs|φν ∗ f(x)|

)q)1/q
.

Since now min(p1, . . . , pn) ≥ 1, by assumption, relation (5.17) and the bounds
above lead us to

‖f‖~p ≤ c‖φ0 ∗ f‖~p + c
∣∣∣
∣∣∣
(∑

ν≥1

(2νs|φν ∗ f(·)|)
q
)1/q∣∣∣

∣∣∣
~p

≤ c
∣∣∣
∣∣∣
(∑

ν≥0

(2νs|φν ∗ f(·)|)
q
)1/q∣∣∣

∣∣∣
~p
= c‖f‖F s

~pq
.(5.18)

Let now ϕ ∈ S satisfying (3.5) and (3.6). Then,

‖f‖Ḟ s
~pq

≤ c
∣∣∣
∣∣∣
(∑

ν≤0

(2νs|ϕν ∗ f(·)|)
q
)1/q∣∣∣

∣∣∣
~p
+ c
∣∣∣
∣∣∣
(∑

ν>0

(2νs|ϕν ∗ f(·)|)
q
)1/q∣∣∣

∣∣∣
~p

=: c
(
Σ1 +Σ2

)
.(5.19)
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8 G. CLEANTHOUS, A. G. GEORGIADIS, AND M. NIELSEN

Of course it holds that

(5.20) Σ2 ≤ ‖f‖F s
~pq

and so we restrict our interest to Σ1. We consider separately the cases when q is
smaller than 1 or not.

Case α : 0 < q ≤ 1. By Hölder’s inequality, denoting by (1/q)′ the conjugate
index of 1/q, we obtain

∑

ν≤0

(
2νs|ϕν ∗ f(·)|

)q
≤

(∑

ν≤0

2(νsq/2)(1/q)
′

)1/(1/q)′(∑

ν≤0

2νs/2|ϕν ∗ f(·)|
)q

≤ cs,q

(∑

ν≤0

2νs/2|ϕν ∗ f(·)|
)q
.

The last inequality gives us

Σ1 ≤ c
∣∣∣
∣∣∣
∑

ν≤0

2νs/2|ϕν ∗ f(·)|
∣∣∣
∣∣∣
~p
≤ c

∑

ν≤0

2νs/2‖ϕν ∗ f‖~p

≤ c
(∑

ν≤0

2νs/2
)
‖f‖~p ≤ c‖f‖~p,(5.21)

where for the second inequality we used the fact that ‖ · ‖~p is a norm under our
assumptions, for the third the inequality (5.15) and for the last the assumption
s > 0.

Case β : 1 < q ≤ ∞. By the identity |a+ b|1/q ≤ |a|1/q + |b|1/q, we derive

∑

ν≤0

(
2νs|ϕν ∗ f(·)|

)q
≤
(∑

ν≤0

2νs|ϕν ∗ f(·)|
)q
.

So with the same steps as before we get for this case too

(5.22) Σ1 ≤ c‖f‖~p.

Combining (5.18)-(5.22) we have that

‖f‖Ḟ s
~pq
≤ c‖f‖F s

~pq

which together with (5.18) offers the inclusion

F s
~pq →֒ L~p ∩ Ḟ

s
~pq.

The converse embedding comes straight from the expression (5.17) and the esti-
mation (5.15), indeed

‖f‖F s
~pq

≤ c‖φ0 ∗ f‖~p + c
∣∣∣
∣∣∣
(∑

ν>0

(2νs|φν ∗ f(·)|)
q
)1/q∣∣∣

∣∣∣
~p

≤ c‖f‖~p + c‖f‖Ḟ s
~pq

and the proof is complete.
�
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