Alternative magnesium source for phosphorous recovery – a feasibility and economic analysis

Quist-Jensen, Cejna Anna; Jørgensen, Mads Koustrup; Christensen, Morten Lykkegaard

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Alternative magnesium source for phosphorous recovery – a feasibility and economic analysis

Cejna A. Quist-Jensen*1, Mads K. Jørgensen1, Morten L. Christensen1
1Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
(*cejna@bio.aau.dk)

Minerals-water-energy nexus
Sustainability in mineral extraction might be realized by redesigning the conventional mining industry. Minerals can be recovered from waste streams by using membrane crystallization.

Concept of Membrane Crystallization
- Minor effect of concentration on process performance.
- Potential to use low-grade heat energy.
- High product quality.
- Theoretical 100% rejection of non-volatiles.

Membrane Crystallization

What has been recovered?
- Low CV
- Controlled nucleation and growth
- High purity
- Tunable polymorph

Process control
Different polymorphs can be crystallized by changing flowrate and temperature – shown here for LiCl.

Concept of phosphorous recovery
Efficient struvite (MgNH₄PO₄·6H₂O) recovery requires pH control and a higher magnesium concentration than the one found in wastewater. Instead, magnesium is often added as MgCl₂·6H₂O. However, this stresses the overall sustainability and economic feasibility. Seawater is a cheap source of magnesium, but chloride ions create problems for the downstream treatment. Consequently, seawater treatment is required before addition to wastewater.

Phosphorous Recovery

Different treatment options (shown above) and three NF membranes have been considered.

Economic analysis
Phosphorous recovery from reject water using treated seawater as magnesium source.

Treatment cost for the different flow sheets and NF membranes.

Profit for the different flow sheets and NF membranes.

Conclusion
- All the treatment options are able to recover more than 75% of phosphorous at pH 7.5 (Theoretical estimations).
- The lowest cost is found to be only NF treatment, whereas MD and MCr require additional cost for the equipment and operation and maintenance costs.
- On the other hand, FS2 produces additional fresh water and FS3 produces fresh water and NaCl.

Acknowledgement
The authors acknowledge the financial support of the Innovation Fund Denmark for the grant to the ReCoverP Project.

References
Quist-Jensen et al., Crystals (6), p. 36, 2016.
Quist-Jensen et al., Desalin. Water Treat. (57), 2015.
Quist-Jensen et al., Desalination, 2016. In press.

References
Quist-Jensen et al., Crystals (6), p. 36, 2016.
Quist-Jensen et al., Desalin. Water Treat. (57), 2015.
Quist-Jensen et al., Desalination, 2016. In press.