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High-order harmonic generation from gapped graphene:
Perturbative response and transition to nonperturbative regime
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We consider the interaction of gapped graphene in the two-band approximation using an explicit time-dependent
approach. In addition to the full high-order harmonic generation (HHG) spectrum, we also obtain the perturbative
harmonic response using the time-dependent method at photon energies covering all the significant features in
the responses. The transition from the perturbative to the fully nonperturbative regime of HHG at these photon
energies is studied in detail.

DOI: 10.1103/PhysRevB.95.035405

I. INTRODUCTION

The interaction of strong lasers with solids has been studied
since the early days of strong-field physics [1]. Recently,
due to the development of short, strong laser pulses with
controlled waveforms [2], it has become relevant to consider
the response of such materials to strong laser pulses with
respect to the transferred charge [3,4] and the generated
harmonic radiation [5,6]. As the pulses used in these studies
are strong and short, they come almost exclusively from (near)
infrared sources.

A material of special interest is graphene. The properties of
graphene, such as its stability and the huge mobility of carriers,
promise a plethora of nanoscale electronic applications [7].
Concerning harmonic radiation by strong laser fields, in the
past HHG in graphene was considered by directly applying
the strong-field approximation [1,8] for graphene described
on the level of molecular orbitals [9,10]. HHG in graphene
was also considered performing time-domain calculations that
took into account the inter- and intraband dynamics for THz
pulses and in the Dirac approximation [11,12], and calcula-
tions investigating multiphoton resonant excitation [13–15].
Another very active area of research is the investigation of
the third harmonic generation in graphene; for recent results,
see, e.g., Refs. [16,17]. Graphene is, however, a semimetal
with a zero band gap, and that limits the possible applications
in electronic and optoelectronic devices. Fortunately a class
of materials, termed gapped graphene, based on or similar to
graphene was developed using various techniques [18–22].
Gapped graphene can be described within the two-band
tight-binding approximation [23]. This enabled extensive
theoretical studies of optical response of this system including
the linear [23,24] and beyond linear response [25], second
harmonic generation [26], third harmonic response [27,28],
and magneto-optics [29].

Of particular interest is the ability of the theory to identify
the breakdown of perturbation theory and to deal directly with
the explicit time dependence of the pulse. Here we therefore
consider high-order harmonic generation spectra for gapped
graphene from the perturbative optical response and into the
nonperturbative regime. In particular, we consider the first,
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second, and third harmonic responses using a time-dependent
approach and investigate the breakdown of perturbation theory.

The paper is organized as follows. In the next section we
present the basic structure and the equations for the two-band
model of gapped graphene. In Sec. III we present the basics
of the interaction of a two-band system with light, including
the way to calculate high-order harmonic generation (HHG)
spectra. In Sec. IV we compare the harmonic response to
the perturbative harmonic response for gapped graphene. The
transition from the perturbative harmonic response to the
nonperturbative HHG spectra is considered in Sec. V, where
we also consider the gap dependence. We conclude in the
last section. The expressions for the dipole couplings and
momentum matrix elements within and between the bands
of gapped graphene are given in the appendices.

II. STRUCTURE AND BASIC EQUATIONS

The structure of graphene, and also of gapped graphene,
which is identical in position space, is given in Fig. 1. The
elementary lattice vectors, shown in Fig. 1, are [30]

a1 = a

2

(√
3

1

)
, a2 = a

2

(√
3

−1

)
, (1)

where a = 2.46 Å is the lattice constant.
To obtain the electronic band structure, we use the pz

atomic orbitals at the atomic sites A and B (Fig. 1),
|pz(r − RA)〉 and |pz(r − RB)〉. Then we form Bloch
wave functions |α〉 = 1√

N

∑
R eik·(RA+R)|pz[r − (RA + R)]〉

and |β〉 = 1√
N

∑
R eik·(RB+R)|pz[r − (RB + R)]〉, where N →

∞ is the number of unit cells, the sum runs over the Bravais
lattice vectors R, and k is the wave vector.

A band gap in graphene can be induced in several ways:
Graphene grown on SiC substrate [18], biasing a graphene
bilayer [19], sculpturing a graphene into nanoribons [20],
or introducing a periodic array of circular holes [21,22]. In
addition, systems like hexagonal boron nitride (BN), where
two carbon atoms in the unit cell are replaced by a BN dimer,
can be described using the same model as gapped graphene
with respect to the interaction with light [31]. Here we focus on
the class of gapped graphene where the inversion symmetry is
broken, such as graphene grown on the SiC surface and the BN.
For this type of gapped graphene, similarly to graphene [30],
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FIG. 1. The structure of graphene and gapped graphene in
position space. The elementary lattice vectors, a1 and a2, as well
as the atomic sites A and B (the two inequivalent sublattices) are
shown. The yellow dashed lines denote the connections of A with its
nearest neighbors. The x and y axes are also indicated.

using |α〉 and |β〉 and assuming nearest-neighbor coupling, the
tight-binding Hamiltonian is obtained as [23]

Ĥ0 =
⎡
⎣ �

2 −γf (k)

−γf ∗(k) −�
2

⎤
⎦, (2)

where � is the energy gap, γ =
−〈pz(r − RA)|Ĥ |pz(r − RB)〉 ≈ 3 eV is the hopping
integral, and

f (k) = exp

(
i
akx√

3

)
+ 2 exp

(
−i

akx

2
√

3

)
cos

(
aky

2

)
(3)

comes from the geometry of the location of the nearest
neighbors (see Fig. 1), i.e., from the addition of factors
of a type exp[ik · (RA − RB)]. Diagonalizing the Hamil-
tonian of Eq. (2) we recover the valence band Ev(k) =
−

√
(�

2 )
2 + γ 2|f (k)|2 and the conduction band Ec(k) =√

(�
2 )

2 + γ 2|f (k)|2.

III. INTERACTION WITH LIGHT IN THE DIPOLE
APPROXIMATION FOR A TWO-BAND SYSTEM

For a two-band system, such as the one obtained using the
tight-binding approximation, the wave function can be written
as

�(r,t) =
∑

m=c,v

∫
BZ

am(k,t)ψm,k(r)d3k, (4)

where BZ denotes that the integration is performed over the
Brillouin zone, c and v denote conduction and valence bands,
respectively, and

ψm,k(r) = umk(r) exp(ik · r) (5)

are the Bloch wave functions—eigenfunctions of the field-free
Hamiltonian Ĥ0, i.e., Ĥ0ψm,k = Em(k)ψm,k(r). The field-free
Hamiltonian Ĥ0, which can describe any two-band system,
refers here to the Hamiltonian written in matrix form in Eq. (2).

When interacting with light, in the length gauge, Ĥ (t) =
Ĥ0 + eF(t) · r, where F(t) is the electric field of the laser and
e is the norm of the electron charge. The am’s from Eq. (4)

satisfy the following equations of motion [32]

ȧm =
(
− i

�
Em(k) + e

�
F(t) · ∇k

)
am − i

e

�
F(t) ·

∑
n

ξmn(k)an,

(6)

where

ξmn(k) = i

∫
u∗

mk(r)∇kunk(r)d3r, (7)

n,m ∈ (c,v), and where the dependence of am and an on k and
t is omitted to ease notation. The explicit expressions for the
ξ ’s of Eq. (7) are given in the Appendix.

The amplitude equations (6) do not readily allow inclusion
of decoherence and temperature effects. For this purpose, we
reformulate the equations of motion using the density matrix
to arrive at

i�
dρ

dt
= [Ĥ0 + eF · r,ρ], (8)

where

[Ĥ0,ρ]nm = (En − Em)ρnm (9)

and, following [32],

[r(i),ρ]nm = i∇kρnm + ρnm(ξnn − ξmm). (10)

By inserting Eqs. (9) and (10) in Eq. (8) and adding a
term containing the decoherence times, τ1 for ρcv and τ2 for
n = ρvv − ρcc, to introduce a decay, we obtain the following
coupled equations of motion:

dρcv(k,t)

dt
= −iωcv(k)ρcv(k,t) − i

e

�
F(t) · ξ cv(k)n(k,t)

+ e

�
F(t) · ∇kρcv(k,t) − i

e

�
F(t) · (ξ cc(k)

− ξ vv(k))ρcv(k,t) − ρcv(k,t)

τ1
(11)

and

dn(k,t)

dt
= 2i

e

�
F(t) · (ξ cv(k)ρ∗

cv(k,t) − ξ ∗
cv(k)ρcv(k,t))

+ e

�
F(t) · ∇kn(k,t) − n(k,t) − [fv(k) − fc(k)]

τ2
,

(12)

where ωcv = Ec−Ev

�
, and

fc/v(k,T ) =
{

1 + exp

[
Ec/v(k)

kBT

]}−1

(13)

is the Fermi-Dirac distribution for the conduction and valence
band, respectively. In the above equation, kB is Boltzmann’s
constant and T is the temperature.

The equations of motion, (11) and (12), are solved with
the initial conditions ρcv(k, − ∞) = 0 and n(k, − ∞) =
fv(k,T ) − fc(k,T ). The numerical approach for solving the
above equations is based on Ref. [11]: We use a k grid
and approximate the gradients with balanced difference. The
time propagation is performed using an adaptive Runge-Kutta
algorithm. As in Ref. [11], we use T = 10 K throughout.
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A. Calculating the current and the HHG spectrum

The current density, to be referred to simply as the current
throughout, is given by J(t) = −2 e

me
Tr{p̂ρ}, where the factor

of 2 stands for the spin multiplicity. The current is explicitly
calculated as

J(t) = − e

2π2me

[∫
dk[pvc(k)ρcv(k,t) + pcv(k)ρvc(k,t)]

+
∫

dk
1

2
[pvv(k) − pcc(k)]n(k,t)

]
. (14)

The first integral in the above equation represents the interband
current, while the second integral the intraband current. The
momentum matrix elements appearing in the expression for
the current are obtained as follows. The diagonal momen-
tum matrix elements are obtained as pnn = me

�

∂En

∂k , while
the off-diagonal matrix elements can be obtained as either
pnm = me

�
〈nk| ∂Ĥ

∂k |mk〉 [33,34] or pnm = imeωnmξnm [32]. The
explicit expressions for the momentum matrix elements are
given in the Appendix.

The harmonic spectrum is obtained as |j()|2, where
j() = F{J(t)} is the Fourier transform of the current. In
practice we consider the component of the current along one
direction, in our case the x component of the current (Fig. 1),
and present the discrete Fourier transform of the current

j () =
Np−1∑
k=0

Jk exp(itk), (15)

where Np is the number of points for current samples (Jk) and
time samples (tk). We use a laser pulse, defined by the electric
field vector

F(t) = F0 exp

[
−

(
t − MTp/2

MTp/6

)2
]

sin

(
2π

Tp

t

)

for t ∈ [0,MTp], (16)

where F0 = |F0| is the peak electric field strength, Tp = 2π/ω

is the period of the field, with ω the driving frequency, and
M is the number of the field cycles. The exponential factor
in Eq. (16) describes the envelope and the sinusoidal factor
the carrier of the pulse. We express the peak field strength in
atomic units (a.u.): 1 a.u. of field strength is 5.142 × 1011 V/m.
The Fourier transform of the field scaled by its duration
(MTp), in the limit of infinitely large pulse (M → ∞) and
for each ω is proportional to a δ function in Fourier space.
This scaling is exploited for the current—the expression (15)
does not depend on the pulse duration explicitly and therefore
in the limit of infinitely long pulses (15) is proportional to the
Fourier transform of the current caused by an infinite periodic
pulse. Finally, in this way, the discrete Fourier transform of
the current (15) has the same dimension as the current.

IV. PERTURBATIVE HARMONIC RESPONSE

We consider the harmonic responses of gapped graphene,
traditionally investigated using frequency-domain meth-
ods [35], using explicitly time-dependent methods. We do this
to test our numerical solution and to investigate the breakdown
of perturbation theory.

For illustrative calculations, capturing generic effects in
gapped graphene, we consider a gap of 1 eV. To ensure that
well-defined harmonic peaks appear we perform calculations
using pulses described by Eq. (16) with M = 48 cycles.
Next, to stabilize the numerical calculations and ensure
rapid convergence we choose a relatively small value of the
decoherence time τ1 = τ2 = 5 fs. We orient the field along the
x axis (see Fig. 1) so that both odd and even harmonics appear.
To extract the first and the second harmonic responses from
the numerical calculations, we first obtain the full harmonic
spectrum for a fixed driving frequency ω and then select only
the value at the first and second harmonics, and repeat the
procedure, changing ω in small steps to ensure that all the
features in the harmonic responses are captured.

The perturbative result in the time domain is obtained by
expanding ρcv in orders of field strength as (ρ(0)

cv = 0 trivially)

ρcv(k,t) =
∞∑

j=1

F
j

0 ρ(j )
cv (k,t). (17)

Inserting the condition of (19) into Eq. (11) we obtain the
following coupled system of equations:

dρ(1)
cv

dt
= −iωcvρ

(1)
cv − i

e

�
�fvc(k)f(t) · ξ cv − ρ(1)

cv

τ1
,

dρ
(j )
cv

dt
= −iωcvρ

(j )
cv − ρ

(j )
cv

τ1
− i

e

�
f(t) · (ξ cc − ξ vv)ρ(j−1)

cv

+ e

�
(f(t) · ∇k)ρ(j−1)

cv for j � 2, (18)

where f(t) = F(t)/F0 is the normalized field. The first two
coupled equations (for j = 1 and j = 2), that are independent
of the peak field strength, are solved putting τ1 = τ2 = 5 fs to
obtain the perturbative responses for the first and the second
harmonics in Figs. 2–4.

We briefly review the features in the perturbative first and
second harmonic responses. The absolute value of the linear
response (first harmonic) [Fig. 2(a)] has peaks for photon
energies corresponding to the gap � = 1 eV and to the van
Hove singularity [36] (M point is the point where ∇kEc/v(k) =
0) at a photon energy of 2

√
(�/2)2 + γ 2|f (k)|2 = 6.2 eV.

The second harmonic response [Fig. 2(b)], in addition to
the peaks at the gap and the van Hove singularity, should
exhibit peaks at half of these photon energies corresponding to
two-photon transitions. It is evident from Fig. 2 that the peaks
corresponding to the van Hove singularity and to the half of
this frequency are very weak.

Next, we compare our perturbative solution obtained in
the time domain for M = 48 cycles (black curves in Fig. 2),
with the corresponding solution for an infinite periodic
field, obtained using frequency-domain methods, as done in
Ref. [26], using τ1 = τ2 = 5 fs (red curves in Fig. 2). To
compare directly, the latter result is scaled (but not fitted)
using appropriate factors to the time-domain solution. This
factor involves Np/2 coming from the Fourier transform
[Eq. (15)] and a factor coming from the consideration of the
limit of the type limε→0 exp(−ω2/ε2)/(ε

√
π ) = δ(ω) for the

Fourier transform of the envelope of the pulse [Eq. (16)] (for
the linear response) and the square of the Fourier transform
(for the second harmonic). As evident from Fig. 2, the
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]
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0
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|j(
Ω

=2
ω

)|/
F 02  [A

m
/V

2 ]

perturbation
spectral

(b)

(a)

1st harmonic

2nd harmonic

FIG. 2. The absolute value of the (a) first harmonic (linear
response) and (b) second harmonic, for 1-eV gapped graphene and
τ1 = τ2 = 5 fs, obtained using the time-dependent calculation for
M = 48 cycles (black curves) and the frequency-dependent method
for infinitely periodic pulses.

agreement between the two types of solution is very good.
There are differences between the two methods at the peaks
for the second harmonic, whereas for photon energies away
from the peaks the agreement between the two methods is
excellent.

The value of the time-domain perturbative solution is that it
incorporates the finite pulse duration, so that a full numerical
solution for a finite number of cycles can be compared to it to
gauge the departure from the perturbative regime. In particular,
we compare the numerical solution with the solution in the
perturbative limit, that we also obtain numerically, for the first,
second, and third harmonics, and at photon energies covering
all significant features of the responses.

In the first set of results that we present, we perform
numerical calculation neglecting the time dependency of n;
i.e., we use Eqs. (11) and (12) keeping the time dependence of
n constant, equal to the initial value of n, i.e.,

n(k,t) = n(k, − ∞) = fv(k) − fc(k) = �fvc(k). (19)

Then, Eq. (11) is solved with the above condition to obtain the
numerical result; this is essentially the solution in the Keldysh
approximation [1]. Such an approximation is used for semi-
classical analysis of high-order harmonic generation [6,37]
in order to simplify the theoretical analysis. The harmonic
spectrum for the first and the second harmonic responses

0

0.02

0.04

0.06

|j(
Ω

=ω
)|/

F 0 [A
/V

]

perturbation
num pert
0.001
0.0015
0.002

0 1 2 3 4 5 6
h_ ω [eV]

0

5×10-13

1×10-12

|j(
Ω

=2
ω

)|/
F 02  [A

m
/V

2 ]

perturbation
num pert
0.0001
0.0005
0.001
0.002

(b)

(a)

1st harmonic

2nd harmonic

FIG. 3. The absolute value of the (a) first harmonic (linear
response) and (b) second harmonic, for 1-eV gapped graphene and
τ1 = τ2 = 5 fs, obtained using the condition (19) and compared to
the perturbative result. The numbers in the legends in panels (a)
and (b) denote the peak field strength (in a.u.) of the pulses used in
the calculation. The curve labeled “num pert” denotes the numerical
result that compares best with the perturbation theory at peak fields
(a) 10−4 a.u., and (b) 10−5 a.u.; see the text.

is divided by F0 and F 2
0 , respectively. The results of these

calculations are given in Figs. 3(a) and 3(b), respectively.
The second set of numerical results, given in Fig. 4, is

obtained when the equations of motions (11) and (12) are
solved without application of the condition (19). In this way
both the effects of depletion of the band occupation n and its
coupling with the coherences ρcv are described. We refer to
this approach as the full calculation in the following.

We note that the perturbative first and the second har-
monic responses [Eqs. (18)], derived from the equations of
motion (11) and (12) with or without the approximation for
constant n [Eq. (19)] are identical. Namely, the intracurrent
from the second order in n is zero because an odd function of k
is integrated, since pcc(k) = −pcc(−k), pvv(k) = −pvv(−k),
|ξcv(k)|2 = |ξcv(−k)|2, and �fvc(k) = �fvc(−k). Therefore
the perturbative curve is used in both Figs. 3 and 4.

In Figs. 3 and 4 we compare the numerically obtained
responses with the perturbative responses. To this end, we
perform numerical calculations varying the peak field strength
until a certain harmonic response as a function of frequency
becomes frozen for two consecutive field strengths. This frozen
curve for both first and second harmonic responses in Fig. 3
is denoted as “num pert.” For the first harmonic this curve is
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FIG. 4. The absolute value of the (a) first harmonic (linear
response) and (b) second harmonic, for 1-eV gapped graphene and
τ1 = τ2 = 5 fs, obtained with full calculation and compared to the
perturbative result. The numbers in the legends in panels (a) and
(b) denote the peak field strength (in a.u.) of the pulses used in the
calculation.

obtained at a field strength of 10−4 a.u., whereas for the second
harmonic that curve is obtained for a field strength one order
of magnitude smaller (10−5 a.u.). As evident from Fig. 3, the
agreement of the numerically extracted harmonic responses
with the perturbative responses is remarkable. Equally, in the
case when we do not invoke the approximation for n = const.
(Fig. 4), we also obtain agreement with the perturbative result.
We stress that the results from the full calculation are not fitted
to the perturbative results, as done in Ref. [28].

V. TRANSITION TO THE NONPERTURBATIVE REGIME

Gradually with the increase of the field strength, nonper-
turbative features appear in the numerical responses, starting
at lower frequencies. This is visible in both cases: calculations
using condition (19) (Fig. 3) and for the full calculation
(Fig. 4). In general, the peak field strengths at which there
is deviation from the perturbative results are smaller for
the second harmonic response than for the first harmonic
response. Next, for the first harmonic response, when using
the full calculation the deviation from the perturbative results
(calculated at equal peak field strengths) is larger compared
to the case when the condition of Eq. (19) is used; compare
Figs. 3(a) and 4(a). In case of the second harmonic response
this difference is not that large; however, it is non-negligible

[Figs. 3(b) and 4(b)]. This is striking since in all our numerical
calculations, during the time evolution, the depletion of n is at
most 1% at the largest peak field strength used. This exposes
the inadequacy of the approximation of Eq. (19) even at very
small field strengths; in the discussion below we therefore use
results obtained using the full calculation. Finally, while for
the first harmonic the yield essentially decreases, preserving
the shape as the peak field strength increases, for the second
harmonic response the modification is not only a decrease
in magnitude but also the shape of the response is changed
in such a way that the peaks at low energy (0.5 and 1 eV)
merge into one rounded peak [Fig. 4(b)]. We note that in the
linear regime the ratio of the peak of the field generated by the
nth harmonic to the incident peak field F0 is approximately
equal to the ratio |j ( = nω)|/|j ( = ω)|. For example for
the second harmonic, in the worst case when F0 = 0.002 a.u.
is used, this ratio is of the order of 10−2.

The departure from the pertubative regime can be illustrated
for the third harmonic as well. In contrast to the first and
second harmonics, the perturbative limit for the third harmonic
contains contribution not only from the inter part of the
current but also from the intra part of the current. Therefore
the equations (18) are inadequate to describe the pertubative
third harmonic generation and should be completed by adding
equations for the coefficients n(j ), j � 3, of the perturbative
expansion of n, i.e.,

n(k,t) =
∞∑

j=1

F
j

0 n(j )(k,t), (20)

Then we insert the above expansion and the perturbative
expansion of ρ in Eq. (17) in the equations of motion (11)
and (12). This procedure results in adding the following
equations for n(2) and n(3) (n(0) = �fvc(k) and n(1) = 0)

dn(2)

dt
= 2i

e

�
f(t) · (

ξ cvρ
(1)
cv

∗ − ξ ∗
cvρ

(1)
cv

) − n(2)

τ2
,

dn(3)

dt
= 2i

e

�
f(t) · (

ξ cvρ
(2)
cv

∗ − ξ ∗
cvρ

(2)
cv

) − n(3)

τ2

+ e

�
f(t) · (∇kn

(2)), (21)

to the system of equations (18) and modifying the equation for
ρ(3)

cv as

dρ(3)
cv

dt
= −iωcvρ

(3)
cv − ρ(3)

cv

τ1
− i

e

�
f(t) · (ξ cc − ξ vv)ρ(2)

cv

+ e

�
[f(t) · ∇k]ρ(2)

cv − i
e

�
f(t) · ξ cvn

(2). (22)

Using these equations, the perturbative third harmonic is
obtained. In Fig. 5, this perturbative result (with τ1 = τ2 =
5 fs) is compared to the full numerical calculation at different
peak field strengths for photon energies up to 1 eV, as for higher
photon energies the response falls off rapidly to zero. The
perturbative curve has peaks at photon energies corresponding
to one third and one half of the gap. As the field increases, the
height of the harmonic decreases and the peaks merge into one
broad peak. The discrepancy between the full calculation and
the perturbative result starts here at lower peak field strengths
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FIG. 5. The absolute value of the third harmonic for 1-eV gapped
graphene, τ1 = τ2 = 5 fs, obtained at different peak field strengths
and compared to the perturbative result. The numbers in the legend
denote the peak field strength (in a.u.) of the M = 48 cycle pulses
used in the calculation.

(at least as small as 10−6 a.u.) as compared to both the first
and the second harmonic responses.

Figure 6 shows what happens to the harmonic spectra after
the field strength becomes large enough and/or the incident
photon energy becomes small enough so that perturbation
theory breaks down. We note that the harmonic spectra
depicted in Fig. 6 are divided by the square of the peak field
strength so that the first harmonic is at comparable height for
different field strengths. In Fig. 6(a) the situation for a photon
energy of 1.5 eV is depicted. At the perturbative field strength
of 10−4 a.u. the height of the higher harmonics rapidly falls
off. This is also true for the next larger peak field strength
in Fig. 6(a). However, for the highest peak field strength,
the fall-off is not so rapid and pairs of adjacent harmonics
(second and third, fourth and fifth) tend to almost level up
in height. At a lower photon energy of 1 eV [Fig. 6(b)] and
at the largest peak field strength the beginning of a plateau,
known to be typical for atoms and molecules [8,38], is visible.
For the lowest photon energy depicted [0.5 eV in Fig. 6(c)],
the harmonic spectrum forms a pronounced plateau for the two
largest peak field strengths. The number of harmonics forming
the plateau is roughly proportional to the peak field strength.
This is in qualitative agreement with a semiclassical analysis
for the harmonic cutoff [37], where it was predicted that it is
proportional to F0/ω. After the departure from the perturbative
regime, due to the increase of this factor, the harmonic peaks
start forming a plateau, which is a signature of nonperturbative
dynamics.

The transition to the nonperturbative regime is also il-
lustrated in Fig. 7, where harmonic spectra are given as
two-dimensional plots of the harmonic order and the photon
energy of the driving field in the interval from 0.1 to 2 eV, and
for different field strengths. We present this figure to illustrate
the growth of the harmonics at different photon energies as
the peak field strength increases. A single horizontal line in
Fig. 7 contains a harmonic spectrum of the type presented in
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FIG. 6. Harmonic spectra (divided by peak field strength squared)
for different peak fields (given in the legend in atomic units) at (a)
�ω = 1.5 eV, (b) �ω = 1 eV, and (c) �ω = 0.5 eV photon energy.
The yield is proportional to |j ()|2/F 2

0 .

Fig. 6. To qualitatively estimate the progression of harmonics
as the peak field strength increases, the two-dimensional space
(harmonic order, photon energy) is divided by three curves,
corresponding to the borders of how many harmonics fit in
(in order from left to right in Fig. 7) the 1-eV gap, the gap
corresponding to the van Hove singularity (6.2 eV), and the
maximum gap (18.03 eV) in our two-band model.

The spectra for the smallest field strength [Fig. 7(a)]
contain well-pronounced harmonics which drop off in the
(harmonic order, photon energy) region bounded by the curves
corresponding to the gap and van Hove singularity; see the
caption of Fig. 7. The harmonic peaks for the next larger peak
strength [Fig. 7(b)] drop off around the van Hove singularity
curve. Lastly, the harmonics at the largest peak field strength
considered [Fig. 7(c)] drop off in the region bounded by the
curves corresponding to the van Hove singularity and the
maximum gap. The curve corresponding to the maximum
gap is in fact the limit for harmonic generation in the
present two-band model—no well-formed harmonic at any
field strengths is situated to the right of this curve. We note
that at the energy range occupied by the harmonics of higher
orders the contribution from other bands may not be ignored.
Here, however, we only consider the nonperturbative limit
within the two-band model.

Finally, we consider the gap dependence. For simplicity, we
focus at photon energies corresponding to the gap (�ω = �),
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 0  2  4  6  8  10  12  14
Ω/ω

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

En
er

gy
 [e

V
]

-60

-50

-40

-30

-20

-10

 0

FIG. 7. Harmonic spectra (divided by peak field strength squared)
at different photon energies of the driving field on color logarithmic
scale in arbitrary units: (a) spectra for a peak field strength of 2 ×
10−5 a.u. (close to the perturbation regime), (b) spectra for a peak field
strength of 2 × 10−4 a.u., and (c) spectra for a peak field strength of
2 × 10−3 a.u. (deeply in the nonperturbative regime). The lines in the
color plots denote the borders defining how many harmonics fit (in
order from left to right on the figure) at the 1-eV gap (K point), at the
6.2-eV gap at van Hove singularity (M point) and at the maximum
gap of 18.03 eV (� point).

where the major part of the first-order response is located
and where the deviation from the perturbative result is more
pronounced. We aim to compare different gaps for field
strengths that result in comparable values of the response. A
possible scaling for the field strength emerges by considering

that the leading order of the dependence of the dipole matrix
element ξ cv is �−1. Assuming that this term is dominant in
the differential equations of motion [Eqs. (11) and (12)], when
changing the gap �, a field c�F0, where c is a constant,
will give roughly, but not exactly, the same response. To
limit the total duration of the numerical time propagation,
we consider pulses with M = 12 which are long enough to be
free from few-cycle effects. Similarly to Ref. [16], we use an
asymmetric decoherence times, with τ1 = 10 fs and τ2 = 1 ps.
The results of the calculations are shown in Fig. 8. The scaled
first harmonics in the figure are of the same order of magnitude,
which justifies the scaling of the field strength. Moreover, as the
gap decreases the perturbative result (obtained using Eqs. (18)]
becomes more flat, reflecting the fact that the term ξ cv becomes
more dominant in the equations of motion. From the other
curves, the rough scaling of the peak field strength at which
the perturbation theory breaks down can be deduced. Namely,
the curve corresponding to the peak field strength that gives
almost perturbative result at 1-eV gap (the curve labeled with
F0 = 10−4� in Fig. 8) becomes a bit more nonperturbative as
the gap decreases. Hence, for the first harmonic, it is safe to
assume that if there is a deviation between the perturbative
result and the full calculation at 1 eV, this deviation will
be even larger for the gaps at an equivalent scaled peak
electric field. For a larger field strength (the curve labeled
with F0 = 5 × 10−4� in Fig. 8), the result is already deep in
the nonperturbative regime for a gap of 1 eV, and at smaller
gaps it enters even deeper in the nonperturbative regime.

In closing, we consider the gap dependence of the second
harmonic in Fig. 9. This is interesting since in the limit of zero
gap the second-order harmonic vanishes. To investigate this
limit it is easier to use the frequency-domain method than the
time-dependent one since as the gap decreases larger grids in k
space should be taken and the pulses should be propagated for
longer times, which becomes prohibitively time-consuming.
Therefore in Fig. 9, where we plot the second harmonic at a
driving photon frequency equal to the gap and to the half of
the gap, respectively, we used the frequency-domain method of
Ref. [26]. We applied the same scaling factors as for the results
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FIG. 8. First harmonic at the photon energy equal to the gap
(�ω = �). The peak field strengths (scaled to the gap) are given in
a.u. in the legend. To obtain the actual field strength in a.u. used for
a given gap, � in the legend should be given in eV.
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FIG. 9. Second harmonic at the photon energy equal to the gap
(�ω = �) and at photon energy equal to the half of the gap (�ω =
�/2), obtained using the frequency-domain method of Ref. [26],
τ1 = τ2 = 5 fs, and 6000 × 6000 grid in k space.

from the frequency-domain method presented in Fig. 2(b). As
the gap decreases, the height of the second harmonic first
increases, reaching a peak at approximately at 0.2 eV for the
case of �ω = � and approximately at 0.3 eV for the case of
�ω = �/2, and then falls towards zero. This is so since as the
gap starts decreasing, (i) the energies in the denominators of
the expression for the second-order conductivity [Eq. (27) in
Ref. [26]] become small, but also (ii) the numerators of the
same expression become smaller as the centrosymmetric limit
is approached. Eventually, the numerator wins and the second
harmonic current goes to zero. The same was observed for the
second harmonic in carbon nanotubes [39] as the radius of the
tube increases and the tube approaches the planar graphene
limit.

VI. CONCLUSIONS AND OUTLOOK

We have explored the limit of perturbative harmonic
response, which is usually considered for infinitely periodic
pulses, in the time domain, and demonstrated excellent
agreement between the numerical calculation and perturbation
theory for low laser intensity over the interval of photon ener-
gies that includes all features in the spectrum. The numerical
method for perturbative harmonic responses is especially well
suited to obtain not only the first few harmonics, but also
high-order harmonics for realistic, finite-duration pulses.

Comparing with the full nonperturbative calculations, we
conclude that the harmonic response starts to deviate from
the perturbative harmonic response at relatively low field
strengths. The calculation performed for constant difference in
the occupation of the valence and the conduction band fails to
reproduce the correct point of departure from the perturbative
result even for the first harmonic, which exposes its weakness.

Finally, we have illustrated the transition from the perturba-
tive to the nonperturbative regime in the harmonic spectra. For
each harmonic, the breakdown of perturbation theory occurs
at different field strength, which is smaller for the second
harmonic than for the first harmonic. For the third harmonic

the perturbation theory breaks down at even smaller field
strengths. Increasing the field strength further, the harmonics
start forming the typical HHG plateau, well studied in the
strong-field physics for atoms and molecules. In contrast to
atoms and molecules, the plateau cutoff is here limited by
the maximum gap since the analysis was performed in a
two-band approximation. At the end, we have considered the
gap dependence for the linear response using simple scaling
and illustrated the transition to the nonperturbative regime.

As strong-field physics with its intense near-infrared laser
pulses of femtosecond duration is extended from atoms and
molecules to condensed matter systems [5], and with the
advent of high-harmonic spectroscopy for solids [40], the
development of theory that is explicitly time dependent and
capable of dealing with the laser-matter interaction in a
nonperturbative manner is essential. Here we provided a
candidate for such a theory which, in this work, was validated
by comparison with the results of perturbation theory. The
formulation can be extended to multiple bands, combination of
pulses, other materials, and to include the Coulomb interaction.
It is probably in these contexts that the coherence properties
of the laser light and the ability to perform pump-probe
experiments and simulations will show its full potential for
gaining time-resolved insight in ultrafast dynamics in solids.
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APPENDIX: DIPOLE AND MOMENTUM MATRIX
ELEMENTS

1. Dipole matrix elements (ξ nm)

The eigenvectors of the Hamiltonian Ĥ0 of Eq. (2) are

|n〉 = 1√
2

( √
(En + �/2)/En

±e−iφ(k)√(En − �/2)/En

)
, (A1)

where |n〉 denotes either the states in the conduction (|c〉) or
the valence band (|v〉), En denotes either Ec or Ev , ± is + for
the conduction and − for the valence band, respectively, and

φ(k) = Arg[f (k)], (A2)

with f (k) given in Eq. (3).
The dipole matrix elements ξ cv and ξ cc − ξ vv , used in the

main text, are obtained by direct calculation, i.e., by calculating
〈n|i∇k|m〉, n,m = c,v. They are explicitly given by

Re{ξ cv} = aγ

2Ec|f (k)|
{

1√
3

[cos(akx

√
3/2) cos(aky/2)

− cos(aky)]ex + sin(akx

√
3/2) sin(aky/2)ey

}
,

(A3)

Im{ξ cv} = a�γ

4E2
c |f (k)| {

√
3 sin(akx

√
3/2) cos(aky/2)ex

+ [cos(akx

√
3/2) sin(aky/2) + sin(aky)]ey},

(A4)
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and

ξ cc − ξ vv = − a�

2
√

3Ec|f (k)|2 {[cos(akx

√
3/2) cos(aky/2) − cos(aky)]ex + sin(akx

√
3/2) sin(aky/2)ey}.

(A5)

2. Momentum matrix elements (pnm)

The diagonal momentum matrix elements are obtained as pnn = me

�

∂En

∂k , yielding

pcc = −me

�

aγ 2

Ec

{
√

3 sin(akx

√
3/2) cos(aky/2)ex + [cos(akx

√
3/2) sin(aky/2) + sin(aky)]ey},

pvv = −pcc. (A6)

The off-diagonal matrix element pcv is simply obtained using

pcv = i
me

�
(Ec − Ev)ξ cv. (A7)
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