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ABSTRACT 9 

Alkaline wetlands and fens are groundwater dependent, terrestrial ecosystems (GWDTEs) existing 10 

throughout the temperate zone. They contain a large number of protected and endangered plant 11 

species and their ecological status is threatened by insufficient groundwater quality and quantity. 12 

However, management and conservation of fens are constrained by limited knowledge on the 13 

relations between vegetation and measurable hydrological conditions. This study investigates the 14 

relations between vegetation and water level dynamics in groundwater dependent wetlands in 15 

Denmark. 16 

A total of 35 wetland sites across Denmark were included in the study. The sites represent a 17 

continuum of wetlands with respect to vegetation and hydrological conditions. Water level was 18 

measured continuously using pressure transducers at each site. Metrics expressing different 19 

hydrological characteristics, such as mean water level and low and high water level periods, were 20 

calculated based on the water level time series. A complete plant species list was recorded in plots 21 

covering 78.5 m
2
 at each site. Community metrics such as total number of species and the number 22 

of bryophytes were generated from the species lists and Ellenberg Indicator scores of moisture, pH 23 

and nutrients were calculated for each site.  24 

The water level correlates with the number of typical fen species of vascular plants, whereas 25 

bryophytes are closer connected to the stable water level conditions provided by groundwater 26 

seepage. The water level variability is proved to be a significant limiting factor for species diversity 27 

in wetlands, which should be considered along with the fertility in order to access the habitat 28 

quality. The study provides new insight in the water level preferences for GWDTEs which is highly 29 

needed in the management and assessment of anthropogenic damage to these ecosystems. 30 

 31 

 32 
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1 Introduction 36 

Groundwater dependent, terrestrial ecosystems (GWDTEs) include a range of wetland types 37 

including fens, alkaline springs, dune slacks, wet meadows and in some situations also bogs and 38 

transition mires, which are of conservation concern in the temperate zone worldwide due to a high 39 

species diversity and presence of many endangered species (Van Diggelen et al. 2006, Wassen et al 40 

2005). In heavily populated regions human uses of the groundwater resource is considered as a 41 

major threat to these sensitive plant communities (Van Diggelen et al. 2006). In Europe, the Water 42 

Framework Directive (WFD) prescribes that GWDTEs are identified, mapped and taken into 43 

consideration in the assessment of the availability and quality of groundwater. In practice, however, 44 

addressing the policies regarding conservation and GWDTEs remains problematic due to the lack of 45 

operational criteria for assessment of wetland status and thresholds above which damage is 46 

expected (Whiteman et al. 2010). Therefore, quantitative relations are needed between the 47 

hydrology and the ecological status of GWDTEs.  48 

 49 

Plant communities of GWDTEs are especially vulnerable to hydrological changes; however, their 50 

dependency on groundwater seepage is only partially understood. A constant alkaline groundwater 51 

supply keeps sediments and pore water highly buffered and prevents acidification (Boomer and 52 

Bedford 2008b) and reduces the availability of phosphorus (Wassen et al. 2015). Furthermore, the 53 

groundwater inflow sustains a water level close to the land surface most of the year and 54 

waterlogged conditions prevent aeration of organic matter and, hence, limit acidification and 55 

nutrient mineralization (Almendinger and Leete 1998, Verhoeven et al. 1996). The limited nutrient 56 

and oxygen availability in the root zone prevents more competitive species from invading the 57 

habitat thereby reducing compositional change and maintaining a high species diversity (Kotowski 58 
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et al. 2006). When the topsoil is unsaturated, periodic filling of soil pores with rainwater may occur 59 

(Schot et al. 2004) and this further increases the risk of acidification and increased nutrient 60 

mineralisation (Grootjans et al. 1988). Infiltration of nutrient rich surface water e.g. following a 61 

flooding event may also result in increased nutrient availability (Beumer et al 2007, Banach et al. 62 

2009, Cusell et al. 2015).  63 

 64 

The water table dynamics greatly influence redox conditions which again control internal binding 65 

and release of phosphorus, which is considered the limiting nutrient in wetland ecosystems 66 

(Lucassen et al. 2005). The position of the water table is only indirectly connected to these 67 

controlling chemical processes, and it does not take into account the variability in capillary rise 68 

which is often pronounced in GWDTE soils. Schaffers and Sýkora (2000) showed that there is a 69 

stronger correlation between soil water content and vegetation than between water table depth and 70 

vegetation for a wide range of plant communities from dry to wet soils. However, under very wet 71 

conditions, as in GWDTEs, it is here argued that the water level is a better and more robust measure 72 

because it is easy to measure, highly comparable and representative for the area surrounding the 73 

measurement point. 74 

 75 

Previous studies have revealed significant correlation between mean water table and the relative 76 

number of hydrophytes in dune areas, heathlands, bogs and fens in the Netherlands (Runhaar et al. 77 

1997). Wheeler (1999) emphasizes the difficulties of finding clear patterns between species 78 

composition and water table gradients across sites due to the large spatial and temporal variability 79 

of the water table dynamics. There are studies showing significant correlations between vegetation 80 

and mean water table metrics, while other studies indicate that extreme events or the frequency and 81 

duration of water level fluctuations significantly influence the vegetation composition (Wheeler 82 
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1999). However, species typical of GWDTEs are known to be highly sensitive to increased nutrient 83 

availability (e.g. Bedford et al. 1999, Bergamini and Pauli 2001) and thus, considering the trophic 84 

status along with water table measures is necessary for a reliable assessment of status of these 85 

habitats (Andersen et al. 2013). In this study, continuous water level registrations between 2004 and 86 

2010 are analysed to identify measures that correlate with the vegetation in 35 Danish GDWTEs. A 87 

high temporal resolution of water level data in the study makes it possible to derive statistical 88 

measures and test the correlation with vegetation composition. The objectives of the study can be 89 

summarised as follows: 90 

 91 

 To investigate relations between water level metrics and characteristic vegetation in alkaline 92 

GWDTEs 93 

 To establish quantitative models linking water level metrics to vegetation metrics which can 94 

be operationally useful in the management of alkaline GWDTE sites. 95 

 96 

2 Materials and methods 97 

Data from 35 GWDTEs located across the northern and eastern part of Denmark was analysed (Fig. 98 

1). Of the 35 sites, 29 are classified as alkaline fens within the NATURA 2000 network. A 99 

categorisation of the remaining six sites was conducted by vegetation based classification according 100 

to the Habitats Directive (Ejrnæs et al. 2004; Nygaard et al. 2099). Three sites were thereby 101 

categorised as alkaline fens, one as calcareous fens with Cladium mariscus and species of the 102 

caricion davallianae and two as molinia meadows on calcareous, peaty or clayey- silt-laden soils. 103 

The occurrence of alkaline GWDTEs in the western part of Denmark is very limited due to flat 104 
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terrain, sandy soils, and absence of alkaline groundwater aquifers. Therefore, the spatial occurrence 105 

of alkaline GWDTEs in Denmark is represented by the selected sites. 106 

 107 

2.1 Water level 108 

Water level data was collected using pressure transducers for continuous registration. Some systems 109 

automatically compensate for barometric pressure, while others use a reference atmosphere 110 

recording. The original water level series were sampled with varying density between 30 min and 111 

24 h, and there were a few minor gaps in the data. All data was therefore averaged to continuous 112 

time series of daily mean values. The time series were trimmed so that only whole years were used 113 

and annual measures could be calculated correctly. Most data was collected as a part of the Danish 114 

monitoring programme supplemented with four additional stations from other projects (Ejrnæs et al. 115 

2010, Johansen et al. 2011). 116 

 117 

Water level time series were analysed from each of the 35 sites in order to link water level metrics 118 

and vegetation composition. The general approach used in ecology is to relate the water table to the 119 

ground surface level. In some wetland habitats, the ground surface is, however, not easily defined 120 

due to the micro-topographic variability. In order to obtain a base level for the water level we used 121 

the stable winter water level as the base level. A stable water level near the terrain surface was 122 

typically observed from November to April (Fig. 2). We calculated this base level as the 90 % 123 

quantile of the water level time series and denoted H90. For sites where the soil surface was 124 

homogeneous and precise ground levels were obtained, the differences between H90 and the actual 125 

ground level were found to be within a few centimetres. This approach is only applicable at sites 126 

where the water table is close to or equal to the terrain surface during winter periods and without 127 

long term inundation from a nearby stream or lake. 128 
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 129 

The overall minimum water level, Hmin, was calculated as the minimum of all observed values, 130 

which reflects the water level during the driest period recorded at the site. Different ways of 131 

representing the water level variability is tested by the metrics Hmean,H20, HIQR (definitions are given 132 

in Table 1). The Drydur is the share of time where the water table is more than 50 cm below the base 133 

level (H90). Previous vegetation studies primarily deal with spring or summer water levels. 134 

Therefore, we calculated the mean water level in the periods April-June (Hmean Apr.-Jun.) and July-135 

August (Hmean Jul.-Aug.). To evaluate the effect of a rapidly changing water table, the mean water level 136 

variance over periods of three days throughout July and August (Var3) was calculated. Table 1 137 

summarises all water level metrics.  138 

 139 

2.2 Vegetation 140 

The vegetation data constitutes complete species lists recorded in one 78.5 m
2
 plot (circle with 141 

radius = 5 m) on each of the 35 sites. On 19 sites, the vegetation plots were centred on the 142 

corresponding water level well, while on the remaining sites we used similar vegetation 143 

registrations from the Danish monitoring programme from the plot closest to the well; the distance 144 

ranging from 2-60 metres.  145 

 146 

The typical species used for evaluation of conservation status were masked from a list published by 147 

Ejrnæs et al. (2009). The list contains potential typical species of alkaline wetlands, fens and 148 

springs, which are referred to in the Habitats Directive (European Commission 1992) and the 149 

corresponding CORINE biotopes (European Commission 1991). The list was further supplemented 150 

with species from Nordic habitats (Påhlsson 1994) referred to in the Interpretation manual 151 

(European Commission 2007). Species, which do not predominantly occur in alkaline fens or 152 



9 

 

springs were excluded from the list (See appendix A, Table A.1 for the total species list). We added 153 

the list of species used in this study because it makes it possible to compare with future studies. 154 

 155 

For each site, the vegetation data were used to calculate average Ellenberg Indicator values. The 156 

Ellenberg indicator system is an expert system that is partly based on measured data, but mainly on 157 

expert knowledge and experience of the optimal environmental conditions for single plant species 158 

(Ellenberg et al. 1991, Wamelink et al. 2002). Ellenberg values were averaged over all species 159 

present in a plot and were used as surrogate for measured environmental conditions (Diekmann 160 

2003). The Ellenberg indicator system has a score for nitrogen (EN) in the range of 1-9, which 161 

describes the nutrient availability and potential productivity. An EN value of 1 indicates extremely 162 

infertile sites and a score of 9 indicates extremely nutrient-rich conditions. The Ellenberg R value 163 

(ER) indicates soil reaction and ranges from 1 to 9 where 1 is extreme acidity and 9 indicates basic 164 

reaction only found on high pH soils. Ellenberg F (EF) is the moisture indicator between 1 and 12 165 

where 1 is an indicator of extremely dry sites and 12 represent permanently submerged plants. 166 

Throughout the study, we used Ellenberg indicator values calibrated to the British flora (Hill et al. 167 

1999). Danish studies have shown that the ratio between the parameters EN and ER, also referred to 168 

as the “nutrient ratio”, correlates particularly well with the number of typical species in Danish, 169 

alkaline fens and springs (Andersen et al. 2013).  170 

 171 

Table 2 shows the vegetation parameters used in the study. The number of typical species (T) is 172 

used as a measure of habitat conservation status (Andersen et al. 2013). However, a large scatter in 173 

the link between typical species and the water level was expected. Therefore, it was examined 174 

whether or not correlations would improve by excluding typical species with EF<8 in the metric 175 

Twet. Bryophytes are more directly dependent on a shallow water table than vascular plants, due to 176 
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the lack of vascular tissue for the transport of water from greater depths. The total number of 177 

bryophytes (B), the typical bryophytes (TB) and the relative number of bryophytes (Brel) were also 178 

used as metrics to characterise the bryophyte community. The highest observed number of typical 179 

bryophytes in the study was only 7, which is problematic when trying to obtain highly significant 180 

correlations. The total number of species (Stot) and the relative number of hydrophytes (Hrel), based 181 

on EF scores, provide alternative metrics based on all observed species. Finally, the mean Ellenberg 182 

indicator values EN, ER, EF and the ratios EN ER
-1

and EN EF
-1

 were included as metrics in the 183 

analyses.  184 

 185 

2.3 Relations between water level and vegetation 186 

Spearman rank correlation coefficients (Rho) were calculated between all combinations of 187 

hydrological metrics (Table 1) and the vegetation metrics (Table 2) along with the probability of the 188 

two parameters being uncorrelated (Pval).  189 

 190 

Plotting vegetation metrics against the four water level metrics (Hmin, HIQR, Hmean and Drydur), 191 

quantile regression analysis was used to test the consistency of tendencies by subdividing the x-axis 192 

into seven categories and finding the highest scoring sites within each of these subdivisions. Fitting 193 

a line through the seven highest scoring points, the intersection with the x-axis represents the point 194 

where vegetation scores are zero due to limitation by hydrological conditions, whereas the 195 

intersection with the y-axis represents the point where water level is not a limiting factor. 196 

 197 

Further, multivariate Poisson regression techniques were applied to model the species diversity as a 198 

function of water level metrics and additional explanatory variables. The purpose was to explain 199 

some of the expected residual variation in the regressions. The Poisson distribution was assumed to 200 
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be valid, since the response variable (number of species) is a small but non-negative integer value. 201 

The statistics toolbox in MATLAB was used to conduct the analysis. The Poisson regression model 202 

expresses the log outcome as a linear function of a set of predictors: 203 

 204 

kk xxx   ...)log( 22110  (1)   

 

where μ is the mean of the response variable and η is the linear combination of the coefficients βi 205 

and the independent variables xi so that 206 

 207 

  exp  (2)   

 208 

In order to analyse the residuals of the initial regression models two additional Poisson regression 209 

models linking Ellenberg indicators and hydrological metrics were established. Model 1 predicts the 210 

number of typical species, and model 2 predicts the number of bryophytes. Both models are based 211 

on the mean water level in July-August (Hmean Jul.-Aug.) and nutrient ratio (EN ER
-1

) as explanatory 212 

variables. In combination with the nutrient ratio, Hmean Jul.-Aug. is the hydrological metric provided 213 

the best prediction.  214 

 215 

This yields following expressions for the applied models based on equations (1) and (2): 216 

 217 
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 218 
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 219 

Tpred and Bpred are the predicted number of typical species and bryophytes respectively. The 220 

coefficients b and c  are determined by linear regression. 221 

 222 

3 Results 223 

3.1 Water level and vegetation dataset 224 

Within the 35 sites, registration of water level started in 2004 while the main part of the dataset only 225 

covers the period 2007 to 2009. The average length of the water level time series is 3.5 years, but 226 

only five months are overlapping (30 June 2008 to 4 Dec 2008) between all stations. The eastern 227 

and western parts of the country are equally well-represented by the data for all years.  228 

 229 

3.2 Relations between water level and vegetation metrics 230 

The correlation between the total number of typical species, T, and the hydrological measures was 231 

significant on a 5 % level for 6 of 8 water level metrics. The highest direct correlation with typical 232 

species was obtained for HIQR (Rho = -0.38*) while correlations with the short term variability 233 

(Var3) and spring mean (Hmean Apr.-Jun.) were insignificant. As expected, the number of bryophytes 234 

were closer related to the hydrology than vascular plants with highly significant (p<0.01) 235 

correlations with all water level metrics. Also for bryophytes, HIQR showed the highest correlation 236 

(Rho = -0.54**). The number of typical species and bryophytes decrease with increasing annual 237 

amplitude in water level. 238 
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 239 

The Ellenberg moisture indicator (EF) correlates significantly with all water level metrics, however, 240 

EF is by far closest related to the short term variability expressed by Var3 (Rho = -0.68***). The 241 

highest correlation between a water level metric and a vegetation metric was obtained between the 242 

inner quartile range of the water level HIQR and the relative number of bryophytes Brel (Rho = -243 

0.69***). The relative number of bryophytes was, furthermore, very closely related to the ratio 244 

between the Ellenberg nutrient and moisture indicators EN EF
-1 

(Rho = -0.79***). All spearman 245 

rank correlation coefficients and P-values between quantitative metrics (Table 1 and Table 2) are 246 

listed in appendix B, Table B.1. 247 

 248 

At high and stable water levels the observed habitat quality expressed as the number of typical 249 

species ranges from poor to high (left on all graphs, Fig. 3), while at the dry sites (right on all 250 

graphs, Fig. 3), the number of typical species is always low indicating that water level is a limiting 251 

factor. For all four vegetation metrics such limitation occurs when the minimum water level (Hmin) 252 

is around 1.5 m. A good agreement on this point was found between different vegetation metrics. 253 

Across different water level metrics the location of the intersection with the y-axis did not change 254 

much either. So despite a large scatter in the relations between vegetation and water level there 255 

seems to be a clear upper limit to all vegetation metrics which is constrained by water level 256 

conditions. 257 

 258 

A considerable scatter in the water level vegetation relations was found (Fig. 4). The nutrient ratio 259 

(EN ER
-1

) has been shown to correlate well with the number of typical species and, hence, this 260 

nutrient indicator may explain some of the residual variation in the regressions of typical species 261 

and bryophytes against hydrological metrics. Based on the models in Fig. 5, we found bryophytes to 262 
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be more dependent on a high and stable water table than the typical species collectively. The 263 

explanatory value of the mean water level was highly significant in model 1 (p<0.01) and very 264 

highly significant in model 2 (p<0.001). In both cases, the nutrient ratio explained a larger share of 265 

the variance than the water level (Table 3 and Table 4). The results of applying multivariate 266 

regression to predict the number of typical species (model 1) and bryophytes (model 2) are shown 267 

in Fig 5.  268 

4 Summary and discussion 269 

The study comprised 35 alkaline GWDTEs located throughout Denmark, thus comprising a 270 

representative sample of Danish GWDTEs with respect to hydrology and vegetation composition. 271 

We found significant relationships between the number of typical fen species and 6 out of 8 272 

hydrology metrics and highly significant relationships between water level metrics and the number 273 

of bryophyte species, while bryophyte species richness decreases with increasing annual water level 274 

amplitude. The established models confirmed that bryophytes are more dependent on a high and 275 

stable water level than vascular plants. 276 

 277 

The proposed models (3) and (4) indicate a change in the number of typical species by a factor 2 278 

and a change in the number of bryophytes by a factor 3 corresponding to the observed range of 279 

water level. This applies to sites where the presence of species and hence diversity is primarily 280 

limited by water level conditions. Comparable results have been reported elsewhere (Duval et al. 281 

2012) and Ilomets et al. (2010) conclude that the number and cover of fen species decreases sharply 282 

when the seasonal water level fluctuations exceed 25 cm within the Paraspõllu calcareous-rich fen 283 

in northern Estonia. Our proposed models can be used as tools for evaluating the conservation status 284 

and determining the limiting factor for species diversity in Danish GWDTEs. The models can also 285 
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predict the expected changes in species diversity due to changes in water level conditions. Care 286 

must be taken when interpreting the results. The underlying assumption is that water level and 287 

nutrient availability are independent parameters. For small seasonal changes in water level, the 288 

assumption can be valid, but for large water level fluctuations the nutrient availability is likely to 289 

change significantly as a consequence of internal eutrophication (Almendinger and Leete 1998, 290 

Verhoeven et al. 1996) and changing redox conditions (Boomer and Bedford 2008a, Boomer and 291 

Bedford 2008b) at least until a new equilibrium state has been established. 292 

 293 

The strongest correlation (Rho = 0.68) for the Ellenberg moisture indicator EF, was found with the 294 

short term water level variability in the summer period (Var3). The short term variability is highly 295 

dependent on soil texture, where permeable clayey soils show a higher amplitude of water level 296 

fluctuations during summer periods compared to that of highly permeable sandy soils. Ertsen et al. 297 

(1998) have shown that non-linear relationships between EF and water level apply best to clayey 298 

soils while linear relationships provide the best fit for peaty and sandy soils. However, the 299 

individual soil classes did not improve the amount of variance explained in their models. Our results 300 

indicate that the EF score is related closer to the short term water level dynamics and soil texture 301 

than to the mean annual or mean seasonal water level metrics. The number of typical species and 302 

the number of bryophytes are, on the other hand, not closely related to this short term variability, 303 

but rather to the annual or seasonal dynamics. An additional explanation to the poor correlation 304 

between typical species and EF is that species preferring wet conditions occur along the entire 305 

gradient of nutrient status. Species typical of alkaline fens and springs may share a general 306 

preference of wet conditions. However, the range in nutrient availability is limited to the low end of 307 

the nutrient gradient. These results are in agreement with the results of Andersen et al. (2013), 308 

where a similar weak correlation between typical fen species and EF was found.  309 
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 310 

Wet conditions clearly result in a larger share of bryophyte species compared to vascular plant 311 

species as indicated by the highly significant relationships between the water level measures and the 312 

relative number of bryophytes Brel. The relative number of bryophytes is closely related to 313 

Ellenberg N, and in particular the ratio between Ellenberg N and Ellenberg F. In other words, the 314 

number of bryophytes becomes prominent when the conditions are wet and nutrient poor. This is in 315 

agreement with the results of Mälson and Rydin (2007), who found that bryophytes disappeared 316 

from alkaline fen areas shortly after drainage, and several studies have shown inhibition or 317 

competitive disadvantage with increased nutrient availability (Bergamini and Pauli 2001, Kooijman 318 

2012, Andersen et al. 2016) or even toxic effects of especially ammonium on fen bryophytes 319 

(Paulissen et al. 2004, Verhoeven et al. 2011).  320 

 321 

A strong, positive correlation between EN (nutrient score) and ER (pH score) was demonstrated for 322 

the sites in this study. This acidity-alkalinity gradient from bogs to rich fens is often interpreted as a 323 

nutrient availability gradient with associated changes in species richness and productivity caused by 324 

changes in nutrient availability (Bedford et al. 1999). The fen species typically depend on low 325 

values of EN and high values of ER. Both EN and ER correlate positively with the magnitude of 326 

seasonal water table fluctuations. The positive correlation between EN and low water table can be 327 

caused by oxygen penetrating the soil, followed by an internal release of nutrients due to soil 328 

mineralisation or by an input of groundwater low on cations thereby reducing immobilisation of 329 

phosphorus (Boomer and Bedford 2008a, Niedermeier and Robinson 2009). On the other hand 330 

phosphorus is more effectively bound to iron when periodic aeration of the peat occurs (Lucassen et 331 

al. 2005, Smolders et al. 2006). There is no commonly accepted explanation to the positive 332 

correlation between ER and water table fluctuations. It is, however, well known that a number of 333 
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processes such as sulphur oxidation and nitrification decrease alkalinity when oxygen is available 334 

while sulphate reduction and denitrification increase alkalinity when no oxygen is available 335 

(McLaughlin and Webster 2010). However, as the water table fluctuations increase so does the 336 

oxygen availability which should then lead to acidification (Van Haesebroeck et al. 1997). A 337 

possible explanation to this could be that evaporative effects increase the concentration of minerals. 338 

Large seasonal fluctuations in the water table are due to the evapotranspiration being larger than the 339 

groundwater inflow during dry spring and summer periods. Excessive rainfall during fall and winter 340 

brings the water level close to the terrain surface again. This in terms leads to increased 341 

concentrations of dissolved minerals including Ca-ions and thereby increases in alkalinity. So, 342 

groundwater inflow provides the minerals that prevent acidification of fens, however, the largest 343 

alkalinity could be present for low-intermediate groundwater fluxes where evapotranspiration 344 

becomes important. Another possible explanation of the positive correlation between ER and water 345 

table fluctuations may be the strong positive correlation between ER and EN (Rho = 0.76). In that 346 

respect, the correlation possibly reflects a shift in vegetation towards more competitive species, than 347 

a shift towards a more alkaline environment.  348 

 349 

5 Conclusions 350 

The water level correlates with the number of typical fen species, whereas bryophytes are closer 351 

connected to the stable water level conditions provided by groundwater seepage. We found 352 

significant relationships between the number of typical fen species and 6 out of 8 hydrology metrics 353 

and highly significant relationships between water level metrics and the number of bryophyte 354 

species. Bryophyte species richness decreases with increasing annual amplitude in water level 355 

fluctuations. The established models confirmed that bryophytes are more dependent on a high and 356 

stable water level than vascular plants. 357 
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 358 

The strongest correlation for the Ellenberg moisture indicator EF, was found with the short term 359 

water level variability in the summer period (Var3). The relative number of bryophytes is closely 360 

related to Ellenberg N, and in particular the ratio between Ellenberg N and Ellenberg F. 361 

 362 

Our proposed models can be used as tools for evaluating the conservation status and determining 363 

the limiting factor (nutrients or hydrology) for species diversity in Danish GDWTEs. The relative 364 

number of bryophytes to total species is very closely related to water level conditions, which can be 365 

useful in situations where no or limited water level data is available. The models can also predict 366 

the expected changes in species diversity due to changes in water level conditions. The water level 367 

variability is proved to be a significant limiting factor for species diversity in GDWTEs, 368 

emphasizing the importance of considering optimal hydrology along with the fertility in order to 369 

access the habitat quality.  370 

371 
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FIGURES 485 

 486 

Fig. 1 Location of the 35 sites concentrated in northern and eastern Denmark. 487 

 488 

489 
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 490 

Fig. 2 Example of water level time series analysed. The grey line represent a site with a minor 491 

lowering of the water table in the summer period, and the black line represent a site with a more 492 

dynamic summer water table.  493 

 494 

495 
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 496 

Fig. 3. Four vegetation measures T, B, TB, Brel plotted against four water level measures Hmin, HIQR, 497 

Hmean, Drydur. Rho and Pval based on Spearman’s rank correlation is shown 498 

 499 

500 
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 501 

Fig. 4. The highest scoring point along seven subdivision of the x-axis each containing 5 502 

observation points. The dashed line represents a linear model of these maximum values with the 503 

shown R
2
 value and intersect with the water level axis equal to x(0) 504 

 505 

506 
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 507 

Fig. 5. Visualisation of Poisson regression model 1 (upper) and model 2(lower) using a Poisson 508 

distribution for the predicted variables T and B. The contour lines are values of the nutrient ratio EN 509 

ER
-1

. The original data points are shown with respect to the x-axis and y-axis. 510 

511 
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TABLES 512 

 513 

Table 1. Statistical measures calculated from water level time series and observed ranges at study 514 

sites 515 

Symbol Unit Observed range Definition 

Hmin m 0.12 – 1.23 H90- lowest observed water level 

Hmean m 0.02 - 0.35 H90- Mean observed water level 

H20 m 0.04 - 0.73 H90- Water level drawdown exceeded 20 per cent of the 

time 

HIQR m 0.02 - 0.56 H75-H25, Inner quartile range of water level 

Drydur % 0-30 % H < (H90 – 50 cm), relative duration of period with 

more than 50 cm to the water table 

Hmean Apr.-Jun. m 0.02 - 0.40 H90- mean observed water level in April to June 

Hmean Jul.-Aug. m  0.04 - 0.82 H90- mean observed water level in July to August 

Var3 m 7e-5 - 8e-3 Mean variance evaluated over periods of 3 days during 

July and August 

 516 

 517 

 518 

519 
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Table 2. Vegetation parameters: examined and observed ranges at study sites.  520 

Symbol Unit Observed range Definition 

T Number 0-15 Number of typical species 

Twet Number 0-6 Number of typical species where Ellenberg F (moist) 

score ≥8 

B Number 0-17 Number of bryophytes 

TB Number 0-6 Number of typical bryophytes 

Brel % 0-27 Relative number of bryophytes 

Stot Number 16-72 Total number of species 

Hrel % 18-74 Relative number of all species with Ellenberg F 

score ≥8 

EN Score 3.5-6.0  Mean Ellenberg N (nutrient) score 

ER Score 4.9-6.4 Mean Ellenberg R (pH) score 

EF Score 5.9-8.2 Mean Ellenberg F (moist) score 

EN ER
-1

 Ratio 0.63-0.93 Ratio between EN and ER - the “nutrient ratio” 

 521 

 522 

523 
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  524 

 525 

Table 3. Statistics of model 1 using a Poisson distribution for the predicted variable 526 

Typical species Coefficient estimates 

b 

Std. error of b p-value of b 

b0 (intercept)  8.00*** 0.99 4.8e-16 

b1 Ellenberg N/R -8.27*** 1.40 3.1e-9 

b2 Hmean, Jul.-Aug. -1.02** 0.38 7.5-e-3 

 527 

 528 

Table 4. Statistics of model 2 using a Poisson distribution for the predicted variable  529 

Bryophytes Coefficient estimates 

c 

Std. error of c p-value of c 

c0 (intercept) 6.16***  0.89  4.4e-12 

c1 Ellenberg N/R -5.47***  1.25  1.2e-5 

c2 Hmean, Jul.-Aug. -1.39***  0.38  2.4e-4 

 530 

 531 

532 
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Appendix A 533 

Table A.1 Typical species of alkaline springs (S) and rich fens (F) (Ejrnæs et al. 2009), number of 534 

presences as typical species in other EU- member states and frequency of occurrence in current 535 

study. Species marked by grey colour are excluded due to more frequent occurrence in other 536 

habitats in Denmark. Bryophytes are marked by bold.  537 

Species Habitat Corine /other  EU-presences  Occurences in current 

dataset (35 plots) 

Aneura pinguis S Corine 54.251, 54.54.52, 

54.541, Nordisk min.3.4.2.1 

4 2 

Briza media F  0 10 

Bryum pseudotriquetrum S, F Corine 54.2, Nordisk 

min.3.4.2.1 

9 11 

Calliergonella cuspidata S Corine 54.4, Nordisk 

min.3.4.2.1 

1 32 

Campylium protensum F (Corine 54.2 “and others”) 0 3 

Campylium stellatum S, F Corine 54.2, 54.23 8 9 

Cardamine amara S Corine 54.113 1 0 

Carex dioica F Corine 54.25 10 1 

Carex hostiana F Corine 54.2 6 1 

Carex lepidocarpa F Corine 54.121, 54.2 8 5 

Carex nigra F Corine 54.23 0 21 

Carex pulicaris F Corine 54.21 4 2 

Carex viridula F Corine 54.2 (c. flava) 7 3 

Cratoneuron filicinum S Corine 54.12, Nordisk 

min.3.4.2.1 

13 7 
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Ctenidium molluscum F Corine 54.2 2 1 

Dactylorhiza incarnata F Corine 54.2 6 3 

Dicranum bonjeanii F Nordisk min. 3.5.2.3 0 2 

Eleocharis quinqueflora F Corine 54.2, 54.23 14 1 

Epipactis palustris S, F Corine 54.2, 54.23 14 9 

Equisetum telmateia S Corine 54.12 1 0 

Eriophorum angustifolium F Corine 54.4 1 10 

Fissidens adianthoides F Corine 54.2, Nordisk 

min.3.4.2.1 

6 3 

Hypericum tetrapterum S  0 5 

Juncus articulatus S Corine 54.23 0 21 

Juncus inflexus S Nordisk min.3.4.2.1, (corine 

37.241, 37.242) 

1 0 

Juncus subnodulosus F Corine 54.2, Nordisk 

min.3.4.2.1 

12 11 

Limprichtia cossonii S, F Corine 54.2, 54.23, Nordisk 

min.3.4.2.1 

2 3 

Liparis loeselii F Corine 54.2 7 1 

Lychnis flos-cuculi S, F  0 15 

Menyanthes trifoliata S, F Corine 54.422 0 8 

Montia fontana ssp. fontana S Corine 54.111 0 0 

Nasturtium microphyllum S Corine 53.4 0 0 

Nasturtium officinale S Corine 53.4 0 0 

Palustriella commutata S Corine 54.12, Nordisk 

min.3.4.2.1 

16 0 

Palustriella falcata S Corine 54.12, Nordisk 3 0 



33 

 

 538 

min.3.4.2.1 

Parnassia palustris F Corine 54.21, 54.23 10 1 

Pedicularis palustris ssp. palustris F Corine 54.422 0 4 

Philonotis calcarea S Interpret. manual 

7220,(corine 54.2 ”and 

others..”) 

13 0 

Philonotis fontana S Corine 54.111 2 0 

Pinguicula vulgaris S, F Corine 54.12, 54.2, 54.23 10 0 

Potentilla erecta F Corine 54.23 0 11 

Ranunculus flammula S Corine 54.422 0 12 

Rumex acetosa ssp. acetosa var. Hydrophilus S  0 0 

Sphagnum teres F Nordisk min. 3.4.3.2, 

(Nordisk min. 3.4.1.3) 

2 2 

Sphagnum warnstorfii F Nordisk min. 3.4.2.1, , 

3.4.3.2 

0 0 

Stellaria alsine F (corine-spring 54.113), 0 0 

Succisa pratensis F Corine 37.31 0 11 

Tomentypnum nitens S, F Nordisk min. 3.4.2.1, 

3.4.3.2 

4 4 

Triglochin palustris S, F  4 11 
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Appendix B 

Table B.1 Spearman rank correlation coefficients (upper right) and p-values (lower left) for all combinations of water level and vegetation measures. n.s. is not significant 

(p>0.05)  

  Rho Vegetation measures Water level measures 

Pval   
T Twet B IB Brel Hrel Stot EN/ER EN/EF EF EN ER Hmin HIQR H20 Hmean Drydur 

Hmean  

Apr.-Jun. 

Hmean  

Jul.-Aug. 
Var3 

V
eg

et
at

io
n

 m
ea

su
re

s 

T   0.84 0.76 0.87 0.53 0.33 0.61 -0.65 -0.39 0.32 -0.33 0.10 -0.35 -0.38 -0.35 -0.34 -0.34 -0.31 -0.37 -0.23 

Twet 2E-10   0.65 0.63 0.43 0.49 0.54 -0.44 -0.40 0.44 -0.29 -0.02 -0.36 -0.34 -0.33 -0.31 -0.40 -0.29 -0.35 -0.33 

B 2E-7 3E-5   0.80 0.83 0.33 0.50 -0.53 -0.55 0.36 -0.46 -0.26 -0.52 -0.54 -0.53 -0.51 -0.52 -0.45 -0.49 -0.45 

IB 1E-11 5E-5 8E-9   0.63 0.23 0.47 -0.55 -0.31 0.24 -0.22 0.16 -0.34 -0.36 -0.35 -0.34 -0.30 -0.31 -0.37 -0.25 

Brel 1E-3 1E-2 7E-10 4E-5   0.43 0.02 -0.57 -0.79 0.47 -0.64 -0.45 -0.66 -0.69 -0.66 -0.65 -0.66 -0.61 -0.66 -0.58 

Hrel n.s. 3E-3 6E-2 n.s. 1E-2   -0.12 -0.14 -0.52 0.95 -0.14 -0.10 -0.47 -0.36 -0.34 -0.35 -0.42 -0.40 -0.48 -0.65 

Stot 1E-4 7E-4 2E-3 4E-3 n.s. n.s.   -0.18 0.14 -0.15 0.04 0.18 0.00 -0.02 -0.02 -0.01 -0.04 0.04 0.00 0.10 

EN/ER 2E-5 8E-3 1E-3 6E-4 4E-4 n.s. n.s.   0.71 -0.10 0.80 0.28 0.22 0.36 0.31 0.28 0.23 0.22 0.26 0.05 

EN/EF 2E-2 2E-2 7E-4 n.s. 2E-8 1E-3 n.s. 2E-6   -0.52 0.88 0.67 0.56 0.65 0.61 0.59 0.59 0.56 0.57 0.49 

EF n.s. 8E-3 3E-2 n.s. 4E-3 9E-19 n.s. n.s. 1E-3   -0.11 -0.07 -0.51 -0.41 -0.39 -0.40 -0.45 -0.45 -0.50 -0.68 

EN n.s. n.s. 5E-3 n.s. 3E-5 n.s. n.s. 7E-9 2E-12 n.s.   0.76 0.35 0.50 0.45 0.43 0.43 0.36 0.35 0.16 

ER n.s. n.s. n.s. n.s. 7E-3 n.s. n.s. n.s. 1E-5 n.s. 1E-7   0.35 0.47 0.46 0.45 0.46 0.38 0.33 0.20 

W
at

e

r 

le
ve

l 

m
ea

s

u
re

s Hmin 4E-2 3E-2 1.5E-3 5E-2 2E-5 4E-3 n.s. n.s. 4E-4 2E-3 4E-2 4E-2   0.89 0.89 0.89 0.96 0.86 0.94 0.84 
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HIQR 2E-2 5E-2 7.6E-4 3E-2 5E-6 4E-2 n.s. 3E-2 3E-5 2E-2 2E-3 5E-3 1E-12   0.99 0.98 0.89 0.93 0.92 0.65 

H20 4E-2 n.s. 1.1E-3 4E-2 1E-5 4E-2 n.s. n.s. 1E-4 2E-2 6E-3 5E-3 6E-13 1E-27   1.00 0.88 0.95 0.93 0.64 

Hmean 5E-2 n.s. 1.9E-3 5E-2 3E-5 4E-2 n.s. n.s. 2E-4 2E-2 1E-2 7E-3 7E-13 2E-25 8E-36   0.88 0.95 0.93 0.64 

Drydur 4E-2 2E-2 1.4E-3 n.s. 2E-5 1E-2 n.s. n.s. 2E-4 6E-3 1E-2 5E-3 5E-19 2E-12 3E-12 6E-12   0.82 0.91 0.79 

Hmean Apr.-Jun. n.s. n.s. 6.4E-3 n.s. 9E-5 2E-2 n.s. n.s. 4E-4 7E-3 3E-2 2E-2 3E-11 3E-16 1E-17 3E-18 1E-9   0.92 0.70 

Hmean Jul.-Aug. 3E-2 4E-2 2.6E-3 3E-2 1E-5 4E-3 n.s. n.s. 4E-4 2E-3 4E-2 n.s. 6E-17 2E-15 5E-16 3E-16 2E-14 3E-15   0.76 

Var3 n.s. n.s. 7.3E-3 n.s. 2E-4 3E-5 n.s. n.s. 3E-3 6E-6 n.s. n.s. 2E-10 3E-5 3E-5 4E-5 1E-8 2E-6 1E-7   

 

 

 


