
Aalborg Universitet

Waypoint planning with Dubins Curves using Genetic Algorithms

Hansen, Karl Damkjær; La Cour-Harbo, Anders

Published in:
European Control Conference (ECC), 2016

DOI (link to publication from Publisher):
10.1109/ECC.2016.7810624

Publication date:
2016

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Hansen, K. D., & La Cour-Harbo, A. (2016). Waypoint planning with Dubins Curves using Genetic Algorithms. In
European Control Conference (ECC), 2016 (pp. 2240-2246). IEEE (Institute of Electrical and Electronics
Engineers). https://doi.org/10.1109/ECC.2016.7810624

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/ECC.2016.7810624
https://vbn.aau.dk/en/publications/7cd818e6-8c0f-4823-9c8e-f66789cc47f1
https://doi.org/10.1109/ECC.2016.7810624

Waypoint planning with Dubins Curves using Genetic Algorithms

Karl D. Hansen, Anders la Cour-Harbo

Abstract— Mission planning for aircraft is often done as
waypoint planning. A sequence of waypoints describing the
three-dimensional positions that the aircraft must visit. A
common approach is to plan the sequence of the waypoints such
that the Euclidean distance between them is minimized. When
the high-level waypoint planning is finished, a finer grained
planning is executed to obtain a trajectory that the aircraft
must follow. When the waypoints in a plan are distributed far
apart compared to the turning radius of the aircraft, the two-
step planning approach works well, but when the waypoints
are closer, the kinematics of the aircraft ruins the plan. This
work describes an approach that uses a genetic algorithm to
solve the waypoint planning problem while considering the
kinematics of the aircraft in one single step. This approach
entails the addition of a heading and target speed along with
the position in the waypoint definition. The kinematics of the
aircraft is modeled with Dubins curves, which are extended to
allow variable turning radii.

I. INTRODUCTION

When planning a route through a set of waypoints for a
mobile robot, the optimization criterion is often the traveled
length or time spent traveling. A straight forward method of
performing this planning is to optimize Euclidean distance
of the route. However, following straight lines between way-
point might easily violate kinematic or dynamic constraints,
in fact such a path might be very far from a feasible route
for the mobile robot. The inertia of a moving robot implies
that some sort of ‘turns’ might be quite useful for planning
a route.

The geometrically simplest of turns is (part of) a circle,
which when connected with straight line forms the basis for
Dubins curves [1]–[3]. The Dubins curve is a path composed
of line and circle segments, connecting two points with
corresponding headings in the plane. Dubins [1] showed that
any two points with arbitrary headings can be connected by
a combination of two circle segment with a straight line
segment in between (CSC), three circle segments (CCC), or
any subset of these, with the circle segments C being either
left- or right-turning (L or R). The circles in the paths are
all constrained to one given radius.

The Dubins curves have also been considered for applica-
tions to aircraft [3], [4]. Here the curves to some extent fit the
kinematics of an aircraft moving at a constant speed. This is
because of the bounded turning speed of an aircraft, where a
constant forward speed translates to a constant turning radius.
The traditional Dubins curves, defined in the plane, have
been generalized to three dimensions [5], where the circle
segments no longer are defined as left and right turns, but

K. Hansen and A. la Cour-Harbo is with the Department of Electronic
Systems, Aalborg University, Denmark, [kdh, alc]@es.aau.dk.

defined on a doughnut shaped manifold located around the
orientation vector of the waypoints. That approach may lead
to very steep inclines, a problem that has been treated in [4]
where a bound is set on the rate of change in altitude, leading
to ‘corkscrew’ maneuvers to increase or decrease altitude. A
nice review of methods for path and trajectory following of
Dubins curves in aircraft autopilots is presented in [6].

The traditional way of planning a waypoint-based path
with Euclidean performance function is solving a traveling
salesman’s problem (TSP), i.e. finding an ordering of the
waypoints that produces the shortest possible accumulated
distance. The TSP is an NP-hard problem [7] thus exact
algorithms are not efficient and heuristics have been de-
veloped [8], [9]. Typical approaches include neighborhood-
search meta-heuristics like ant-colony optimization, tabu-
search, and genetic algorithms (GA).

It seems obvious to combine Dubins curves with a TSP
where the performance function is traveled distance along
the curves (rather than Euclidean distance). However, the
Dubins TSP introduces the continuous variable of heading
for each waypoint, and these variables have to be determined
somehow in order to determine the Dubins curves connecting
the waypoints. Since the length of the path is very much
influenced by the headings these variables are part of the
optimization. Work has been done to solve this problem by
discretizing the headings [3] thus producing a generalized
TSP with clusters of waypoints with fixed headings where
only one of the waypoints in the cluster should be visited.
A well-known heuristic method is known as the alternating
algorithm [2], which sets every second heading to point in
the direction of the next waypoint in the sequence and the
next heading to the same value. This produces a route of
alternating straight segments and Dubins curved segments.
Another approach is to manage the headings in a genetic al-
gorithm by randomly selecting headings in the neighborhood
function [10].

It should be noted that the optimal solution for a Dubins
TSP tends to the optimal solution for the Euclidean TSP as
turning radius of the aircraft becomes smaller in relation to
distance between waypoints. This is because the turning then
becomes an increasingly smaller part of the total traveled
distance. Conversely, solving the Dubins TSP when the
waypoints are close together compared to the turning radius
leads to “cluttered” solutions because the aircraft will have
to make wide turns to “get back to” the waypoints. Within
certain limits, this can be countered by lowering the forward
speed of the aircraft to reduce the turning radius. Therefore,
we have extended the Dubins curves to work with varying
radii, while also considering the heading associated with each

waypoint. Thus, we present a Dubins curve based trajectory
generation and waypoint planning with variable radii, which
is based on a variable forward speed. The planning is based
on a genetic algorithm that modifies the both the continuous
heading variable as in [10] and also the target speed in each
waypoint.

II. METHODS

The varying radii in Dubins curves and the application of
a genetic algorithm to search for the optimal path with time
as the performance measure are two distinct methods that we
will address in this section. First, we present the generation
of point-to-point Dubins curves with variable radii. This
is followed by the formulation of a genetic algorithm that
optimizes over the combinatoric sequence (solving the TSP)
along with optimizing the continuous heading and target
speeds of the waypoints.

A. Variable Speed Dubins Vehicle

The Dubins Curves that we will present here is an exten-
sion of the constant speed, bounded angular speed vehicle
to a bounded speed, bounded angular speed vehicle. The
forward speed v will be bounded

vmin ≤ v ≤ vmax , (1)

and is subject to an acceleration that may be either ±amax
or 0. It is assumed that the vehicle is able to turn with an
angular velocity ω, which may take on only maximal values
±ωmax or 0. The forward speed and the angular speed defines
the turning radius

r =
v

ω
. (2)

Further, it is assumed that the vehicle is only able to
accelerate on straight stretches where the angular velocity
is 0.

B. Point-to-Point Variable Radii Dubins Curve

We want to determine the length of a Dubins curve
between two waypoints given the heading and speed in both
waypoints. There are six possible combinations of segments
forming a Dubins curve

{Right-Straight-Right} {LSL} {RSL}
{LSR} {RLR} {LRL} .

The length of each of the three segments are denoted t, p,
and q for the first, middle, and last segments, respectively.
The heading is any real number between 0 and 2π, and the
speed is any positive, real number, and defines the radius of
the circle segment associated with the waypoint.

In [11], Shkel and Lumelsky derive formulas for comput-
ing the lengths of the different Dubins curve types along
with a classification method to select the right type before
the actual computation, this is opposed to the ‘traditional’
compute-and-compare approach. The approach in [11] is to
translate, rotate, and scale the problem into canonical form
before computation. The canonical form places the initial
waypoint in the origin, is scaled with the reciprocal of the

turning radius, and rotated to place the final waypoint on the
x axis.

The same idea of transforming the original problem into a
canonical form will be used here. However, since the radii of
are not equal in our case, a slightly different transformation
is appropriate. In stead of transforming the problem to put
the waypoints on the x axis, it is transformed to put the two
centers of rotation on this axis. Note that this means that
different transformations must be applied for the different
path types.

We want to travel from one waypoint at w1 = (x1, y1)
with heading φ1 and radius r1 to another waypoint at
w2 = (x2, y2) with heading φ2 and radius r2. The centers
of rotation then become

cright,i = wi + ri

(
sin(φi)

− cos(φi)

)
, (3)

cleft,i = wi − ri
(

sin(φi)
− cos(φi)

)
. (4)

These parameters are all illustrated on Figure 1 for the case
where the Dubins curve is made as Right-Straight-Right.
The task now is to determine the lengths t, p, and q of the
three segments, and for this we will use the transformation
described above. The rotation angle is given by the angle
−Θ, the scaling by 1/r1, and the translation by −c1. This
will transform the original configuration to the one seen
in Figure 2. Now define the scaled radius of the second
circle ρ = r2/r1 and the scaled distance between circle
centers d = ‖c1 − c2‖/r1. The length of the short leg
of the right triangle (gray in the figure) is 1 − ρ and the
length of the hypotenuse is d. Thus, the angle at which
the straight segment intersects the two circles is given as
φ = arccos

(
(1− ρ)/d

)
and the length of this same segment

is p′ =
√
d2 − (1− ρ)2. Now, finally, let αi be the angle

between the x axis and the transformed waypoint w′i, which
is given as αi = φi − Θ + π/2. Then t′ = α1 − φ and
q′ = ρ(φ−α2) (constrained to the interval 0 to 2π). For this
to make sense we need only require that d ≥ 1−ρ, meaning
that none of the circles are properly inscribed in the other
(in which case no tangent exists between the two).

Extending this result to include also RSL, LSL, and LSR
we get

p′ = d
√

1− λ2 (5)

t′ =

{
(α1 − φ) mod 2π RSR, RSL
(φ− α1) mod 2π LSL, LSR

(6)

q′ =

ρ((φ− α2) mod 2π) RSR
ρ((α2 − φ) mod 2π) LSL
ρ((φ− α2 − π) mod 2π) LSR
ρ((α2 − φ− π) mod 2π) RSL

(7)

where

α1 =

{
φ1 −Θ + π

2 RSR, RSL
φ1 −Θ− π

2 LSL, LSR

α2 =

{
φ2 −Θ + π

2 RSR, LSR
φ2 −Θ− π

2 LSL, RSL

φ =

{
− arccosλ LSL, LSR
arccosλ RSR, RSL

λ =

{
(1− ρ)/d RSR, LSL
(1 + ρ)/d LSR, RSL

d =
‖c1 − c2‖

r1
ρ =

r2
r1

d ≥

{
1− ρ RSR, LSL
1 + ρ RSL, LSR

c1

c2

r1

r2Θ D

t w1a

w2a

p

q

x

y

w1

w2

φ1

φ2

Fig. 1. Dubins curve in original form.

(0, 0) (d, 0)

1
ρ

t′
p′

q′α1 α2
φ

φ

w′1
w′2

Fig. 2. Canonical representation of the path seen in Figure 1.

As the lengths are both rotation and translation invari-
ant, the original lengths {t, p, q} are achieved by scaling
{t′, p′, q′} by r1.

Since we do not allow acceleration of the vehicle on the
curving part of the path the CCC cases are of limited used,
and therefore these cases are not included in this work.

C. Interpolation functions for Dubins Curves

Given the lengths of the non-canonical segments, three
motion operators will translate a point along the path. Let
C : R5 7→ R3 be a mapping along a circle. The input is
[x y φ s r]> where x, y is the initial position in R2, φ is the
heading angle, s is the arc distance and r is circle radius
(which should be positive to make left turns and negative to
make right turns). Then C is given by

C([x y φ s r]>) =

x− r (sin (φ)− sin
(
φ+ s

r

))
y + r

(
cos (φ)− cos

(
φ+ s

r

))
φ+ s

r

 .

A translation along the straight segment is more simple, and
is given by S : R4 7→ R3 as

S([x y φ s]>) =

x+ s cos (φ)
y − s sin (φ)

φ

 .

Note that φ in S is the heading of the straight segment. If
the vehicle starts at waypoint w1 with heading φ1 and is
following a left turn circle of radius r1 then a) the position
of the vehicle when it leaves the circle to traverse the straight
segment, and b) the position when it leaves the straight
segment to enter the second (right turn) circle with radius r2,
and c) the position when the entire maneuver is completed,
are given by

a) w1a = C

x1
y1
φ1
t
r1

b) w2a = S

([
w1a

p

])

c) w2 = C

w2a

q
−r2

These functions may be useful when visualizing the curves

of a computed path.

D. Velocities for Time-Optimal Traversal of the Curves

The straight segments are the only places where the
vehicle is allowed to accelerate to match the initial velocity
v1 in (x1, y1, φ1) with the final velocity v2 in (x2, y2, φ2).
The time-optimal traversal of the segment is achieved by
moving as fast as possible. This means that the vehicle must
accelerate from v1 to maximum velocity and later reduce it
to v2.

Assuming first that there is no upper limit on the velocity,
then on the segment p the maximum velocity that can be
achieved vm, subject to a maximum allowed acceleration of
a, must satisfy

p =
(
v1 +

vm − v1
2

)
τ1 +

(
v2 +

vm − v2
2

)
τ2

where τi = (vm − vi)/a are the times it take to reach vm
from vi. Solving this gives

vm =

√
2pa+ v21 + v22

2
. (8)

Now, if this velocity is higher than the maximum allowable
velocity vmax then we simply impose this limit and the total
travel time on segment p becomes

τp = τ1 + τ2 + [delay due to speed limit]

=
vm − v1

a
+
vm − v2

a
+

(vm − vmax)2

avmax
.

In case the velocity limit is not reached the third term is
(defined to be) zero. The time for traversal of the entire path
is then

T = τt + τp + τq =
t

v1
+ τp +

q

v2
. (9)

Because of the bounded acceleration the path may be
infeasible if the difference between the initial and final
speeds is too large to realize over the p-segment. When this
is the case, vm < max{v1, v2}.

E. Genetic Algorithm

To find the fastest path through the waypoints we employ
a genetic algorithm. In this case there are three parameters
that determine the fitness of the solution when varied. The
parameters are the sequence of the waypoints, the heading
in each waypoint, and the velocity in each waypoint. In
the traditional case where the Euclidean distance between
waypoints is used the choice of connecting edges in the TSP
graph are decoupled resulting in a entirely combinatorial
problem. However, in the Dubins TSP case, the headings
of the waypoints couples the segments so that each Dubins
path cannot be optimized separately from the order of the
waypoints. The same applies to the velocity in this variable-
speed Dubins TSP.

Much work has been done in the genetic algorithms for
Euclidean TSP, for a review see [12]. Yu and Hung [10]
extends some of the traditional methods for use in Dubins
TSP. Much of their representation is used here to adapt
the genetic algorithm to the specific problem at hand. The
algorithm is presented in Figure 3.

1) Encoding: The path representation, described in [12],
encodes the problem in an ordered list of indices to the
waypoints. In the jargon of genetics, the encoded solution
to the problem is called the genome and the entries of the
genome is called the genes. This way, the ordered list of
indices is the genome and each index is a gene. Yu and Hung
[10] extends the path representation to include the heading
in each gene. The same approach is taken here; extending
the representation with the velocity, so that a genome is a
sequence of genes of the form (i, φ, v). The genome example

{(1, 1.4, 2.3), (3, 3.6, 2.7), (2, 4.1, 1.6), (4, 1.1, 1.2)}

starts in the waypoint indexed 1 with the heading 1.4 radians
and the velocity 2.3, and move through waypoints 3, 2, and
4 with their associated headings and velocities.

2) Fitness: The fitness function evaluates how fit each in-
dividual in the population is. As the objective is to minimize
the time spent, individuals with a lower time cost should have
a higher fitness than slower individuals. This is achieved here
by letting the fitness equal to the time of the slowest genome
of the population minus the time of the evaluated genome.

3) Selection: A roulette wheel selection is used. Here
each bin of the roulette wheel has a width equal to the fitness
of the corresponding individual. This way the roulette ball
selects more fit individuals more often.

Require: Np, Pc, Pinv, Pex, Pdis, Pφ, Pv
procedure GENETIC ALGORITHM

Initialize population← Np random genomes
doTerminate← False
while not doTerminate do
newPopulation← empty population
Make ROULETTEWHEEL selector from population
for i← 1, Np do

repeat
if RAND(0, 1) ≤ Pc then
parent1 ← ROULETTEWHEEL
parent2 ← ROULETTEWHEEL
child← CROSSOVER(parent1, parent2)

else
child← ROULETTEWHEEL

end if
if RAND(0, 1) ≤ Pinv then
child← INVERSE(child)

end if
if RAND(0, 1) ≤ Pex then
child← EXCHANGE(child)

end if
if RAND(0, 1) ≤ Pdis then
child← DISPLACE(child)

end if
if RAND(0, 1) ≤ Pφ then
child← φ-RANDOM(child)

end if
if RAND(0, 1) ≤ Pv then
child← v-RANDOM(child)

end if
Add child to newPopulation

until VALID(child)
end for
Evaluate newPopulation
if bestNewGenome > allT imeBest then
allT imeBest← bestNewGenome

else
worstNewGenome← allT imeBest

end if
population← newPopulation
doTerminate← evaluate termination criterion

end while
end procedure

Fig. 3. The algorithm for the genetic algorithm.

4) Crossover: The crossover operator combines parts
from two parent genomes to produce an offspring. In this
work, the order crossover [13] is used. This crossover tries
to combine segments of the parents while conserving their
order.

The procedure is to choose a subsection from one parent,
which is copied to the offspring, and then fill in the blanks
with the sequence from the other parent less the already used
indices. For example, if the genomes

{1, 2, 3, 4, 5, 6, 7} and {4, 6, 2, 7, 1, 3, 5}

are combined, choosing the subsection {3, 4, 5} from the first
genome, they will produce the offspring

{6, 2, 3, 4, 5, 7, 1} .

5) Mutation operators: Mutation operators operates on a
single genome, modifying the representation in the hope that
this may produce a more fit individual. Yu and Hung [10]
adopt and extend the inversion and exchange mutations and
introduce the shift mutation, which modifies the continuous
heading value. The method of their shift mutation is used
here to randomly choose headings and velocities. Here, the
mutations are called φ-random and v-random. The extended
inversion mutation of Yu and Hung is adopted here along
with their shift mutation, whereas the traditional exchange is

Fig. 4. Two instances of Dubins genetic algorithm solutions to the Berlin52
problem corresponding to the results listed in Table I. Left: Minimum
initialized. Right: Maximum initialized. Note that the direction of travel
is unimportant, as the acceleration profile is symmetrical around 0.

used instead of their extension. Furthermore the traditional
displace mutation is also used.

The individual mutations are shortly described here. For a
more in-depth review of mutation- and crossover-operators,
see [12].

The inversion mutation chooses a subsection of the muta-
tee and replaces it with itself reversed, the extended version
used here also shifts the heading of each of the affected
indices by π, reversing the direction of travel.

The exchange mutation simply chooses two genes and
exchanges them. Here, the heading is not shifted as proposed
in [10].

The displace mutation chooses a subsection of the genome
and moves it forwards or backwards in the sequence, also
here, the heading is untouched.

The random mutations chooses a gene and sets the con-
tinuous values to a random value. The φ-random sets the
heading to a value in [0, 2π[, and the v-random set the
velocity to a value in [vmin, vmax].

III. RESULTS

The Berlin52 problem from the TSPLIB package [14]
serves here as demonstration. It contains 52 locations of
interest in Berlin, Germany, spread out in the interval
[(0, 0), (1740, 1175)] with about 20 of the points located rel-
atively close around the center and the rest in the periphery.
Our proposed method is well suited to this problem because
it has both widely spaced and closely spaced waypoints.
The traditional Dubins methods with fixed turning radius
cannot adapt to the need for both slow and fast turns to
accommodate the close and widely spaced waypoints.

A. Simulation results

We have examined two instances of a genetic algorithm
optimization. One where the maximum speed is low and one
where it is high. The results presented in Table I are for
an instance where the possible speeds are in the interval
[0, 100] units per second with an acceleration of 10 units
per second squared and rotational speed of 3 radians per
second. In Table II, the results are given for a setup with the
maximum speed and acceleration increased by a factor 10.

This result is compared to solutions obtained by the
Alternating Algorithm (AA) of Savla et al. [2]. Such a
solution consists of two steps; 1) find the desired order of the
waypoints (we use both a Nearest Neighbor and a Euclidean

Fig. 5. Two instances of Dubins genetic algorithm solutions to the Berlin52
problem corresponding to the results listed in Table II. Left: Minimum
initialized. Right: Maximum initialized.

Fig. 6. Two examples of Alternating Algorithm–Euclidean genetic algo-
rithm solutions to the Berlin52 problem, left and right corresponding to the
instances in Table I and Table II respectively.

GA), and 2) set the headings of the waypoints in pairs so that
the segments connecting the waypoints alternates between a
line segment and a Dubins path. The fitness is measured in
the same way as for the Dubins GA, that is, acceleration to
maximum allowable speed is used on any straight segment,
while turns have a constant velocity linearly proportional to
the turning radius. Two examples of AA solutions are shown
in Figure 6. Here the sequence of waypoints are found using
the genetic algorithm with a Euclidean distance cost function.
To allow a fair comparison, several instances of the AA
solution is evaluated, varying the (fixed) forward speed in the
turns from the minimum to the maximum speed, so that the
turning radii varies from least to largest. In both examples the
maximum speed yielded the fastest solution. Note that setting
the forward speed in the turns to zero reduces the turning
radii to nothing and equates to a Euclidean solution where
the vehicle slows down to a stop, rotates on the spot (i.e.
center turns like a tank or hovering helicopter), and speeds
up along the next line section towards the next point.

While the first instance with low maximum speed and
acceleration gives reasonable results for the Euclidean GA
with AA, it has a bit of trouble in the crowded center. The
second instance has a turning radius of 333.3 units at the
speed of 1000 units per second, which is a lot compared
to the individual distances between the points. This large
turning radius proves difficult and gives considerable trouble
in the entire region. The solutions can be seen in Figure 6.

Six methods are listed in table I. First the nearest neighbor
heuristic solution with an AA smoothing with a forward
speed of 0 (center turns) and next with a forward speed of
100, which translates to turns with radius 33.3. The next
two rows are also smoothed with the AA with forward

TABLE I
COSTS FOR SOLUTIONS TO THE BERLIN52 PROBLEM.

Method Length Time

Nearest Neighbor + 0 AA 8,980.9 541.7
Nearest Neighbor + 100 AA 11,796.3 118.0
Euclidean GA + 0 AA 7,835.7 501.8
Euclidean GA + 100 AA 10,607.0 106.1 Figure6

Dubins GA (min. init.) 8,476.1 102.2 Figure4

Dubins GA (max. init.) 9,254.3 92.6 Figure4

Speed: [0, 100], Acceleration: 10, Rotational Speed: 3

speeds of 0 and 100 respectively, but here the underlying
solution is obtained with a genetic algorithm (GA) based on
a Euclidean cost function. Lastly, two instances of the Dubins
GA are listed. The difference between the two is the way of
initialization. The first (minimum initialization) is initialized
with a population of identical solutions obtained with the
nearest neighbor heuristic, setting the speed and headings of
the waypoints to 0. The next entry is initialized just like the
other, but with the speeds set to maximum.

All the solutions are evaluated according to two metrics.
The first is the traveled distance, i.e. length of the solution,
the next is the time it takes to traverse it. Note that the
Euclidean GA uses the Euclidean distance as the cost func-
tion for optimization, but the distance listed in the table is
the distance after AA smoothing. In table II the results of
the same instances, but with a higher maximum speed and
acceleration are listed.

TABLE II
COSTS FOR SOLUTIONS TO THE BERLIN52 PROBLEM.

Method Length Time

Euclidean GA + 0 AA 7,835.7 246.9
Euclidean GA + 1,000 AA 73,125.8 73.1 Figure6

Dubins GA (min. init.) 10,732.7 50.9 Figure5

Dubins GA (max. init.) 39,091.6 39.1 Figure5

Speed: [0, 1,000], Acceleration: 100, Rotational Speed: 3

The computational effort of the Dubins GA is consider-
able compared to the Euclidean GA. The instances of the
Euclidean GA were solved in 10,000 generations, where the
Dubins GA required 15,000 generations, but because of the
more computationally intensive cost function of the Dubins
curves, the run time of the Dubins GA was roughly six
times as long. Specifically 115 seconds for the Dubins GA
compared to 20 seconds for the Euclidean GA on a Intel
Core i7 2.80 GHz core.

B. Observations

When examining the results, note that the optimized
headings of the waypoints result in the circle segments on
either side of the waypoints are of equal length, and further
that no path has a left-turn when entering the waypoint and
a right-turn exiting (or vice versa). See a close-up of the
center section of Figure 4 in Figure 7 with the headings of
the waypoints illustrated.

Fig. 7. Close-up of the center section of the maximum initialization instance
in Figure 4.

IV. DISCUSSION

In all instances, the Dubins genetic algorithm outperforms
the other solutions by matter of time. Interestingly, the
method of initializing the algorithm has a strong influence
on the obtained solution. The nearest neighbor solutions in
Table I, gives some insight to this behavior. The solution
initialized with minimum speed produces a short, but slow
execution where the maximum speed initialization produces
a longer, but faster execution. As the algorithm incorporates a
validity check, all offspring with too large difference between
the initial and terminal speeds to be realized are discarded.
Thus the algorithm may obtain a solution that is trapped in a
local minimum, which the mutations are not “strong” enough
to break out of.

A possible way to visualize this problem is by thinking of
the solution space as a hill with the best solution sitting at
the top of the hill. As the solutions are mutated, they may
move a step up or down the hill. The selective pressure of the
genetic algorithm favors the solutions that are stepping up the
hill. The validity check creates boundaries on the hill that the
solutions cannot step over, this could be thought of a a form
of ravine dividing the faces of the hill. The solution may
get stuck on one side of the ravine in a local maximum and
have to cross the ravine to get to the global maximum on the
other side. If the mutation operators are not “strong” enough
to step across the ravine in one step, the solution have to
backtrack down the hill to a point where the ravine becomes
so narrow that it can be negotiated. The genetic algorithm
allows a portion of backtracking, but the probability dwindles
as more steps are needed.

This is what seems to happen in the case of maximum-
and minimum-initialized initialization. The ordering of the
waypoints and their headings are fairly quick at converging
to a nice solution, where the speed adaption process are more
slow. The ravine is thus created as new changes in heading
or ordering may easily become infeasible because of a too
large speed. Thus, the solution have to backtrack by first
reducing the speed, then changing the ordering, and finally
the heading. The probability of this sequence of mutations
happening is quite low.

There are different ways to overcome the problem of
getting caught in local minima. Here, one of the prob-
lems is that the algorithm cannot search from one feasible
domain through an infeasible domain to another feasible
domain. Such problems are addressed by Ray et al. in [15],
where they allow a portion of infeasible solutions in the
population. They also note that optimal solutions often lie
on the constraint boundaries, an observation that may be
seen in this case as well: The maximum-initialized version

maintains the maximum speed throughout the entire path,
thus lying on the speed constraint boundary. Conversely,
the minimum-initialized version moves on the acceleration
constraint boundary; the reason why the speed does not reach
the maximum. The approach by Ray et al. bridges or narrows
the ravines, easing the transition from one feasible domain
to another.

Interestingly, the sub-optimal minimum-initialized algo-
rithm generally produces “pleasingly” looking paths, whereas
the maximum-initialized paths tend to look more complex
(although faster). Rather than dismissing the minimum-
initialized approach we will regard it as a conservative
version of the algorithm, where the maximum-initialized
can be regarded as the aggressive version. The difference
between the two is very apparent in Figure 5 corresponding
to the solutions in Table II.

V. FURTHER WORK
The observation that the circle segments seem to be

divided on the middle seems intuitive as this results in the
shortest straight segments, which definitely minimizes the
length. But with the acceleration and speed constraints, the
same conclusion is not so obvious. If a closed form solution
to this is constructed, there would be no reason for the
genetic algorithm to individually optimize the headings as
they would be an implicit consequence of the ordering and
speed.

Even if no closed form is found, the observation may be
used as a heuristic when constructing initial solutions for the
genetic algorithm.

In this case, the vehicle is constrained to only accelerating
on the straight segments. For a real aircraft, however, it is
possible to accelerate during a turn. As described in (2)
the radius is defined by the forward and angular speed of
the aircraft. If the aircraft is to accelerate in the turns, the
radius will become a function of the speed, and the path will
become a spiral segment. Planning with such spirals in stead
of circle segments would certainly bring the model closer to
the real system, and construct even better trajectories. Spirals
have been used in planning for aircraft. One often used is
the clothoid, which has a curvature that is linear with arc
length [16]. While the clothoid is an approximation of the
spiral alluded to here, it models a constant forward speed
and a bounded angular acceleration.

The differences between the two solutions from the
maximum- and minimum-initialized algorithms show that
there may be other factors in the optimization of this problem
than simply the time consumption. The minimal-initialized
solution definitely looks more pleasing to the human eye,
even though it is slower. Such a factor may very well
be important when motion planning for robots in human
environments. This may lead to the use of a multi-objective
optimization instead; with both the time and distance as
optimization factors. In [17], a genetic algorithm have been
developed to handle such problems.

Another approach to this multi-optimization problem is
to consider the fuel usage of the trajectory. Such a parameter

will combine the two other parameters, as it will strike
a balance between the fastest solution and the slowest
solution, choosing a speed that is probably closer to the
cruising speed of the aircraft, where it has the best mileage.

ACKNOWLEDGMENT

This work is supported by the Danish Council for Strategic
Research under grant no. 09-067027 (ASETA). See www.
aseta.dk for more details.

REFERENCES

[1] L. E. Dubins, “On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents,” American Journal of Mathematics, vol. 79, no. 3, p.
497, Jul. 1957.

[2] K. Savla, E. Frazzoli, and F. Bullo, “On the point-to-point and traveling
salesperson problems for Dubins’ vehicle,” in Proceedings of the 2005,
American Control Conference, 2005. Portland, OR, USA: IEEE,
2005, pp. 786–791.

[3] J. L. Ny, E. Feron, and E. Frazzoli, “On the Dubins Traveling Salesman
Problem,” IEEE Transactions on Automatic Control, vol. 57, no. 1, pp.
265–270, 2012.

[4] H. Chitsaz and S. M. LaValle, “Time-optimal paths for a Dubins
airplane,” in 2007 46th IEEE Conference on Decision and Control.
IEEE, 2007, pp. 2379–2384.

[5] S. Hota and D. Ghose, “Optimal geometrical path in 3D with curvature
constraint,” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, Oct. 2010, pp. 113–118.

[6] P. Sujit, S. Saripalli, and J. Sousa, “Unmanned Aerial Vehicle Path
Following: A Survey and Analysis of Algorithms for Fixed-Wing
Unmanned Aerial Vehicles,” IEEE Control Systems, vol. 34, no. 1,
pp. 42–59, 2014.

[7] R. M. Karp, “Reducibility among combinatorial problems,” in Com-
plexity of Computer Computations, R. E. Miller and J. W. Thatcher,
Eds. New York: Plenum Press, 1972, pp. 85–103.

[8] S. Lin and B. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations research, vol. 21, no. 2, pp.
498–516, 1973.

[9] K. Helsgaun, “General k-opt submoves for the LinKernighan TSP
heuristic,” Mathematical Programming Computation, vol. 1, no. 2-3,
pp. 119–163, Jul. 2009.

[10] X. Yu and J. Y. Hung, “A genetic algorithm for the Dubins Travel-
ing Salesman Problem,” in 2012 IEEE International Symposium on
Industrial Electronics. IEEE, May 2012, pp. 1256–1261.

[11] A. M. Shkel and V. Lumelsky, “Classification of the Dubins set,”
Robotics and Autonomous Systems, vol. 34, no. 4, pp. 179–202, Mar.
2001.

[12] P. Larrañaga, C. M. Kuijpers, R. H. Murga, I. n. Inza, and S. Diz-
darevic, “Genetic Algorithms for the Travelling Salesman Problem:
A Review of Representations and Operators,” Artificial Intelligence
Review, vol. 13, no. 2, pp. 129–170, 1999.

[13] L. Davis, “Applying adaptive algorithms to epistatic domains,” in
IJCAI’85 Proceedings of the 9th international joint conference on
Artificial intelligence, vol. 1. Morgan Kaufmann Publishers Inc.,
Aug. 1985, pp. 162–164.

[14] G. Reinelt, “TSPLIB–A Traveling Salesman Problem Library,” ORSA
Journal on Computing, vol. 3, no. 4, pp. 376–384, Nov. 1991.

[15] T. Ray, H. K. Singh, A. Isaacs, and W. Smith, “Infeasibility Driven
Evolutionary Algorithm for Constrained Optimization,” in Constraint-
Handling in Evolutionary Optimization, E. Mezura-Montes, Ed.
Springer Berlin Heidelberg, 2009, pp. 145–165.

[16] A. Tsourdos, B. White, and M. Shanmugavel, Wiley: Cooperative
Path Planning of Unmanned Aerial Vehicles. John Wiley &
Sons, Ltd, 2011. [Online]. Available: http://eu.wiley.com/WileyCDA/
WileyTitle/productCd-0470741295.html

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

