
Aalborg Universitet

Harvester

Influence Optimization in Symmetric Interaction Networks

Ivanov, Sergei; Karras, Panagiotis

Published in:
2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)

DOI (link to publication from Publisher):
10.1109/DSAA.2016.95

Creative Commons License
Unspecified

Publication date:
2016

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Ivanov, S., & Karras, P. (2016). Harvester: Influence Optimization in Symmetric Interaction Networks. In 2016
IEEE International Conference on Data Science and Advanced Analytics (DSAA) IEEE (Institute of Electrical
and Electronics Engineers). https://doi.org/10.1109/DSAA.2016.95

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/DSAA.2016.95
https://vbn.aau.dk/en/publications/338c29c1-1800-4521-af1b-db30a9e924be
https://doi.org/10.1109/DSAA.2016.95

Harvester: Influence Optimization in Symmetric
Interaction Networks

Abstract—The problem of optimizing influence diffusion in
a network has applications in areas such as marketing, disease
control, social media analytics, and more. In all cases, an initial set
of influencers are chosen so as to optimize influence propagation.
While a lot of research has been devoted to the influence
maximization problem, most solutions proposed to date apply
on directed networks, considering the undirected case to be
solvable as a special case. In this paper, we propose a novel
algorithm, Harvester, that achieves results of higher quality than
the state of the art on symmetric interaction networks, leveraging
the particular characteristics of such networks. Harvester is
based on the aggregation of instances of live-edge graphs, from
which we compute the influence potential of each node. We
show that this technique can be applied for both influence
maximization under a known seed size and also for the dual
problem of seed minimization under a target influence spread.
Our experimental study with real data sets demonstrates that:
(a) Harvester outperforms the state-of-the-art method, IMM,
in terms of both influence spread and seed size; and (b) its
variant for the seed minimization problem yields good seed size
estimates, reducing the number of required trial influence spread
estimations by a factor of two; and (c) it is scalable with growing
graph size and robust to variant edge influence probabilities.

I. INTRODUCTION

The enormous growth of information represented in the
form of networks, such as protein interaction networks, online
social networks, communication networks, etc. has created the
opportunity to study the spread of artifacts, information, dis-
eases, trends, as well as business opportunities leveraging the
results of such studies; moreover, as large-scale networks with
users’ relationships and history of online activity become avail-
able for researchers, they pose new computational challenges.
However, despite a widespread belief that such networks
are valuable in biotechnology, disease control, advertising,
and marketing, much of this potential remains untapped. For
example, STRING, a database of known and predicted protein
interactions, currently covers 9,643,763 proteins from 2,031
organisms1; microblogging social service Twitter was valued
at $35 billion2 in January 2014, but its expected revenue for the
same year was around $1.2 billion 3. In effect, new algorithms
that can efficiently deal with massive-scale networks are of
paramount interest.

A problem that has received a great amount of atten-
tion in this regard is the influence maximization problem
[1]. Consider the following scenario: a mobile development
company releases a new game, which is promoted through
advertising in social networks. The company plans to target
a few individuals promising free subscription who will then

1http://www.wolframalpha.com/input/?i=Market+capitalization+of+Twitter+in+January+2014
2Wolfram Alpha: Market capitalization of Twitter in January 2014
3TechCrunch: Twitter Beats In Q1 With $250M In Revenue And Picks Up 14M New Monthly Active Users

share a short description of the game with their friends. In
turn, their friends may find the game interesting and spread
the information further to the circle of their friends, and so
on. This word-of-mouth effect, in which people adopt new
products because their friends did so already, is called viral
marketing.

Realistically, a company has a budget constraint on the
number of users it can target at the outset. In the influence
maximization problem, we aim to maximize the expected
spread (or adoption) of a product, trend, or behavior, in the
network by selecting a seed set of initial adopters of a fixed
size. The propagation of influence in the network may be
carried out by some diffusion model over a network where
each edge is assigned a probability that influence is carried
across it, such as the Independent Cascade or Linear Threshold
model. Past research has proposed solutions to this problem
[2], [3], [4], [5], [6], showing that a good initial choice of nodes
can result in manyfold increase in probabilistically expected
influence spread compared to choosing nodes uniformly at
random.

While the influence maximization problem has attracted
abundant attention, extant solutions consider by default the
influence propagates on a directed graph. While this is a
general scenario, it remains the case that many real-world
interaction networks, such as some neural networks, protein
interaction networks, and communication networks, represent
symmetric interactions, and are therefore undirected, i.e., links
are symmetric; given such symmetric links, influence is also
exercised symmetrically across a connection. Nevertheless,
other than a theoretical analysis in [7], previous research has
not attempted to provide algorithms tailored for undirected
graphs in particular; they provide solutions for directed graphs,
and assume that the undirected case can be handled as a special
case, without need for special solutions.

Furthermore, to the best of our knowledge, most algorithms
proposed in previous research share a fundamental character-
istic: they build their solutions in a monotonic, incremental,
greedy manner, adding one node at a time to the output seed
set. Nevertheless, even though this strategy allows for the pro-
vision of approximation guarantees due to the submodularity
of the underlying objective function [1], it remains the case
that the optimal solution to the problem does not share such
monotonicity - after all, if it did, the problem would not be NP-
hard: the optimal seed set of size k is not necessarily a subset
of the optimal seed set of size k+1; yet, extant solutions work
as if that were the case; therefore, there is arguably work room
for algorithm that would work in a different manner, returning
substantially different solutions for different seed set sizes.

Last, the dual variant of the problem, which is of no less
importance, has not received much attention either. In this

http://www.wolframalpha.com/input/?i=Market+capitalization+of+Twitter+in+January+2014
http://www.wolframalpha.com/input/?i=Market+capitalization+of+Twitter+in+January+2014
http://techcrunch.com/2014/04/29/twitter-beats-in-q1-with-250m-in-revenue-and-picks-up-14m-new-monthly-active-users

seed minimization problem, the objective is to minimize the
number of initial adopters that can achieve a certain critical
level of influence spread in the network. Following up on
the previous example, a mobile development company may
want to reach a critical number of adopters so that a game
becomes a hot app that can be promoted by reviewers of
media websites, special sections in game stores, and social
network celebrities. Once such a critical level of adoption is
reached, it will eventually bring about even bigger cascade
of adoption and increased sales for the company. The seed
minimization problem corresponds to such a scenario, where
we are searching for a minimal number of selected users who
can bring influence propagation to a certain level; their minimal
number ensures minimization of initial costs. Solutions for
this problem variation have been proposed in the recent years
to address some of the challenges [8], [9], [10]. However,
questions of efficiency and scalability remain unanswered.

In this paper, we address each of the aforementioned
three challenges: we provide novel influence maximization
algorithms especially tailored for undirected graphs, leveraging
the characteristics of such graphs; our solutions are constructed
in a non-monotonic manner, producing substantially different
output seed sets for different seed sizes k; last, we address
the dual, seed minimization problem in a non-trivial yet
efficient manner, and not as a by-product of an algorithm for
the primal influence maximization problem. In both problem
cases, our algorithms are based on instance aggregation, where
an instance corresponds to a live-edge graph, i.e., a graph
extracted by letting each possible edge be either active or
blocked, according to its activation probability. Our algorithms
consist of two phases; the first, accumulation phase, assigns
scores to all nodes in the graph based on the size of a connected
component they belong to in each live-edge instance, which
captures a node’s potential to propagate influence on that
instance; the second, penalization phase, selects nodes or-
dered by accumulated score, while penalizing their immediate
neighbors. We name our heuristic Harvester, drawing from
the analogy of sowing seeds and mowing harvest; such an
analogy applies to the problem’s objective, in which a seed
results into an influence spread as a harvest, and also to the
way our algorithm operates, as the collected scores can be
viewed as the seed sowed and the solution as the harvest; this
harvested solution is not monotonic with respected to seed size
k, as the k parameter is taken into account and plays a role
throughout the operation of our algorithm.

Our approach works for both the influence maximization
problem and its dual, seed minimization problem. Its applica-
tion on the former is unproblematic, as the number of nodes
that have to be selected is a constraint of the problem known
in advance. However, its application on the latter problem is
more challenging, just as it is for any influence maximization
algorithm. In principle, any such algorithm can be used for
solving the seed minimization problem via a trial-and-error
process, using, e.g., binary search on the domain of seed sizes,
until convergence to the minimum seed size that achieves the
desired spread coverage. However, this trial-and-error process
is bound to be very costly, because every step thereof requires
an expensive evaluation of influence spread, and the number
of steps may be high.

Surprisingly, our instance aggregation method has a prime

advantage over competing methods when applied on the seed
minimization problem: it yields a good a priori estimate of
the final seed size, thereby reducing the number of required
influence spread estimations. Such an estimate is achieved
using collected statistics, in particular the average number, over
all live-edge graph instances, of connected components who
cumulatively achieve the target spread. Using this estimate,
as we show, we need less than half the number of influence
spread evaluations carried out during the search process, in
comparison to other heuristics.

The rest of the paper is organized as follows. In Section II
we present related work in the area. Sections III and IV outline
our algorithm for influence maximization and its adaptation
for seed minimization. We present our experimental results in
Section V and conclude the paper in Section VI.

II. RELATED WORK

The influence maximization problem has attracted a lot of
attention in the last decade; Kempe et al. [1] first posed it for
two classic diffusion models, Independent Cascade (IC) and
Linear Threshold (LT), and provided greedy algorithms with
approximation guarantees, relying on iterative re-computations
of the expected marginal influence spread gain for each node.
Chen et al. [3], [11] proved that computing the expected
influence spread for any given seed set is #P-hard, prompting
the study of fast scalable algorithms. Cheng et al. [12] provide
a static implementation of the greedy algorithm that trades
off repetitive Monte Carlo simulations for higher memory
consumption.

Leskovec et al. [13] proposed lazy evaluations, a technique
that reduces the number of influence spread evaluations in
the greedy algorithm. The idea is that if, at any iteration,
the marginal gain of a node u exceeds the marginal gain of
another node v at a previous iteration, then we do not need
to recompute the influence spread for v, due to the influ-
ence functions’s submodularity (diminishing returns property).
Goyal et al. [14] proposed CELF++, an improvement over
lazy evaluations that gains about 1000-fold speed-up over the
original greedy approach.

Another approach for tackling the running time of the
greedy algorithm is to eschew independent influence compu-
tations for each node, and perform batch estimates instead
[15], [2]. More drastic ways to reduce runtime attempt to
approximate influence spread [2], [3], [11], [4], [16], [5], [6].
For instance, Chen et al. [3] propose leveraging arborescences,
local structures for which we can estimate influence spread
in polynomial time; Kim et al. [17] suggest the Independent
Path Algorithm (IPA), for the Independent Cascade diffusion
model, which takes a heuristic shortcut to approximating
influence by considering an independent influence path as an
influence evaluation unit; most recently, Tang et al. [6] apply
a martingale-based approach to achieve high-quality solutions
in near-linear time, which provides the state of the art in
that respect. Yet the aforementioned algorithms are tailored
for directed networks, while most of them, with the cardinal
exception of [5], [6], follow the logic of the greedy algorithm
[1], forfeiting the opportunity to produce non-monotonic so-
lutions; a recent heuristic [18] exploits this very greedy logic,
by finding and leveraging a ranking of nodes self-consistent
with their ranking-based marginal influence spreads.

Alternatively, Wang et al. [19] follow a community-based
approach to the problem; Jiang et al. [20] apply simulated
annealing on it; Chen et al. [21] study an extension that incor-
porates the emergence and propagation of negative opinions.
Goyal et al. [22] examine how available historical propagation
traces can be leveraged to learn how influence actually flows
in the network and uses this to estimate expected influence
spread. Li et al. [23] examine the problem in a conformity-
aware manner, taking into consideration not only people’s
ability to influence others, but also their inclination to be
influence by their environment.

Less attention has been paid to the dual problem of
influence maximization, the seed minimization problem: given
a coverage threshold T , find a seed set of minimal size, such
that it propagates influence to coverage T under a diffusion
process. This problem was first considered by Ning Chen [8]
under the fixed threshold model, a variation of the LT model,
in which a deterministic activation threshold is chosen for each
node; Chen shows that the problem is inapproximable within
a poly-logarithmic factor unless NP ⊆ DTIME(npolylog(n)) by
reduction to the Minimum Representative problem, and pro-
vides a polynomial-time algorithm for the case the underlying
graph is a tree. Ben-Zwi et al. [24] solved the problem for
bounded tree-width graphs under the same model in O(nO(w)),
where w is the width of the graph. Goldberg and Liu [25]
provided an LP-based approximation algorithm for the LT
model with a deterministic threshold and the distinction that
not only the active neighbors of a node v can influence v,
but all active nodes that can reach v through other active
nodes. Both aforementioned models are deterministic and not
submodular.

Goyal et al. [9] develop a greedy algorithm that aims to
minimize target set cost c(S) =

∑
v∈S c(v), where c(v) ≥ 0

are non-uniform node costs, a generalization of the seed
minimization problem; they provide a bicriteria approximation,
where, given a desired coverage η and a shortfall parameter
ε > 0, for the solution S it holds that σ(S) ≥ η − ε and
c(S) ≥ c(S∗)(1+ ln(η/ε), where σ(S) is the spread achieved
by set S and S∗ the optimal solution, i.e., the offered solution
exceeds the optimal one in terms of cost by a logarithmic
factor, while its coverage falls short of the required coverage
by ε. Zhang et al. [10] study the seed selection problem
with a probabilistic guarantee, where the produced solution
S should reach coverage η with probability at least P . They
show that the set functions are not submodular in this case,
while the problem is #P-hard, and provide a greedy algorithm
with a loose approximation guarantee. More recently, Lei et
al. [26] study the problem of Online Influence Maximization
(OIM), where influence probability information is not given
in advance; the solution relies on real-world user feedback to
update its influence probability model while running influence
campaigns. Any existing IM algorithm can be used in this
framework [26].

III. INFLUENCE MAXIMIZATION

In this section we present our heuristic for influence
maximization under the IC model on undirected graphs.

A. Problem definition

Consider a social network as an undirected graph G =
(V,E), where V is a set of vertices that represent individuals
and E is a set of edges that represent mutual relationship
between individuals. For example, in the peer-to-peer network
Gnutella,4 nodes are hosts in the network and edges are
connections among those hosts.

Each node u ∈ V can be either active or inactive,
depending on whether it has been already influenced or not.
Once a node becomes active, it stays in that state until the end
of the diffusion process. Each edge (u, v) is associated with
a propagation probability, puv , i.e., the probability that active
node u activates inactive node v, or vice versa.

We consider a popular propagation model, the Independent
Cascade (IC) model. The IC propagation model defines a
diffusion process that starts from the set of active nodes S0

and goes through a sequence of steps as follows. Let Si be a
set of nodes in G that are activated during time step i. Then,
at step i+1, any inactive node v with at least one neighbor in
Si can be activated with probability 1−

∏w
i=1 (1−pei), where

pei is the activation probability on edge ei between v and a
node u ∈ S, 1 ≤ i ≤ w and w the total number of such
edges, allowing duplicate edges between v and the same node
u ∈ S; hence, each edge is given exactly one chance to be
activated, and the diffusion process stops when there are no
newly activated nodes at a step j, i.e. Sj=∅.

The diffusion process has to start from an initial seed set of
active nodes S0. The objective of the influence maximization
problem for a parameter k is to find a target seed set S0 of size
k that maximizes the expected number of influenced nodes at
the end of a diffusion process under the IC model, σ(S0). This
problem is NP-hard [1].

B. The Live-Edge Graph

In the IC model, each node gets only a single chance
to activate its neighbors after it is itself activated. However,
it has been shown that the final set of active nodes can be
equivalently found by means of a live-edge graph [1].

Consider a time step t of the IC diffusion process. A node
u that has just become active, is then given a chance to activate
a neighbor v along edge euv with probability peuv . Such an
activation of v by u is independent of other nodes in the
network. Thus, edge euv is present in the network, or live,
with probability peuv

, or, otherwise, it is blocked. Then the
following proposition holds [1]:

Proposition 3.1: A node v is active iff there is a path from
the set of initially activated nodes S0 to v made entirely of live
edges.

By Proposition 3.1, we can view the IC diffusion process as
follows: we first decide whether an edge is live or blocked, and
then, starting from seed set S0, we activate all nodes reachable
by other active nodes via live-edge paths. Let RG(S) be the
set of nodes that is reachable from S in graph G and let G′=
(V ′, E′), where V ′ ≡ V and E′ is the set of live edges in E,
i.e. G′ is the graph that results by keeping only live edges in
G. Then, the final active set is the set of nodes reachable from

4http://snap.stanford.edu/data/p2p-Gnutella09.html

http://snap.stanford.edu/data/p2p-Gnutella09.html

S0 in G′, RG′(S0). We suggest that this alternative view of
the diffusion process can be leveraged to measure the potential
each node has to activate other nodes, thereby suggesting good
choices for seed set S0.

C. Direct Harvester

Our algorithm starts out from the following observation,
which is specific to undirected networks: when we remove
blocked edges from a connected undirected graph G, we end
up with a live-edge graph instance G′ having, in general,
many disjoint connected components (CCs). Then, for a given
seed budget of k nodes, we can retrospectively maximize the
influence spread on instance G′ itself by including in seed set
S one node from each of the top-k CCs by size (breaking
ties arbitrarily). That is so because, if we arbitrarily pick up a
node v from a connected component CC and include it in S,
then all other nodes in CC will be activated by the diffusion
process, according to Proposition 3.1. Thus, by choosing any
node from each of the k largest CCs, we ensure activating all
nodes in those CCs, and hence maximizing influence spread
in graph instance G′.

Nevertheless, our above observation is valid only for a
particular graph instance G′ at hand. The solution maximizing
influence spread on a particular G′ does not necessarily
maximize influence spread in expectation, for any randomly
generated graph G′. Yet, it provides a sample of how a
diffusion process may look. We propose that, by generating
many such graph instances G′ and aggregating a score per node
from all of them, we can end up with a good approximation
of each node’s importance in the overall diffusion process.
Then, our solution will consist of the k nodes of highest
score. This process of assigning scores to nodes is called score
accumulation phase.

The question that arises is how exactly we should collect
scores. The score of a node v should reasonably depend on
the number of times v appears among the top-k CCs of a
graph instance G′. At the same time, we should take into
consideration the fact that, in each graph instance G′, one
and only one node v per top-k connected component CC is
sufficient to lead to a maximum-influence solution on G′. Thus,
the scores we assign should be shared among nodes within the
same CC. Putting these two considerations together, we have
concluded that a reasonable score function for node v is simply
f(v) = 1; we have experimentally verified that this score
function produces better results than other functions we could
use, including f(v) = 1

|CCv| and f(v) = |CCv|, where |CCv|
is the size of the CC to which v belongs. Eventually, after R
iterations, those nodes that have accumulated the highest scores
will be good candidates for inclusion into the seed set S of
size k. The produced solution is non-monotonic: the solution
for size k is not necessarily a subset of the solution of size
k + 1.

While the accumulation phase collects scores that indicate
good candidates for inclusion, it suffers from a drawback:
neighboring nodes may find themselves in the same CC too
often, and collect similar scores as each other, even though
only one of them would be in most cases sufficient to bring
about the same influence effect that both of them exert.
Therefore, we reason that, once a node u is selected into the

seed set S, then, for each edge euv incident on u, the score
of node v, adjacent node to u, who is likely to be in the same
CC as u, should be penalized in a manner proportional to
the score v has accumulated and the probability that euv is
active, peuv . This process of penalizing the scores of selected
nodes’ neighbors is called penalization phase. In detail, in
the penalization phase we include nodes to the seed set S
by descending score, while, at the same time, for each edge
euv incident on a selected node u, we update the score of node
v, adjacent to u, by the formula sv = (1− peuv

) · sv .

Algorithm 1: Harvester(G, k)
initialize S = ∅;1
/* accumulation phase */2
sv = 0 for all v ∈ V ;3
for i = 1 to R do4

generate G′ keeping each edge e∈G with prob. pe;5
find top-k connected components CCG′ in G′;6
for j = 1 to k do7

for node v ∈ CCG′(j) do8
sv+ = 1;9

/* penalization phase */10
for i = 1 to k do11

select u = argmax(sv|v ∈ V \ S);12
S = S ∪ {u};13
for each edge euv , v ∈ V \ S do14

sv = (1− peuv
) · sv;15

output S;16

Algorithm 1 presents our Harvester heuristic. Setting m =
|E| and n = |V |, we compute connected components in an
O(m) BFS, and maintain a Fibonacci heap of the top-k com-
ponents by size. As there are O(n) CCs in any graph instance
in the worst case, each iteration of the accumulation phase
needs O(m+n+k log(n)) time, hence O(R(m+n+k log(n))
for R iterations. In the penalization phase, we store the score
values in a Fibonacci heap, hence need O(k log(n)+m), where
O(m) stands for penalization operations across edges. Thus,
the time complexity of Algorithm 1 is O(R(m+n+k log(n)),
dominated by the accumulation phase.

IV. SEED MINIMIZATION

We now examine the seed minimization problem and
propose adaptations of Harvester and other algorithms for it.

A. Problem Definition

As with the influence maximization problem, we are given
an undirected graph G = (V,E), where V is a set of nodes
and E is a set of edges, and a set of edge probabilities
{puv|(u, v) ∈ E} that determines the influence that nodes u
and v have on each other. The influence of nodes on each other
follows a diffusion process under the IC model as previously
defined. Now we are given a target influence spread T ≤ |V |,
i.e., the expected number of nodes in a graph G that will
be activated following a cascade diffusion starting with some
initial seed set S0. Our objective is to minimize the size of a
seed set S0 ⊂ V .

This problem is the dual of the influence maximization
problem. In the latter, the number of nodes in S0 is a constraint

and the achieved influence spread is an objective function,
while in the former, the reverse is that case. The dual problem
is of no less practical interest than the primal; a company that
releases a new product in the market may be interested to
achieve adoption from a certain number of customers. In such
a case, it is more appealing to provide just enough budget
of initial adopters so as to achieve the target spread, than
to maximize adoption for a fixed arbitrary number of initial
adopters. Next, we present a variation of the Harvester heuristic
for seed minimization, as well as the general application of
influence maximization algorithms on the dual problem.

B. Algorithms for Seed Minimization

A natural way of solving the seed minimization problem
is presented in Algorithm 2. At each iteration, we select the
node with the largest marginal influence, i.e., the node that
will activate more nodes than any other inactive node in the
graph. We keep adding nodes until we reach T .

Algorithm 2: Greedy(G, T)
initialize S = ∅;1
while σ(S) < T do2

select u = argmaxv∈V \S (σ(S ∪ {v})− σ(S));3
S = S ∪ {u};4

output S;5

Let k be the size of the produced seed set S and assume
we need R iterations to compute the expected influence spread
for each vertex v ∈ V \ S. As it takes O(m) to compute
influence spread for one node at one iteration, the running
time of Algorithm 2 is O(knRm).

While this greedy algorithm is tailored for seed minimiza-
tion problem, we can also apply algorithms developed for
influence maximization problem in order to get a solution
for the dual problem. Let Alg be an algorithm for influence
maximization, such that, given a graph G with assigned edge
probabilities, and a seed set budget k, Alg returns a subset
S ⊆ V of size k. Then, we can apply algorithm Alg to
solve the seed minimization problem by incremental search,
as shown in Algorithm 3. This algorithm is guaranteed to find
a solution as long as T ≤ |V |, while its running time depends
on the running time of Alg. Letting |S∗| be the final size of
S and U the time complexity of Alg, the time complexity of
Algorithm 3 is O(|S∗|RmU).

Algorithm 3: Incremental Search(G, T , Alg)
initialize k = 0;1
while σ(S) < T do2

k+ = 1;3
S = Alg(G, k);4

output S;5

Still, to reduce the number of influence spread calculations,
we can employ binary search, as shown in Algorithm 4. We
first find Low and High seed size values for which the spread
achieved by Alg are σ(SLow) ≤ T ≤ σ(SHigh), and then let
the binary search process converge to a seed set size value
k for which Alg achieves the target influence spread T . This
algorithm will converge to a solution even if the influence

spread achieved by Alg is not a monotonic function of seed
set size k. However, state-of-the-art influence maximization
algorithms do provide such monotonicity, since they build their
solutions by incrementally adding more nodes to S in a greedy
fashion.

Algorithm 4: Binary Search(G, T , Alg)
initialize High = 1;1
while σ(S) < T do2

High = 2High;3
S = Alg(G,High);4

Low = bHigh
2 c;5

while Low + 1 < High do6

k = Low + bHigh−Low
2 c;7

S = Alg(G, k);8
if σ(S) ≥ T then9

High = k;10
else11

Low = k;12
output S;13

C. Reverse Harvester

In contrast to state-of-the-art algorithms for influence
maximization, our Harvester algorithm can be conveniently
modified so as to be applied to the dual, seed minimization
problem. This modification can be brought about as follows:
Instead of aiming at the top-k CCs at each iteration for a fixed
k, we can find the minimum number t, such that the top-t
CCs by size achieve, when put together, a cumulative size at
least equal to the target spread T ; we emphasize that t is not a
fixed parameter of the algorithm, but a variable value computed
during each iteration.

Then, if we average the observed values of t over all R
iterations, we obtain a good, albeit optimistic, estimate of the
seed size value that can achieve target spread T ; we say this
is an optimistic estimate because, in each of R iterations, the
top-t CCs are selected a posteriori, after generating a live-edge
graph; this state of affairs does not correspond to a real-world
scenario. Still, this estimate can be used as an initial value of
High in binary search.

Algorithm 5 presents the adaptation of Harvester for seed
selection. It consists of three phases. In the accumulation
phase, we collect scores for nodes in R iterations. At each
iteration, as before, we first generate a live-edge graph G′ and
then assign scores to the nodes in the t top-sized components,
which collectively achieve size T (including ties in the t-
th position). As before, we store connected components in a
priority queue while exploring the graph using DFS or BFS
and assign scores to the nodes of the top CCs in this priority
queue. We average the values of t over all iterations so as to
get a good (optimistic) estimate L of the required initial seed
set size.

In the penalization phase we select first L nodes by
descending score, while penalizing the score of each adjacent
neighbor v of a node u across an edge euv by peuv

of its
previous score value sv , as we did before. Then, we enter
the binary search phase, in which we search for a seed set
size along the list of nodes by descending penalized score,

that achieves just enough influence spread, starting out from
size L; at the first stage of this binary search, we increase the
seed set size, along with penalization, until its influence spread
exceeds T ; then we enter a regular binary search operation.
As discussed, L is an optimistic estimate, therefore the final
selected seed size is usually in the range of 1.5L to 1.8L. Still,
as we will show in the next section, the number of required
influence spread calculations we need to perform is up to two
times less compared to the adaptations of existing heuristics
for influence maximization by Algorithm 4.

Algorithm 5: Reverse Harvester(G, T)
initialize S = ∅;1
sv = 0 for all v ∈ V ;2
L = 0;3
/* accumulation phase */4
for i = 1 to R do5

generate G′ by keeping each edge e ∈ G with prob.6
pe;
select top-t CCs in G such that7 ∑t

i=1 |CCG′(i)| ≥ T ;
for j = 1 to t do8

for node v ∈ CCG′(j) do9
sv+ = 1;10

L+ = t/R11
/* penalization phase */12
for i = 1 to L do13

select u = argmaxv{sv|v ∈ V \ S};14
S = S ∪ {u};15
for each edge euv , v ∈ V \ S do16

sv = (1− peuv
) · sv;17

/* binary search phase */18
initialize High = L;19
while σ(S) < T do20

High = 2High;21
while |S| < High do22

select u = argmaxv{sv|v ∈ V \ S};23
S = S ∪ {u};24
for each edge euv , v ∈ V \ S do25

sv = (1− peuv
) · sv;26

Low = bHigh
2 c;27

while Low + 1 < High do28

k = Low + bHigh−Low
2 c;29

S = first k nodes by penalized score sv;30
if σ(S) ≥ T then31

High = k;32
else33

Low = k;34
output S;35

V. EXPERIMENTAL EVALUATION

In this section, we present our experimental study com-
paring our algorithms for influence maximization and seed
minimization to the state-of-the-art algorithm in terms of
the quality/efficiency tradeoff, IMM [6], on real-world data
sets. Our approach is thereby shown to perform significantly
better than the current state-of-the-art competing approach
on both problems with undirected graphs; on the influence
maximization problem, we achieve influence spread that is
higher than that achieved by the state of the art methods,

while running faster; on the seed minimization problem, our
approach requires substantially fewer influence spread eval-
uations, and, thus takes substantially less time, while also
achieving comparable or smaller seed set size for a wide range
of target influence spread thresholds.

A. Experiment setup

Data sets. For evaluation purposes we run our algorithms
against two real-world undirected, symmetric interaction net-
works. The first network, Astro, is an academic collaboration
network in the Astrophysics section of the e-print arXiv5.
Our second data set is the Gnutella peer-to-peer file sharing
network from August 20026. In this network nodes are hosts
in the Gnutella network and edges are connections between
the hosts. We refer to these networks as Astro and Gnutella
networks. Statistics on them are provided in Table I.

TABLE I – Statistics for two real data sets.

Data set Astro Gnutella
Number of nodes 18K 8K
Number of edges 198K 26K
Clustering coefficient 0.63 0.009
Diameter (longest shortest path) 14 10

Cascade models. We compare all algorithms under the
general IC model with non-uniform propagation probabilities,
using the following three models to assign propagation prob-
abilities to edges of a graph:

• MultiValency model: This is a model similar to the
TRIVALENCY model reported in Chen et al. [3]. For
every edge of the graph we select a value from the
set {0.01, 0.02, 0.04, 0.08} uniformly at random. We
have tested results for TRIVALENCY model as well,
and found similar results.

• Random model: Similarly to the MultiValency model,
we select a propagation probability uniformly at ran-
dom from the range [0, 0.1]. The average and maxi-
mum possible probabilities are larger than those for
MultiValency, thus, in general, with this model all
tested algorithms result in larger influence spread.

• Categories model: Based on the assumption that nodes
with high degrees are likely to have larger influence
on their neighbors, the Categories model is built in
the following manner: let {0.01, 0.02, 0.04, 0.08} be
a set of possible probability values. We sort nodes
by their degrees in ascending order and divide them
into four equal-sized chunks (except, maybe, the last
chunk). We map the set of values to the chunks so that
nodes with low degrees have value 0.01, while nodes
with high degree have highest possible value 0.08. For
an edge (u, v) we pick a propagation probability at
random between value of u and value of v.

We wish to explicitly clarify that we are aware of other
methods to assign probabilities to the edges; however, those
require additional input to the problem [22]. In addition, we

5https://snap.stanford.edu/data/ca-AstroPh.html
6http://snap.stanford.edu/data/p2p-Gnutella09.html

https://snap.stanford.edu/data/ca-AstroPh.html
http://snap.stanford.edu/data/p2p-Gnutella09.html

(a) MultiValency, Gnutella network (b) MultiValency, Astro network

(c) Random, Gnutella network (d) Random, Astro network

(e) Categories, Gnutella network (f) Categories, Astro network

Fig. 1 – Influence spreads in the Gnutella and Astro networks

note that probability values of magnitude higher than 0.1
render the problem less challenging, as a spread of the whole
network can be reached with small seed sizes [1].

Algorithms. We compare our Harvester heuristic against
the current state-of-the-art scalable heuristic for the influence
maximization problem; hence the compared algorithms are:

• Harvester: Our Algorithm 1 based on the aggregation
of live-edge graphs. We use R = 500 iterations; we
found out that our results showed little difference in
influence spread for values beyond that.

• IMM IMM, or Influence Maximization via Martingales
[6], is the established state-of-the-art algorithm for the
problem; it has been shown to be superior to TIM,

or Two-phase Influence Maximization [5], in terms
of running time, while achieving the same influence
spread. In its own turn, TIM has been previously
compared to then state-of-the-art algorithms such as
Reverse Influence Sampling (RIS) [27] (from which it
inherits), IRIE [16], and CELF++ [14] (tantamount to
the classical Greedy approach), and shown to achieve
better performance than those predecessors in terms
of both influence spread and running time. Therefore,
it is reasonable to focus on comparing Harvester’s
results against those of IMM for evaluation purposes.

For all algorithms, to calculate the expected influence
spread after obtaining their seed set output, we run Monte
Carlo simulations with the IC model and non-uniform proba-

MultiValency, Astro network Random, Astro network Categories, Astro network

Fig. 2 – Running time for Influence Maximization problem in the Astro network

MultiValency, Astro network Random, Astro network Categories, Astro network

Fig. 3 – Running time for Seed Minimization problem in the Astro network

bilities, and take the average of the observed influence spread
over 10,000 runs.

B. Experimental Results

We now summarize our experiment results for different
data sets under different probability models.

1) Influence Spread: We start out by measuring the influ-
ence spread, with the value of seed set size k ranging from
60 to 150. Figure 1 shows our influence spread results with
the Gnutella and Astro networks. We observe that Harvester
consistently outperforms IMM. For instance, with the Astro
network, the average obtained difference in terms of spread
is 90, 50, and 40 nodes with the Categories, Random, and
Multivalency models, respectively; the obtained picture is
similar with the Gnutella network.

2) Runtime: Next, we measure the runtime that both al-
gorithms need in order to achieve the spread results we have
presented. Figure 2 reports our results under the same settings,
in which both algorithms need to return seed set S of size
k ranging from 60 to 150, on the larger Astro network; the
runtime for calculating the final influence spread, which is
the same in both cases, is not included. Note that the y-
axis is now in logarithmic scale. These experiments were
run on an Intel Core i5-2450M CPU machine @ 2.50GHz
with 6G memory, while both algorithm were implemented in
C++. For all three models, Harvester exhibits lower running
time on average than the state-of-the-art algorithm in terms
of efficiency; its advantage is magnified with the Categories
model, which is more computationally demanding, as more
influential hub nodes get higher probability values assigned
on their incident edges.

3) Runtime for Seed Minimization Problem: We now study
the runtime of the Reverse Harvester variation for the Seed

Minization problem. In this case, IMM operates by directly
applying binary search on the k parameter that the main
IMM algorithm receives as input, until it converges to the
desired estimated influence spread value. On the other hand,
Reverse Harvester works by going through the phases outlined
in Algorithm 5 in Section IV-C, where binary search is only
the last step. Figure 3 presents our results. In this case, both
algorithms’ running time is affected by two factors: (1) the
running time of the actual algorithm, and (2) the number of
binary search iterations, at the end of which influence spread
has to be calculated by a Monte Carlo simulation. The latter is
important because Monte Carlo simulations are prohibitively
expensive.

We observe that Harvester’s runtime is substantially lower
than the one by IMM, as seen on the figure’s logarithmic
axes, as it performs substantially fewer binary search iterations.
In particular, while IMM finishes in hundreds of seconds,
Harvester only needs a few seconds to discover a seed set;
these results demonstrate that Harvester vastly outperforms
the state-of-the-art scalable heuristic on the seed minimization
problem, and indicate its robustness and scalability on graphs
of large size.

4) Seed set size: Last, we study the actual seed set
size achieved by each algorithm when applied on the seed
minimization problem, as above. Figure 4 presents our seed
set size results on the y-axis, for a given value of target
influence spread on the x-axis; for each examined data set and
probability model, we consider a range of values of desired
influence spread T that presents a challenging problem, in
terms of requiring a non-trivial seed set size in order to be
achieved.

We observe that Reverse Harvester performs better than the
adaptation of IMM on the Gnutella network, as it consistently
succeeds in finding a seed set of smaller size. In the case

(a) MultiValency, Gnutella network (b) MultiValency, Astro network

(c) Random, Gnutella network (d) Random, Astro network

(e) Categories, Gnutella network (f) Categories, Astro network

Fig. 4 – Seed set size vs. influence spread in the Gnutella and Astro networks

of the Astro network, Reverse Harvester performs in a way
comparable to IMM overall, while its performance is more
distinguished in the case of the Categories model; the fact
that it fails to outperform the solution of IMM in some cases
can be attributed to the fact that it aggressively addresses
the seed minimization problem in a heuristic manner, while
IMM works in round-about fashion, via a solution for the
influence maximization problem. Yet Harvester presents itself
as an algorithm of choice for the problem due to its overall
combination of efficiency and effectiveness.

VI. CONCLUSIONS

This paper revisited the influence maximization problem,
as well as its dual variant, the seed minimization problem, on
the case of symmetric interaction networks, i.e., undirected

graphs, a case that has received limited attention to date.
We proposed Harvester, an efficient, non-monotonic heuristic,
tailored for that case; this heuristic us based on a score
aggregation process by multiple live-edge graphs, customized
for both problem variants. Our experimental study with real-
world data demonstrates that Harvester outperforms the state-
of-the-art scalable algorithm, IMM, on undirected networks
with both problems, while it is particularly more efficient
when applied on seed minimization, thanks to its capacity to
inherently provide an estimate of the minimal seed size in
advance. Overall, our Harvester algorithms provide efficient,
scalable, and robust solutions in comparison to the state-of-
the-art scalable approaches with complex graph models. In the
future, we plan to investigate how our general approach can
be adapted for other influence diffusion models.

REFERENCES

[1] D. Kempe, J. M. Kleinberg, and Éva Tardos, “Maximizing the spread
of influence through a social network,” in KDD, 2003, pp. 137–146.

[2] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in KDD, 2009, pp. 199–208.

[3] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization
for prevalent viral marketing in large-scale social networks,” in KDD,
2010, pp. 1029–1038.

[4] A. Goyal, W. Lu, and L. V. S. Lakshmanan, “SIMPATH: An efficient
algorithm for influence maximization under the linear threshold model,”
in ICDM, 2011, pp. 211–220.

[5] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: near-optimal
time complexity meets practical efficiency,” in SIGMOD, 2014, pp. 75–
86.

[6] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in SIGMOD, 2015, pp. 1539–1554.

[7] S. Khanna and B. Lucier, “Influence maximization in undirected net-
works,” in SODA, 2014, pp. 1482–1496.

[8] N. Chen, “On the approximability of influence in social networks,”
SIAM J. Discrete Math., vol. 23, no. 3, pp. 1400–1415, 2009.

[9] A. Goyal, F. Bonchi, L. V. S. Lakshmanan, and S. Venkatasubramanian,
“On minimizing budget and time in influence propagation over social
networks,” Social Netw. Analys. Mining, vol. 3, no. 2, pp. 179–192,
2013.

[10] P. Zhang, W. Chen, X. Sun, Y. Wang, and J. Zhang, “Minimizing seed
set selection with probabilistic coverage guarantee in a social network,”
in KDD, 2014, pp. 1306–1315.

[11] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in
social networks under the linear threshold model,” in ICDM, 2010, pp.
88–97.

[12] S. Cheng, H. Shen, J. Huang, G. Zhang, and X. Cheng, “StaticGreedy:
solving the scalability-accuracy dilemma in influence maximization,” in
CIKM, 2013, pp. 509–518.

[13] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen,
and N. S. Glance, “Cost-effective outbreak detection in networks,” in
KDD, 2007, pp. 420–429.

[14] A. Goyal, W. Lu, and L. V. S. Lakshmanan, “CELF++: Optimizing
the greedy algorithm for influence maximization in social networks,” in
WWW (Companion Volume), 2011, pp. 47–48.

[15] M. Kimura, K. Saito, and R. Nakano, “Extracting influential nodes for
information diffusion on a social network,” in AAAI, 2007, pp. 1371–
1376.

[16] K. Jung, W. Heo, and W. Chen, “IRIE: Scalable and robust influence
maximization in social networks,” in ICDM, 2012, pp. 918–923.

[17] J. Kim, S. Kim, and H. Yu, “Scalable and parallelizable processing
of influence maximization for large-scale social networks?” in ICDE,
2013, pp. 266–277.

[18] S. Cheng, H. Shen, J. Huang, W. Chen, and X. Cheng, “IMRank:
influence maximization via finding self-consistent ranking,” in SIGIR,
2014, pp. 475–484.

[19] Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based greedy
algorithm for mining top-k influential nodes in mobile social networks,”
in KDD, 2010, pp. 1039–1048.

[20] Q. Jiang, G. Song, G. Cong, Y. Wang, W. Si, and K. Xie, “Simulated
annealing based influence maximization in social networks,” in AAAI,
2011.

[21] W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu, D. Rincón, X. Sun,
Y. Wang, W. Wei, and Y. Yuan, “Influence maximization in social
networks when negative opinions may emerge and propagate,” in SDM,
2011, pp. 379–390.

[22] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “A data-based approach
to social influence maximization,” PVLDB, vol. 5, no. 1, pp. 73–84,
2011.

[23] H. Li, S. S. Bhowmick, and A. Sun, “CINEMA: conformity-aware
greedy algorithm for influence maximization in online social networks,”
in EDBT, 2013, pp. 323–334.

[24] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman, “An exact
almost optimal algorithm for target set selection in social networks,” in
EC, 2009, pp. 355–362.

[25] S. Goldberg and Z. Liu, “The diffusion of networking technologies,” in
SODA, 2013, pp. 1577–1594.

[26] S. Lei, S. Maniu, L. Mo, R. Cheng, and P. Senellart, “Online influence
maximization,” in KDD, 2015, pp. 645–654.

[27] C. Borgs, M. Brautbar, J. T. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in SODA, 2014, pp. 946–957.

