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MULTI-PITCH ESTIMATION OF AUDIO RECORDINGS
USING A CODEBOOK-BASED APPROACH

Martin Weiss Hansen, Jesper Rindom Jensen, and Mads Græsbøll Christensen

Audio Analysis Lab, AD:MT, Aalborg University, Denmark
{mwh,jrj,mgc}@create.aau.dk

ABSTRACT

In this paper, a method for multi-pitch estimation of single-
channel mixtures of harmonic signals is presented. Using
the method, it is possible to resolve amplitudes of overlap-
ping harmonics, which is otherwise an ill-posed problem. The
method is based on the extended invariance principle (EXIP),
and a codebook consisting of realistic amplitude vectors. A
nonlinear least squares (NLS) cost function is formed based
on the observed signal and a parametric model of the signal,
for a set of fundamental frequency candidates. For each of
these, amplitude estimates are computed. The magnitudes of
these estimates are quantized according to a codebook, and
an updated cost function is used to estimate the fundamental
frequencies of the sources. The performance of the proposed
estimator is evaluated using synthetic and real mixtures, and
the results show that the proposed method is able to estimate
multiple pitches in a mixture of sources with overlapping har-
monics.

Index Terms— Multi-pitch estimation, amplitude estima-
tion, vector quantization, music information retrieval.

1. INTRODUCTION

The pitch, or fundamental frequency, is a key feature of har-
monic signals, such as short segments of music and speech
signals. Music signals often contain multi-pitch signals, e.g.,
when multiple instruments are playing simultaneously. Pitch
estimation has applications in problems such as separation
[1], enhancement [2], automatic music transcription [3], and
source localization [4].

Two common types of pitch estimation methods exist, i.e.,
non-parametric methods, and parametric, model-based meth-
ods. Examples of single-pitch methods in the former cate-
gory include methods based on auto-correlation [5, 6]. Auto-
correlation based methods have also been used for multi-pitch
estimation, an example is [7], which is based on the enhanced
summary autocorrelation function (ESACF). However, those
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methods are sub-optimal from a statistical point of view. Ex-
amples of single-pitch methods in the latter category include
those based on maximum likelihood (ML) [8, 9] (see [10] for
further examples). Parametric multi-pitch methods also exist,
and one that uses ML estimation iteratively is the expectation-
maximization (EM) algorithm [11], while another is known as
the harmonic matching pursuit [12] (see also [10]).

Multipitch estimation becomes difficult when the pitches
have overlapping harmonics, for instance in a mixture of two
sources where the fundamental frequencies are 300 Hz and
450 Hz. A strong peak would occur at 150 Hz if using, e.g.,
the NLS estimator, which would result in wrong pitch esti-
mates. A solution might be to map the amplitude estimates to
realistic amplitudes in a codebook, e.g., using vector quan-
tization [13]. Vector quantization has previously been ap-
plied in parameter estimation of music and speech signals,
some notable references include source separation [14], and
speech enhancement [15]. Harmonic amplitude information
has been used previously in fields such as instrument recog-
nition [16], where the aim is to provide instrument labels for
frames with concurrent instruments playing, and automatic
music transcription [17, 18], where the aim is to ouput the
discrete pitches being played, along with onset times and note
durations. Discrete pitch estimates, however, are not useful
when estimating the pitch of an instrument played with vi-
brato, or for the purpose of tuning an instrument.

In this paper, we propose a method for multi-pitch esti-
mation of mixtures of harmonic signals, such as recordings of
musical instruments, where harmonics might overlap. In this
work, the mixtures are single-channel. The method is based
on the extended invariance principle (EXIP) [19, 20], and a
codebook of naturally occurring amplitude vectors, trained
using amplitude vectors of signals similar to those of inter-
est. The fundamental frequencies are estimated iteratively for
each source, and the amplitudes are quantized according to
the codebook. The idea is to investigate whether some crude
knowledge about the spectral envelope of the components of
the mixture signals is beneficial for multi-pitch estimation of
musical signals. It should be noted that we are here estimating
continuous pitch of the instruments.

The remainder of the paper is organized as follows. In
Section 2, the signal model is introduced. The proposed



multi-pitch estimator is described in Section 3. The experi-
mental setup and results are presented in Section 4, and the
work is concluded in Section 5.

2. SIGNAL MODEL

Consider a complex-valued single-channel mixture ofM har-
monic signals embedded in noise at time instant n. The data
can be represented by the snapshot x ∈ CN i.e.,

x = [x(0) x(1) · · · x(N − 1)]T . (1)

A complex signal model is used because it leads to simpler
expressions, and lower computational complexity. It should
be noted that although the signal model is complex, it can
be used with real signals by applying the Hilbert transform.
The entries in the data vector are linear superpositions of M
sources, i.e.,

x(n) =

M∑
m=1

sm(n) + e(n), (2)

where

sm(n) =

Lm∑
l=1

αm,le
jω0,mln, (3)

where ω0,m is the fundamental frequency, Lm the model or-
der (assumed known here, but can be estimated using, e.g., the
MAP method, see [10]), and, l = 1, . . . , Lm is the harmonic
index of the mth source, and

αm,l = Am,le
jφm,l (4)

is the complex amplitude, whereAm,l is the real amplitude of
the lth harmonic for the mth source, φm,l its phase, and e(n)
is assumed to be white Gaussian noise. It is assumed that the
signal is stationary during the interval n = 0, . . . , N − 1. A
vector signal model can be stated as

x =

M∑
m=1

Zm(ω0,m)αm + e, (5)

where Zm(ω0,m) is a Vandermonde matrix, i.e.,

Zm(ω0,m) = [zm,1(ω0,m) · · · zm,Lm(ω0,m)], (6)

where zm,l(ω0,m) = [1 ejω0,ml · · · ejω0,ml(N−1)]T . The
vector of complex amplitudes is

αm = [αm,1 · · · αm,Lm
]T , (7)

and
e = [e(0) e(1) · · · e(N − 1)]T . (8)

The likelihood function of the observed signal, parametrized
by

θ = [ω0,1 α
T
1 · · · ω0,M αTM ]T , (9)

can be written as
p(x;θ). (10)

Here, we are concerned with estimating the set of fundamen-
tal frequencies ω0 = [ω0,1 · · · ω0,M ]T .

3. PROPOSED METHOD

We will now derive the proposed multi-pitch estimator. For
the signal model at hand, we wish to find the parameters of
the multi-pitch mixture, i.e.,

θ̂ = arg max
θ

ln p(x;θ). (11)

For white Gaussian noise, this can be solved using the NLS
method, i.e.,

ω̂0 = arg min
ω0,m∈Ω

∥∥∥∥∥x−
M∑
m=1

Zmαm

∥∥∥∥∥
2

2

, (12)

where Ω is the set of possible frequencies. However, this is
a complicated problem to solve for all ω0,m at once. One
possible approach for estimating the parameters is to use an
iterative approach, such as the harmonic matching pursuit [12,
10], which we will use. It is based on a residual for iteration
i, defined as

r(i)(n) = x(n)−
i∑

m=1

Lm∑
l=1

αm,le
jω0,mln, (13)

which for i = 1, . . . ,M can be written as

r(i)(n) = r(i−1)(n)−
Li∑
l=1

αi,le
jω0,iln, (14)

and is used to estimate the model parameters iteratively for
each source. The method is initialized using the observed
signal, i.e., r(0)(n) = x(n). The parameters, for sources
m = 1, . . . ,M , are then estimated by solving

ω̂0,m = arg min
ω0,m,αm

∥∥∥r(i−1) − Zmαm

∥∥∥2

2
, (15)

where r(i) is a vector containing the residual. It should be
noted that the cost function is multi-modal, and we therefore
perform the minimization using a grid search. The LS esti-
mates of the amplitudes αm are [21]

α̂m =
(
ZHmZm

)−1

ZHmr(i−1). (16)

The estimate of ω0,m is found by substituting the above into
(15), i.e.,

ω̂0,m=arg min
ω0,m

∥∥∥∥r(i−1)−Zm
(
ZHmZm

)−1

ZHmr(i−1)

∥∥∥∥2

2

. (17)

The fundamental frequencies and amplitudes of the M
sources are then obtained by computing the residual (14)
and estimating the fundamental frequency using (17) and the
amplitudes using (16). However, estimating the amplitudes
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Fig. 1. Spectrum of synthetic signal used for evaluation of the
proposed method.

of overlapping harmonics is an ill-posed problem. To solve
this, we propose to make use of the EXIP [19, 20], and to
map the vector Âm, where each entry is the magnitude of
the corresponding entry in α̂m to entries in a codebook of
realistic amplitudes using a vector quantizer, i.e.,

Âm → Ãm ∈ C. (18)

In this work, the mapping of amplitudes α̂m to codebook en-
tries is done by solving

Ãm = arg min
Ãm∈C

∥∥∥Âm − Ãm

∥∥∥2

2
. (19)

It should be noted that the amplitude vectors should be scaled,
to limit the size of the codebook. The codebook amplitudes
Ãm are combined with the phases of the amplitude estimates
α̂m to result in the amplitude estimates

α̃m = [Ã1,me
j∠α̂1,m · · · ÃLm,me

j∠α̂Lm,m ]T . (20)

These amplitudes can be substituted in (15), i.e.,

ω0,m = arg min
ω0,m

∥∥∥r(i−1) − Zmα̃m

∥∥∥2

2
. (21)

As an example of what we want to avoid, the magnitude of
the amplitude of the fundamental frequency should not be al-
lowed to evolve non-smoothly over time. Using the approach
proposed here, the magnitudes of the harmonic amplitudes are
constrained to have values that would be considered realistic.

The method proposed in this section, which is based on
the harmonic matching pursuit [12], could be used to initial-
ize an EM algorithm, where the superimposed signals are har-
monic sources [11] (see also [10]).

4. EXPERIMENTS

We now present the experimental evaluation of the proposed
multi-pitch estimator. In the initial, proof-of-concept exper-
iment, the data is synthetically generated using the multi-
pitch harmonic signal model (2). The synthetic signal con-
tained two sources, i.e.,M = 2 with fundamental frequencies
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Fig. 2. Initial cost function according to (12) (dotted), where
f0,1 = 260 Hz, and f0,2 = 390 Hz, and refined cost function
according to (21) (solid).

f0,1 = 260 Hz and f0,2 = 390 Hz, respectively, and the num-
ber of harmonics for each source was L1 = L2 = 6. White
noise was added to result in an SNR of 20 dB. The spectrum
of the signal can be seen in Figure 1.

This setup gives rise to the harmonics, i.e., f0,1 · 3 =
f0,2 ·2 = 780 Hz, and f0,1 ·6 = f0,2 ·4 = 1560 Hz. The mag-
nitudes of the amplitudes are decaying, and they are the same
for both sources, i.e., Alm = 1/lm for lm = 1, . . . , Lm. The
experiments are carried out using segments of length N =
200 samples. The codebook contains the true amplitudes and
four other realistic amplitude vectors. It is assumed that the
number of sources M is known a priori, although the prob-
lem of determining the number of sources can be solved us-
ing, e.g., a MAP-based method [10]. Figure 2 (dotted line)
shows the initial cost function (14) when the input signal is
as described above. The data in the figure shows minima at
260 Hz and 390 Hz, but also a very strong minimum at 130
Hz. The amplitudes corresponding to the global minimum
at 130 Hz would be {0, 1, 1, 1/2, 0, 5/6}. However, these
are not realistic amplitudes for a real-world signal. By de-
signing the codebook such that none of the codewords have
zero (or very small) amplitude for the fundamental frequency
of the scenario described, this situation should be avoided.
By mapping each vector of initial magnitude amplitude esti-
mates Âm to the nearest codebook entry (18), this is indeed
avoided, as shown in Figure 2 (solid line). The fundamental
frequencies estimated using the harmonic matching pursuit
[12] using the initial cost function are f0,1 = 130 Hz, and
f0,2 = 260 Hz, while for the refined cost function the esti-
mates are f0,1 = 260 Hz, and f0,2 = 390 Hz. This means
that by using the proposed method of mapping magnitude of
the initial amplitude estimates to amplitudes in a codebook,
we achieve the correct pitch estimates. In a more complex
scenario, the results could be used to initialize an expectation-
maximization (EM) algorithm [11, 10], which is otherwise
not a simple problem.

The proposed method has also been evaluated using real



Fig. 3. Spectrogram (top) and pitch estimates (bottom) of
a multi-pitch mixture of two instruments, trumpet and horn,
playing the notes C4 (262 Hz) and F#4 (370 Hz), respectively.

data1. A codebook of amplitudes is trained using ten record-
ings of different woodwind instruments playing a succession
of notes, ranging from C4 (262 Hz) to B4 (494 Hz), i.e., 12
notes. The recordings are single-channel with fs = 44.1 kHz,
however, they are downsampled to fs = 8 kHz. The ap-
proximate NLS joint pitch and model order estimator in [10]
has been used to jointly estimate the pitch and model order
for segments of length N = 240 samples. The pitch and
model order estimates are then used to form LS estimates of
the amplitudes (16) for each frame of each signal, resulting in
11544 amplitude vectors. The amplitudes are scaled such that
the norm of each amplitude vector equals one before vector
quantization. The chosen codeword is then scaled to match
the original amplitudes. The codebook has been trained us-
ing the K-means clustering algorithm [22], where the first 10
harmonics of the woodwind signals are considered. If the es-
timated model order is less that 10, the remaining values are
set equal to zero for the corresponding codebook entry. Dif-
ferent choices of the number of clusters for the training of the
codebooks have been considered, varying from 1 to 100 clus-
ters. Empirically, a suitable number of codewords was found
to be 10, which is the number of clusters used in this exper-
iment. Examples of codebook entries are shown in Figure
4. For test data, a multi-pitch mixture was created by mixing
two single note recordings of a Bb trumpet (with vibrato) and
a French horn, playing the notes C4 (262 Hz), and F#4 (370
Hz), respectively (it should be noted that the training and test
data are disjoint). White noise was added to result in an SNR
of 20 dB. A spectrogram of the mixture and the multi-pitch
estimates obtained using the proposed method are shown in
Figure 3. Each pitch estimate is obtained by performing a
grid search from 100 Hz to fs/4 = 2000 Hz, with a spacing

1Available at http://theremin.music.uiowa.edu.
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Fig. 4. Four examples of codebook entries, i.e., magnitude
amplitudes (L = 10).

of 0.5 Hz, and the results are compared to results obtained us-
ing the usual NLS cost function. The results on real data are
similar to the results on synthetic data. When the amplitudes
are estimated using LS, the estimates for one of the notes are
half of what they should be. Using the proposed method of
mapping the estimated amplitudes to codebook entries, it is
possible to correctly estimate the fundamental frequencies in
the mixture.

5. DISCUSSION

In this paper, a method for multi-pitch estimation of mixtures
of harmonic signals has been proposed. The method is based
on the harmonic matching pursuit [12], where an initial cost
function, and amplitude estimates for each candidate funda-
mental frequency are formed. These initial amplitudes are
then mapped to entries in a codebook. The codebook has been
trained using recordings of woodwind instruments, while the
mixture consists of recordings of brass instruments. The re-
sults show that by using the proposed multi-pitch estimator
it is possible to estimate the pitches of multiple sources in
a mixture of harmonic signals. The results of the estimator
could be used to initialize the EM algorithm [11, 10], and
the method could be used in automatic music transcription,
enhancement, and separation systems. Future work includes
investigating the choice of the number of harmonic ampli-
tudes to include in the codebook, e.g., by using a technique
such as variable-dimension vector quantization (VDVQ) [23].
Furthermore it should be investigated whether the amplitudes
can be modeled statistically instead of using a codebook ap-
proach, which involves training, e.g., by using linear predic-
tion [24].
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