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Abstract— Plug-in electric vehicles (PEVs) are becoming a 
key feature of smart grids. PEVs will be embedded in the 
network as a mobile load-storage with probabilistic behavior. In 
order to manage PEVs as flexible loads, charging stations (CSs) 
have essential roles. In this paper, a new method for optimal 
sitting and sizing of solar CSs using energy storage (ES) options 
is presented. Also, behavior of PEVs in the presence of other 
loads, electricity price and solar power generation uncertainties 
are considered. The proposed optimization model maximizes the 
distribution company (DisCo) benefit by appropriate use of CSs, 
maximizes the benefit of CSs owners and minimizes the power 
loss, load demand and voltage sags during peak times considering 
different technical constraints. The optimization variables are the 
location and capacity of CSs (consists of solar units and energy 
storage systems). In this paper, charge-discharge actions of PEVs 
are regulated based on time-of-use demand response programs. 
In order to solve the optimization problem considering 
uncertainty of load growth, number of EVs, electricity price, 
initial state of charge in PEV batteries and solar power 
generation, genetic algorithm method using Monte-Carlo 
simulation is used. The simulation results show that the proposed 
method has several advantages for DisCo and owners of CSs.  

Keywords— Plug-in electric vehicles, charging station allocation, 
multi-objective optimization, energy storage, demand response 
program, smart grid. 

I.  INTRODUCTION  
Nowadays, different technical, economic and political 

reasons cause plug-in electric vehicles (PEVs) become more 
attractive than internal combustion engine vehicles. This trend 
is accelerated by environmental pollution concerns [1]-[2] as 
well as the needs for sustainable and cost-efficient smart 
energy systems [3]-[4]. PEVs are not only more emission-
aware, but also more cost-effective compared to the traditional 
vehicles. Energy demand incensement due to PEVs is a real 
challenge for distribution companies (DisCos) from both 
technical and economic aspects. Fortunately, PEVs are usually 
flexible loads that can be utilized as energy storages (ESs) to 
inject power to the grid through a vehicle to grid (V2G) 
process. There are several studies about V2G process and its 
effects on distribution networks [7]-[13]. Energy of PEVs can 
be used in reduction of power losses and voltage sags  [7]-[9], 
peak shaving [10], voltage and frequency control of 
microgrids [11]-[12], reserve power [13], etc. Investigating on 

the behavior of vehicle owners have shown that over 90% of 
cars don’t run each day periodically. So, vehicles can connect 
to the power grid at peak hours as power sources [14]. In 
condition that there are a lot of PEVs connected to grid, PEVs 
can be considered as flexible loads with energy storage 
capabilities. In other words, allocation of charging stations for 
PEVs can be used as an effective tool in order to solve 
network problems such as peak load, load growth, etc. Also, 
various demand response programs (DRPs) could be applied 
in the mentioned networks [15]. 

There are considerable distributed energy resources (DERs) 
in modern grids that they can cooperate with PEVs as flexible 
load-storage units. There are a huge number of researches that 
have studied integration of DERs into grids with flexible 
loads, PEVs and ESs by considering various DRPs [16]. For 
example, in [17], a new model is proposed to evaluate the 
contribution of V2G as a tool for DRPs. In [18], a technique 
for CS allocation which provides V2G power as distributed 
generation is presented. In [19], management of the PEVs in a 
CS is studied. In this reference, the method is applied to 
maximize the state of charge (SOC) of each PEV’s storage. In 
[20], a method is used to schedule EVs charging in a parking 
considering constraints for PEV battery and utility limits.  

In smart grids with considering CSs and DERs, the 
operation cost of grid will be reduced. The studies have shown 
that there is a perfect match between the PEVs and non-
dispatch able energy resources in the smart grid infrastructure. 
In this paper, optimal allocation of solar CS is introduced as a 
multi-objective problem considering both technical and 
economic issues. The proposed method maximizes profits for 
DisCo and charging station owner (CSO). Probabilistic 
behavior of solar units and PEVs load are also considered.   

II. PROBLEM DEFINATION 
In this paper, the proposed model maximizes two objective 

functions, namely total benefits of DisCo and CSO. It is 
assumed that private sector invests on the solar charging 
stations using ESs and DisCo will only guide CSs to operate 
properly. DisCo is responsible for aggregating EVs, the CSs 
investment, and optimal operation of the distribution system. 
The annual load profile is modeled by multiplication of three 
parameters. A normal probability density function (PDF) 



 

model is used for demand level factor, DLFi,t,h. The 
uncertainty of DLFi,t,h is modeled as follows: 
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operation in year t and demand level h, using a normal PDF 
with a zero mean and unity standard deviation. The values of 
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hti ,,μ  and D
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respectively. It is assumed that a load growth rate, α , in bus i 
in each year will be applied. 
   DRPs are used to shift the load from peak times to other 
periods in order to decrease energy purchase costs. In this 
paper, it is assumed that the consumers only participate in time 
of use (TOU) programs with considering a limited capability 
of shifting demand. The load after applying the DRP is 
defined as follows: 
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where D
htiP ,,
 is the base load at time period h, and DR

htiP ,,
 is load 

after applying DRP in the same period. 
hDR  factor shows the 

consumer participation in DRP. Equations (4)-(7) express the 
ESs constraints. The constraints (4) and (6) capture the limits 
on the charging and discharging power. 
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PEV access to the CS is a probabilistic parameter and depends 
on the PEVs owners’ behavior. Availability of PEVs in the 
charging stations i, in the demand level h and in each Monte-
Carlo experiment e, is calculated as follows: 
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where Pe
hi ,λ  is a random variable generated by using a normal    

PDF with and a mean of 13.6 and standard deviation of 4.5 for 
PEVs in the charging station i and in the demand level h. 
Initial SOC of batteries in PEVs are determined by different 
uncertain and non-identical parameters. The remaining energy 
in the vehicles’ battery can be calculated randomly. Initial 
SOCs of PEVs’ batteries are calculated through a scenario-
based approach which is divided into three areas with normal 
PDF, and each area is identified as a scenario. Initial SOCs of 
PEVs’ batteries are calculated by the scenario-based approach 
as Fig. 1.  CS output depends on solar parking output and 
initial SOC of PEV batteries, number of available vehicles, 
and output power of each vehicle. Presence percentage of 
hourly PHEV in the CS is presented in Fig. 2 . 
Also, the required time for full charging/discharging of a PEV 
depends on initial SOC, minimum and maximum acceptable 
battery’s SOC and the charge/discharge rate of PEV. The 
required time for full charging or discharging of a PEV 
depends on initial SOC can be calculated as follows: 
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where SOCmin and SOCmax are the minimum and maximum 
acceptable battery’s state of charge respectively, ESj is the 
battery capacity of PEVj, and Pv is the charge-discharge rate of 
PEV.  
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Fig. 1. Probability distribution function (PDF) for DLF, PLF and SOC of 

PEV’s batteries 
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Fig. 2. Presence percentage of hourly PHEV in the CS 

The output power of the CS can be shown as fellow: 

cs v S o larP n P P= × + (11) 
The output power of the CS is a function of solar units output 
and SOC of PEVs batteries. The generation of solar unit 
highly depends on the sun radiation in the site. In this paper, 
the stochastic behavior of sun radiation in each forecasted 
period is modeled by the normal PDF. 
   The price of electricity purchased from the upstream grid is 
determined by market mechanism. The price value is 
considered variable for each demand level. A normal PDF is 
considered to follow spot price using Monte-Carlo 
experiment. DRPs are used to shift the load from peak times to 
other periods to decrease energy purchase costs. It is assumed 
that the consumer only participates in TOU program with 
considering a limited capability of shifting demand. Also, 
DRP and charging-discharging constraints are modeled.  
In this paper, the first objective function (OF1) consists: 
 
• Investment cost of CS considering solar and ESs costs 
   The installation cost and site of CS are considered in 
investment cost. This cost is evaluated by the following 
equation: 
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• Net benefit of day-time charging PEV 
   The total net benefit from providing day-time charging 
services for PHV drivers are obtained as follows: 
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where grid
purht ,,ρ  is the energy price purchased from market at 

demand level h in $/kWh.   
 
• Net benefit of discharging PEV 
   The stored energy in PEV can be injected to the grid during 
peak hours with lower price rather than the price of the peak-
load level. Discharge scheduling of PEV batteries is calculated 
as follows: 
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where cd is the cost of equipment degradation due to the extra 
use of V2G, and convμ  is the inverter efficiency. 

 
• Net benefit of providing power from upstream-grid 
   The net benefit obtained from providing power to the grid 
loads can be obtained as follows. During peak-time demand is 
provided by CSs through V2G. 
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• Benefit of active power losses reduction 
   Energy injection through PEV during peak time will reduce 
the power loss. Benefits obtained from power loss reduction 
can be calculated by the following equation: 

hNT
loss without CS with CS t
Total t,h t,h t,h t,h

t=1 h=1

1+InfR
B = [(Ploss -Ploss )×ρ ×τ ]×( )

1+IntR
 (22) 

where withoutCS
t,hPloss  and withCS

t,hPloss  are active power losses 

without and with CS. 
 
Also, the second objective function (OF2) consists: 
• Operating benefit of solar units 
   Operation benefit of solar units is depended on energy 
generation and price of energy. Operation cost of the solar 
units is assumed equivalent to the repair and maintenance 
service.  
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Where OCsolar is the operation cost of any solar units in 
$/MWh and ρt,h  is the price of sold electricity to customers by 
DSM in year t and in demand level h. τh is the time duration of 
selling energy to customers at demand level h in hour.  
 
• Investment cost of CS units 
    The installation cost of solar unit and price of site, 
construction, etc. are included in solar unit’s investment cost. 
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where ICs is the investment price of each MW of solar unit. 
 
• cost of day-time charging ES  
    The total net benefit from providing day-time charging 
services is obtained as follows: 
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where grid
purht ,,ρ  is the purchasing price of energy from wholesale 

market at demand level h in $/kWh.  
 
• Net benefit of discharging ES 
    The net benefit obtained from selling power to the network 
loads generally can be expressed as follows: 
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In this paper, benefit function for DisCo is defined as follows: 
disch arge ch arge loss inv

1 total total total total total= B + B + B + B - CEV EV gridOF  (29) 
where the above-mentioned terms denote the net benefit of 
day-time PEV charging/discharging programs, net benefit of 
providing power from upstream-grid, benefit of active power 
losses reduction and investment cost of CS considering solar 
and ESs costs, respectively. Also, the benefit function for CSO 
is defined as follows: 

disch arge ch arge inv
2 total total total total= + -ES ES SolarOF B C B C−  (30) 

where the terms describe the net benefit of ES discharging 
programs, cost of day-time ES charging, operating benefit of 
solar units and investment cost of CS units, respectively.  
                                           

III. MULTI-OBJECTIVE OPTIMAZATION PROBLEM 
   The first objective function, OF1, indicates the total benefit of 
DisCo and the second objective function, OF2, indicates CSO 
owing to the ESs units and solar CSs in the distribution system. 
This paper introduces a multi-objective optimization 
framework for optimal PEV and CS planning with regard to 
several constraints. To handle uncertainties in the planning 
phase, Monte-Carlo simulation (MCS) is used. Also, to handle 
the allocation and optimization problem, Genetic Algorithm 
(GA) is combined with MCS. The proposed solution algorithm 
consists of two steps. In the first step, the Pareto-optimal front 
is specified and in the second step the best solution is selected 



 

based on a crowding distance index (CDI) considering the 
planner’s preferences: 
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   In order to model optimization problem, the uncertainties of 
four parameters are taken into account, namely load demand, 
electricity price, solar power generation of CS and the 
input/output power of charging station owing to the daily 
behavior of drivers. MCS, scenario based approach and 
normal distribution are used to handle uncertainties. The 
mechanism of this method is described as the following steps: 
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   In the above steps, a function namely z is considered, that is, 
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e
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e
e ssLz = . The variables s1 to sn are random variables 

with their specified PDF. The problem is finding the PDFs of 
all input variables which is s1 to sn. The concept of MCS is 
obtaining the PDF of ze using the PDFs of input variables si.   
 

 
Fig. 3. Flowchart of proposed optimization method 

   At the end, the PDF of the output function, z is estimated as 
a normal PDF with a mean and standard deviation calculated 
as follows: 
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Flowchart of proposed method is shown in Fig. 3. 

IV. SIMULATION RESULTS 
The proposed methodology is applied to IEEE 33-bus 

standard test system. The proposed method is applied to 30-
bus standard test system which is shown in Fig. 4. The system 
technical data and loads are given in [21].  

In order to illustrate effects of proposed method on 
operating cost, three different scenarios for CS allocation are 
considered. 
• Scenario 1: CS allocation considering DRP and Solar 

units.  
• Scenario 2: CS allocation considering DRP and ESs. 
• Scenario 3: CS allocation considering DRP, Solar units 

and ESs. 
   To show the DRPs effect on the proposed model, load curve 
considering PEVs effect and DRP is shown in Fig. 5. As 
shown in this figure, DRP reduce peak value and shifts loads 
from peak time to off peak times. 
   The data used in simulation and results of simulation is 
presented in Table I. Results of allocation considering optimal 
buses and capacities and also, benefit-cost amounts for DisCo 
is presented in Table II.  
 

 
Fig. 4. Single line diagram of the 33-bus system [21] 

 
 

 
Fig. 5. PEV and DR effects on load curve 



 

TABEL I. DATA AND PARAMETERS VALUE IN SIMULATION 
grid

purht ,,ρ  65 $/MWh Electricity wholesale 
purchasing base price 

EV
purht ,,ρ  60 $/MWh Electricity purchasing 

price from vehicle owners 

acC  3000 $ Investment cost per vehicle 

dC  0.001 $/kWh Degradation cost of V2G 

InfR  4 % Inflation rate 

IntR  5 % Interest rate 

 
TABEL  II. COST –BENEFIT ANALYSIS IN SCENARIO 2 AND 3 (IN 104 $) 

Load condition Without ESs With ESs 
Bus number 
Optimum capacity of solar units (kw) 

13 
300 

31 
500 

15 
350 

31 
500 

Bus number 
Optimum capacity of ESs (kwh) 

- - 11 
1200 

31 
900 

Benefit of providing power during 
peak time ($) 
Benefit of charging service ($) 
Benefit of loss reduction ($) 
Benefit of solar units output ($) 
Total benefits for DisCo ($) 

16.349 
 
- 

7.151 
1.94 

23.694 

23.546 
 

4.285 
7.939 
2.14 

37.91 

 
  In order to compare difference between traditional system 
operation, systems with ESs and without ESs, simulation 
results are presented in Table II. According to this table, the 
benefit of providing power during peak-time is much more 
from charging or power loss reduction benefits due to DRP 
implementation in system. With considering DRP, the losses 
are also reduced. According to Table II, Planning has been 
done for two CSs and two solar units. In systems using ESS, 
solar units output will be more controllable and then economic 
profit will be increased as presented. In other words, ESS 
increase flexibility of generation and consumption profiles and 
help DisCo to mitigate demand with minimum cost. So, 
benefits due load shifting and active power loss reduction 
during peak times will be increased in systems with ESS. 
Considering ESS allocation in grid, changes the results of 
solar unit’s allocation and operational planning of grid. In this 
paper, results showed that using ESS increase optimum 
capacity of solar units and their location. 
   Fig. 6 and Fig. 7 show the annual active power loss and 
demanded power from upstream grid, respectively. Power loss 
value at peak hours is significantly reduced in the planning 
period. On other hand, the selected CSs which specified by the 
proposed model will impose the lower total active power loss 
during the operation time compared to without ESS option. 
The mentioned results are shown in Fig. 6. Demand response 
implementation has decreased losses effectively. In this paper 
using solar units is more effective than using ESS. The reason 
of this result is depended on values of selected optimal ESS, 
solar unit’s capacity and behavior of loads during operational 
planning horizon. Daily demand for active power and voltage 
profiles are shown for DLF=1 in Fig. 7 and Fig. 8, 
respectively. As, shown in Fig. 8, the best results for 
smoothing load profile is obtained in case that both ESS and 
solar units are considered. As, storages are more flexible and 
controllable in compare with solar units, using ESS in this 
paper is more effective due to peak load time period (7 P.M -
12 P.M).  
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Fig. 6. Annual active power loss during operating period 

 

 
Fig. 7. Annual active power demand from upstream grid 
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Fig. 8. Voltage profile after and before of applying proposed method 

 
   In the simulated network, the buses which they are far from 
substation will face the voltage drop problem. As it can be 
observed from Fig. 8, the proper placement of the CS and solar 
units can improve voltage profile. In this paper, a load growth 
for 20 years is considered. Results showed that load growth 
will lead to unacceptable voltage sag after few years. But, 
optimal allocation of ESS with solar units can mitigate load 
growth effects during couple of decades. 
 

V. CONCLUSION 
This paper introduced a multi-objective method to optimal 

integration of PEV’s CSs with solar units and ESs, 
simultaneously. An optimization method using GA and MCS 
was used to solve the optimization problem. The proposed 
two-step algorithm provided the non-dominated solutions by 
maximizing the benefits of DisCo and CSO in the first step. In 
the second step, a satisfying method selected the best solution 
from the available set. The presented method helped the 



 

DisCo to be an aggregator to collect the dispersed PEVs in the 
network and manage their capacities. This optimization 
problem was also performed to find the optimum sitting and 
sizing of the solar-based CS and ESS to minimize the power 
losses and also to improve the voltage profile. The proposed 
methodology considered the uncertainties of input parameters 
and could help DisCo operators to make more robust 
decisions. In order to improve the applicability and 
effectiveness of the proposed approach several case studies 
and computer simulations under different working conditions 
demonstrated. Results illustrated that proposed method can 
improve economic operation and meet technical needs of the 
grid.  
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