Aalborg Universitet

Incremental Capacity Analysis of a Lithium-ion Battery Pack for Different Charging Rates

Kalogiannis, Theodoros; Stroe, Daniel-Ioan; Nyborg, Jonas; Nørregaard, Kjeld; Christensen, Andreas Elkjær; Schaltz, Erik

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Kalogiannis, T., Stroe, D.-I., Nyborg, J., Nørregaard, K., Christensen, A. E., & Schaltz, E. (2017). Incremental Capacity Analysis of a Lithium-ion Battery Pack for Different Charging Rates. Poster presented at 231st ECS Meeting, New Orleans, LA, United States.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

May 28-June 1, 2017 | 231st ECS MEETING **Incremental Capacity Analysis of a Lithium-ion** Battery Pack for Different Charging Rates Theodoros Kalogiannis *^a, Daniel-Ioan Stroe ^a, Jonas Nyborg ^b, Kjeld Nørregaard ^b FISORG UNI Andreas Elkjær Christensen ^c and Erik Schaltz ^a ^a Department of Energy Technology, Aalborg University, Denmark ^b Danish Technological Institute, Aarhus 8000, Denmark ^c Lithium Balance A/S, Hassellunden 13, Smørum, 2765 Denmark Email: thk@et.aau.dk

Motivation

Incremental Capacity Analysis (ICA) is a method used to investigate the capacity State-of-Health (SoH) of battery cells [1]. The aim of this poster is to present the challenges for implementing the ICA technique for battery packs, here consisted of 14 cells, by means of different C-rates (C/10, C/6 and C/5) and for several temperatures. LFP chemistry based cells are

Results

- Direct ICA: Less than 1mV deviation to the averaged cells ICA Accurate cell capacity SoH estimation based on pack readings
 - **Terminal ICA:** Approx. 10mV deviation to the averaged ICA

connected in series to build the packs, for either 60Ah and 160Ah.

Experimental Setup

14*Winston 160Ah LiFeYPO4 cells at C/6 between 5° and 30°C

AD NYE LA

14*CALB 60Ah LiFePo4 cells at C/5 and C/10 charge current rate

Direct & Terminal ICA

Charge Voltages: at C/10 & C/5

- Charge Voltages: at C/10 for Charger & BMS
- Terminal ICA sees a higher impedance path compared to direct
- Variable temperatures for C/6: For the 160Ah battery pack. The peak moves to the lower voltage levels due to lower resistance, which is caused by a higher temperature

ICA Method

Incremental Capacity Analysis:

$$IC = \frac{dQ}{dV}$$

- Several approaches in literature for wide range of chemistries, capacities and cell designs [3]
- For many different C-rates and temperatures [4]

ICAs influenced from temperature variations on the pack level

160Ah battery pack charged with C/6 at 5°C : spread of the individual cells' peaks due to inactivity of balancing during charging. Charge is stopped when a cell reaches cut-off limit.

0 3.35 3.36 3.37 3.38 3.39 3.4 3.41 3.42 3.43 3.44 3.45 Significance at a battery pack level not yet established Smoothing of raw data and filtering of charge/discharge 3.8 3.4 3.5 3.9 3.7 Voltage [V] capacity curves, to achieve an identifiable and unique IC peak ICAs are influenced from the cell to cell temperature variation **Conclusion & Future Work** References Acknowledgement additional Z The path, [1] M. Dubarry et al., Electrochem. Solidthe This work has been part of the BATNOSTIC temperature variations and the C-State Lett., 9, A454–A457 (2006). project. Authors acknowledge the EUDP for providing financial support, the Danish Tech. [2] X. Han et al., J. Power Sources, 251, rates must be considered for ICA 38–54 (2014). on a battery pack. Institute for conducting the battery pack tests Terminal ICA is not deriving the [3] M. Safari and C. Delacourt, J. and Lithium Balance A/S for providing the BMS. actual capacity SoH of the cells. Electrochem. Soc., **158**, A1123–A1135 (2011) Outlook: Lifetime experiments at [4] C. Weng et al., J. Power Sources, 235, eudp pack level under certain conditions. 36–44 (2013) BATNOSTIC nergiteknologisk udvikling og demonstratio