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ABSTRACT 

Objective: An association exists between repetitive movements and neck-shoulder muscle pain. 

The mechanisms underlying this association remain unclear. This observational study investigated 

the effect of upper trapezius muscle pain on the distribution of upper trapezius activity during 

repetitive lifting. It was hypothesized that nociception would change the distribution of activity 

resulting in activation of muscle regions which would not normally be active during the task. 

Methods: Healthy men repeatedly lifted a box with a cycle time of 3s for 50 cycles, at baseline, 

following injection of isotonic and hypertonic saline into the upper trapezius muscle and 15 mins 

after the last injection. High-density surface electromyography (EMG) was recorded from the upper 

trapezius using a grid of 64 electrodes. The EMG amplitude was computed for each location to 

form a map of the EMG amplitude distribution.  

Results: During the painful condition, the overall EMG amplitude was lower compared to all other 

conditions (p<0.05) and in addition, the center of activity of upper trapezius was shifted towards the 

caudal region of the muscle (p<0.01), a region not normally active during the task. The described 

alterations of muscle activity likely play an important role in the perpetuation of pain during 

repetitive activity.  

Discussion: Novel mapping of the spatial distribution of upper trapezius muscle activity showed 

that nociception induced a redistribution of activity during repetitive lifting. This knowledge 

provides new insights into the mechanisms underlying the perpetuation of pain with repetitive 

activity. 

 

 

Keywords. Muscle pain, repetitive work, work-related musculoskeletal disorders, high-density 

EMG 
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INTRODUCTION 

 Pain localized to the neck-shoulder region is an increasing problem in both general and 

working populations 
1
. Muscle pain frequently affects the upper division of the trapezius muscle, 

and patients typically complain of dull pain and stiffness. A prospective study among healthy 

female packers indicated that within the first year of employment more than 50% of workers 

develop trapezius myalgia 
2
. Similarly an investigation among both blue- and white-collar workers 

with pain symptoms in the upper quadrant reported the highest prevalence of myofascial trigger 

points in the upper trapezius muscle 
3
. Epidemiological reviews provide strong evidence for an 

association between repetitive movements, awkward posture, and the development of neck-shoulder 

muscle pain 
4-7

. However the mechanisms underlying these associations remain unclear. One likely 

mechanism could be pain induced changes in neuromuscular control during repetitive movements, 

for instance to protect the painful region, which could eventually perpetuate the painful condition.  

 Pain within the region of the trapezius muscle is known to limit maximal voluntary 

contraction, reduce endurance, and induce adaptive changes in muscle coordination during complex 

tasks 
8-11

. Additionally, studies using high-density surface electromyography (EMG) have shown a 

change in the spatial distribution of trapezius muscle activity during sustained isometric 

contractions following noxious stimulation of the upper trapezius muscle via injection of hypertonic 

saline 
12-14

. Furthermore, high-density EMG investigations revealed a different distribution of 

muscle activity in people with fibromyalgia 
15-16

 and that pain prevents the redistribution of muscle 

activity to different regions of the upper trapezius during sustained shoulder abduction in this 

patient group 
17

. These findings suggest that nociception induces a change in the distribution of 

upper trapezius muscle activity during isometric tasks leading to suboptimal production of force and 

potential overload on specific muscle regions. However, whether or not nociception induces a 

change in the distribution of upper trapezius muscle activity during repetitive tasks is unknown. 

Such knowledge would further our understanding of the mechanisms contributing to ongoing pain 

with repetitive work activity.  
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 Here we investigate the effect of experimentally induced upper trapezius muscle pain on the 

distribution of upper trapezius muscle activity during a repetitive dynamic task. High-density 

surface EMG was utilized to provide topographical representations of the EMG amplitude, and 

relative adaptations in the intensity of activity within regions of the upper trapezius muscle were 

quantified. It was hypothesized that nociception would change the distribution of upper trapezius 

muscle activity resulting in activation of muscle regions which would not normally be active during 

the task. 

MATERIAL AND METHODS 

Subjects   

Ten healthy male (age: 26.2 ± 3.1 years, height: 178.2 ± 6.3 cm, weight: 71.3 ± 9.2 kg) 

volunteers participated in this observational study after providing written informed consent. All 

participants were free of shoulder and neck pain, had no past history of orthopedic disorders 

affecting the shoulder or neck region and no history of neurological disorders. All subjects were 

right hand dominant. Ethical approval for the study was granted by the local Ethics Committee 

(200538) and all procedures were conducted according to the Declaration of Helsinki. All subjects 

completed the study. 

Experimental procedure 

 Subjects attended a single laboratory session were required to lift a 1 kg box between 

shelves positioned at hip and shoulder height with a cycle time of 3 s for 50 cycles. Subjects were 

asked to sit tall on an angled cushion positioned on a table, in order to have both legs suspended and 

avoid possible compensation from leg muscles. An acoustic signal from a digital metronome was 

provided to the subjects during the task to standardize the duration of cycles. Subjects repeated the 

task four times: 1. baseline, 2. following injection of isotonic saline into the right upper trapezius 

muscle, 3. following injection of hypertonic saline into the right upper trapezius muscle and 4. 15 

mins after the last injection (recovery). The rest interval between the repetitions was set to 15 
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minutes starting from the moment when the pain caused by the injections disappeared. Subjects 

practiced the movement sequence for ~1 min without the weight prior to data recording. 

Experimental Muscle Pain 

Experimental muscle pain was induced by injection (27G cannula) of 0.4 ml sterile 

hypertonic saline (5.8%) into the upper division of the trapezius on the right side. Isotonic saline 

(0.4 ml, 0.9 %) was used as a control injection in a similar location. For both injections, subjects 

were positioned in comfortable sitting. The location of the injection was defined as 15 mm cranial 

to the line between the acromion and the spinous process of the seventh cervical vertebra. The bolus 

was injected over a 10-s period. The isotonic saline injection was given first however participants 

were blinded to each injection and were told that one or both might be painful. 

Measures of Perceived Pain Intensity and Area 

Participants were asked to verbally rate their level of perceived pain intensity on an 11 point 

numerical rating scale (NRS) anchored with “no pain” and “the worst possible pain imaginable”. 

Pain intensity ratings were obtained immediately following the injection and every 30 s until pain 

was no longer reported. Peak pain intensity and duration of pain were extracted. Participants 

documented their area of pain on a simple body chart illustrating an outline of a body. Pain 

drawings were subsequently digitized (ACECAD D9000 + Taiwan) and pain areas measured in 

arbitrary units.  

Electromyography 

Surface EMG signals were detected with a semi-disposable adhesive grid of electrodes (OT 

Bioelettronica, Torino, Italy). The grid consists of 13 rows and 5 columns of electrodes (1-mm 

diameter, 8-mm inter-electrode distance in both directions) with one absent electrode at the upper 

right corner (Figure 1). The position corresponding to the missing electrode was used as the origin 

of the coordinate system to define the electrode location. Prior to electrode placement, the main 

innervation zone location of the right upper trapezius was identified between the seventh cervical 

vertebra (C7) and the lateral edge of the acromion line with an array of 8 electrodes (silver bars, 5-
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mm long, 1-mm diameter, 5-mm inter-electrode distance). The electrode grid was placed with the 

4
th

 row along the line between C7 and the lateral edge of the acromion with the lateral electrode 

column 10-mm distant from the innervation zone location (Figure 1). The injections were 

performed lateral to the electrode grid (~ 10 mm) and corresponded to the 4th row of the grid.  

The subject’s skin was prepared by gentle local abrasion (Medic-Every, Parma, Italy) and 

cleaned with water. 30 µl of conductive gel was inserted into each cavity of the grid to provide 

electrode-skin contact. A ground electrode was placed around the right wrist. 

The bipolar EMG signals were amplified (128-channel surface EMG amplifier, OT 

Bioelettronica, Torino, Italy; -3dB bandwidth 10-500 Hz) by a factor of 2000, sampled at 2048 Hz, 

and converted to digital form by a 12-bit analog-to-digital converter. 

Signal Analysis 

Surface EMG signals were off-line band-pass filtered (second order Butterworth filter; -3 

dB bandwidth, 10-400Hz). 51 bipolar EMG signals along the direction of the muscle fibers were 

obtained from the grid (13 x 4 bipolar recordings with one absent electrode). Root mean square 

(RMS) values were computed from each bipolar recording from adjacent, non-overlapping signal 

epochs of 1-s duration. For graphical representation, the 51 values were linearly interpolated by a 

factor of 8 but only the original values were used for data processing and statistical analysis. To 

characterize the spatial distribution of muscle activity, the following variables were extracted from 

the 51 bipolar signals: RMS averaged over the 51 signals, entropy, and the two coordinates of the 

centroid of the RMS map (x and y-axis coordinates for the medial-lateral and cranial-caudal 

direction, respectively) 
13,18

. The centroid of the amplitude map is the mathematical barycenter of 

the map. Entropy indicates the degree of homogeneity in activation, with higher values 

corresponding to more uniform distribution of the RMS values over the grid.  

Four uniaxial accelerometers (two parallel and two perpendicular to the horizontal plane) 

were mounted on the box to obtain the start and end points of the cyclic movement. The signals 

from the accelerometers were rectified, averaged and low pass filtered (Butterworth 2
nd

 order filter, 
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anticausal, 10 Hz cut-off) in order to identify the instant of contact of the box with the shelf. A 

simple threshold on the resulting signal was sufficient to identify the contact instants of the box 

with each of the two shelves. This operation was necessary to extract the correct timing of the 

cycles and to compensate possible errors with respect to the timing provided by the metronome. 

Each cycle was divided in 10 epochs of equal length and the EMG signals were analyzed 

separately for each epoch of each cycle. The epochs are indicated in the following paragraphs as 

percentages with respect to the cycle duration (e.g. 30% cycle indicates the third of the 10 epochs of 

a cycle). The EMG variables were then averaged across the 50 cycles for each epoch of the cycle. 

Statistical analysis 

One-way ANOVAs were applied to the duration, area and intensity of pain with condition 

(hypertonic, isotonic) as a factor. Repeated measures ANOVAs were applied to RMS, entropy and x 

and y-axis coordinates with condition (baseline, isotonic, hypertonic, post) and stage of cycle (10% 

intervals of the cycle) as factors.  

Significant differences revealed by ANOVA were followed by post-hoc Student-Newman-

Keuls (SNK) pair-wise comparisons. Results are reported as mean and standard deviation (SD) in 

the text and standard error (SE) in the figures. Statistical analyses were performed with SPSS 

Version 22.0 (IBM Corp., Armonk, NY, USA). Statistical significance was set at p<0.05. 

RESULTS 

Sensory characteristics  

Peak pain intensity was greater following the injection of hypertonic (5.5 ± 1.8) compared to 

isotonic saline (0.9 ± 0.8, p<0.00001; Figure 2). Pain duration and area were significantly greater 

following hypertonic compared to isotonic saline injection (both p<0.00001). Total mapped pain 

areas were 0.25 ± 0.18 and 0.02 ± 0.05 (arbitrary units) for the hypertonic and isotonic saline 

injections respectively.  
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Electromyography  

 Figure 3 illustrates the average EMG amplitude (averaged across the entire grid of 

electrodes) for each of the four conditions. An overall reduction in the amplitude of upper trapezius 

activity is evident in the painful condition compared to the other conditions. Consistent with this 

observation, the mean RMS was dependent on the interaction between condition and stage of the 

cyclic movement (F=8.5, p<0.00001). The mean RMS was lower during the painful condition 

compared to baseline, post and recovery during stages 30-70% of the cyclic movement (SNK: all 

p<0.05; Figure 3), stages when the muscle should have been most active.  

The y-axis coordinate of the centroid of the EMG map was also significantly dependent on 

condition (F=7.5, p<0.001) with higher values observed during the painful condition compared to 

all other conditions (SNK: all p<0.01; Figure 4). This indicates that center of activity was shifted in 

the caudal direction in the painful condition. No differences were observed between the baseline, 

isotonic or recovery conditions (p>0.05).   

Figure 5 provides representative EMG amplitude maps from a single subject extracted at 

60% of the cycle for the four conditions. Note the overall reduced EMG amplitude and shift of 

activity away from the cranial direction in the painful condition. On the contrary the x-axis 

coordinate of the centroid of the EMG map did not differ between conditions (p>0.05; Figure 6).   

Figure 7 illustrates the entropy measured from the EMG amplitude maps recorded for each 

cycle of the task from a single representative subject for all four conditions. Note that the EMG 

amplitude becomes more uniform in the painful condition. Accordingly, the entropy of the EMG 

amplitude was dependent on the interaction between condition and stage of the cyclic movement 

(F=2.5, p<0.001) with a higher percentage of entropy observed during the painful condition 

compared to all other conditions at stages 30-80% of the cyclic movement (SNK: all p<0.01; Figure 

8). Entropy was also higher for the painful condition at stage 20% of the cycle compared to the 

isotonic and recovery conditions (SNK: both p<0.05). 
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DISCUSSION 

 Noxious stimulation of the upper trapezius resulted in a shift of the distribution of activity 

towards the caudal region of the muscle during performance of a repetitive lifting task. This change 

in the distribution of activity to different regions of the muscle may have important implications for 

the perpetuation and worsening of neck-shoulder pain during repetitive tasks. 

During the baseline and control conditions, there was a general increase in the amplitude of 

upper trapezius activity during the lifting phase of the task (stages ~30-70%). This was expected 

and is in line with the anatomical action of the muscle. Activation of the upper trapezius is essential 

for normal scapulohumeral rhythm during arm elevation 
19

. Normal scapulohumeral rhythm 

requires upward rotation of the scapula which is provided by the force couple of the trapezius and 

serratus anterior, in order to prevent the rotator cuff tendon from impinging against the anterolateral 

acromion 
19,20

. Moreover, the results revealed a shift in the distribution of activity towards the 

cranial region of the muscle during the elevation phase of the task. The relative adaptations in the 

intensity of activity within muscle regions may be attributed to variation in peripheral properties or 

in the control of motor units within a muscle. For example, since muscle fibers within the upper 

trapezius have non-uniform morphological and histological properties 
21

, an increase in the neural 

drive to the muscle would result in preferential activation of specific muscle regions. Most likely, 

motor unit recruitment or the discharge rate of the active motor units varied within the different 

regions of the muscle 
22,23

. The cranial shift in the distribution of upper trapezius activity likely 

reflects a shift in activation towards the muscle fibers which have a better mechanical advantage to 

generate the upward rotation and elevation of the scapula with arm elevation. This pattern of upper 

trapezius muscle activation during the repetitive task was consistent between the baseline and 

control conditions and is in agreement with the characteristic increase in surface EMG amplitude 

towards the cranial region of the upper trapezius muscle with increasing force 
24

.  

 An overall reduction of upper trapezius activity was observed following noxious stimulation 

of the upper trapezius muscle. This observation is line with several studies which demonstrated that 
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injection of hypertonic saline (experimental muscle pain), which excites nociceptive muscle 

afferents (group III and IV), reduces the activation of the painful muscle 
13,25-27

. Reduced muscle 

activation implies that the nociceptive input reduced the net excitatory input to the population of 

motor neurons
 28,29 

which is likely due to decreased descending drive to the muscle or to pure spinal 

mechanisms, or more likely, a combination of both. 

 Novel to this study, we also observed a shift of the distribution of upper trapezius activity 

during performance of the repetitive task. Specifically, the center of trapezius muscle activity was 

shifted more caudally in the painful condition. This implies that regions of the muscle which would 

not normally be as active, became active in the painful condition and that regions which would 

normally be active (based on their anatomical action) became less active. This change resulted in 

more uniform activation of the upper trapezius muscle as seen from the entropy data. This new 

motor strategy may be seen as effective mechanism to “protect” the painful region 
30,31

. However, 

based on anatomical considerations, the “new” pattern of trapezius muscle activation in the painful 

condition can be seen as inefficient motor strategy. Previous investigations of the distribution of 

upper trapezius muscle activity using high-density EMG have observed a shift in the distribution of 

activation towards the caudal region of the muscle during painful conditions, albeit during isometric 

shoulder abduction 
12-14

. Additionally, people with fibromyalgia display activation of their upper 

trapezius which is centered more caudally compared to pain-free participants during sustained 

shoulder abduction 
17

. Moreover, a recent study of people with low back pain showed that patients 

performed a repetitive task with a different distribution of lumbar erector spinae muscle activity 

compared to pain-free volunteers 
32

. Although there may be a short term benefit of such an adaption 

as it allows the person to complete the motor task, the long term consequence of these altered motor 

strategies may be overload of muscle fibers and as a further consequence, perpetuation or 

recurrence of pain.   

 Hodges and Tucker 
31

 proposed a theory of motor adaptation to pain, which explained a 

large number of findings that were not fully explained by previous theories such as the Pain 
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Adaptation 
33

 or Vicious Cycle 
34

 theories. One element of this new theory is that muscle activity is 

redistributed to minimize activity of the painful region with the aim of “protecting” the painful area. 

The current results support this theory since the shift of activity was away from the site of local 

noxious stimulation. However, other work has shown a shift of the distribution of muscle activity 

towards the caudal (painful) region of the upper trapezius during isometric shoulder abduction even 

when the site of noxious stimulation is in the caudal region 
13

. Motor units in the caudal region of 

the upper trapezius have greater discharge rates during sustained shoulder abduction than motor 

units in cranial regions 
22-23

 which suggests that motor units in the caudal region have lower 

recruitment thresholds than those in the cranial region. Since nociception decreases the net 

excitatory drive to the motor neurons 
28,29

, the presence of pain in the upper trapezius is expected to 

reduce muscle activity predominantly in the cranial region, where motor units have higher threshold 

for activation.  Thus when the upper trapezius muscle is painful, regardless of the location of pain, 

the adaptation of the upper trapezius aims preferentially to minimize activation of the cranial 

region; possibly because this region has higher pain sensitivity 
35

. 

Clinical considerations 

Repetitive movement is a physical risk for work-related musculoskeletal disorders including 

those of the neck-shoulder region 
36

. The proportion of workers exposed to repetitive arm 

movement continues to increase 
37

.  Needless to say, musculoskeletal disorders located in the neck–

shoulder region are associated with substantial socio-economic consequences 
36

. Changes in the 

activation of upper trapezius have been observed in people with neck-shoulder disorders and 

include altered activation during repetitive tasks 
38-40

 and computer work 
41

, reduced ability to relax 

the upper trapezius following voluntary activation 
39

 and reduced rest periods of the upper trapezius 

during repetitive tasks 
42

. Given the common complaint of upper trapezius muscle pain and the 

alterations of upper trapezius activity which have been frequently documented in people with neck-

shoulder disorders, further studies investigating the basic effect of nociception on the activation of 

the trapezius muscle have been needed to better understand the potential associations between 
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repetitive movement, pain and altered motor control. By applying state of the art, high-density 

surface EMG, the current work revealed a change in the distribution of upper trapezius activity 

during repetitive work when pain is present. These findings may be relevant for interpreting 

changes in trapezius activity in clinical pain conditions and offer further insight into the hypothesis 

of overload of muscle regions and overexertion of low-threshold motor units in the presence of 

upper trapezius pain 
43

.         

Methodological considerations 

 It is likely that the noxious stimulation of the upper trapezius induced a reorganization of the 

activation of other neck, shoulder and/or scapular muscles 
25,45

.  However, we preferred to have 

more channels placed over the trapezius muscle in order to generate a larger mapping of trapezius 

muscle activity rather than having a reduced number of electrodes spread over multiple muscles. 

Since upper trapezius activity changed in the painful condition, it is also possible that scapular 

motion was altered during the lifting task. Motion analysis of the upper quadrant may have 

strengthened the current observations. The lack of kinematic analysis of task performance does not 

allow us to conclude that the task was performed in exactly the same way in the painful condition 

i.e. that the subjects were doing the same movements, although using different muscle patterns. 

Even though the general posture and performance of the subjects were monitored throughout by 

investigators to ensure consistency, we cannot exclude subtle variations in movement between 

conditions. Nonetheless, other studies using more constrained tasks have confirmed that the 

kinematics of the task can remain the same in painful and control conditions despite reorganization 

of muscle activation 
25,45

. 

The electrode grid was positioned in order to be within the region of the upper trapezius and 

achieve coverage of a large proportion of the upper trapezius in the longitudinal direction. In some 

cases the electrode grid may have covered a portion of the middle division of trapezius. However 

this would not affect the main conclusion of the study, as the middle fibers of the trapezius are not 

anatomically suited to provide scapular elevation with arm elevation.  

Copyright © 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of the article is prohibited.



Experimental muscle pain provides a means to explore the effect of nociception on motor 

control in the absence of pathological changes within the muscle and joint. Thus for the purposes of 

the current study, this approach allowed us to specifically evaluate the effect of nociception on the 

distribution of upper trapezius muscle activity. However, different results may be seen in people 

with work-related neck-shoulder pain, especially in people with high levels of kinesiophobia where 

their motor strategy may be altered in a different way due to fear of pain provocation with 

movement.  Although the sample size was small it is in line with previous experimental pain studies 

however, it should be noted that the subjects were young men and the results cannot necessarily be 

generalized to women or older persons. This is a limitation of the study especially considering the 

higher prevalence of trapezius myalgia in women 
5
.  Finally, a potential further limitation of the 

study is that the order of the injections was not randomized although, the participants were advised 

that one or both could be painful. Moreover a recovery condition was included.  

Conclusion 

Repetitive tasks are an important risk factor for initiation, maintenance and recurrence of neck-

shoulder pain. This study revealed a different distribution of upper trapezius activity when a repetitive 

lifting task was performed in the presence of pain. This knowledge provides new insights into the 

mechanisms underlying the perpetuation of pain with repetitive activity. 
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FIGURE LEGENDS 

 

Figure 1: High-density surface EMG signals were detected using a semi-disposable adhesive grid 

of electrodes over the right upper trapezius muscle. The grid consists of 13 rows and 5 columns of 

electrodes with one electrode absent at the upper right corner. The electrode grid was placed with 

the 4th row along the C7-acromion line. The injection was performed lateral to the electrode grid (~ 

10 mm) 15 mm cranial to the line between the acromion and the spinous process of the seventh 

cervical vertebra. 

Figure 2:  Mean (+ SE) pain intensity scores following injection of 0.4 ml of hypertonic saline and 

0.4 ml of isotonic saline into the cranial of the upper trapezius.  

Figure 3:  Mean (± SE) of the average root mean square (RMS) estimated for each stage of the 

repetitive lifting task. Each cycle was divided in 10 epochs of equal length and the EMG signals 

were analyzed separately for each epoch of each cycle. The EMG variables were then averaged 

across the 50 cycles for each epoch of the cycle. Data are expressed in percentages (0-100%) with 

respect to the cycle duration.  Significant difference between hypertonic saline condition compared 

to baseline:  * p<0.05; significant difference between hypertonic saline condition compared to 

isotonic saline condition:  # p<0.05; significant difference between hypertonic saline condition 

compared to recover condition:  ‡ p<0.05. 

Figure 4:  Mean (± SE) of the y-axis coordinate of the centroid of the RMS map estimated for each 

stage of the repetitive lifting task. Each cycle was divided in 10 epochs of equal length and the 

EMG signals were analyzed separately for each epoch of each cycle. The EMG variables were then 

averaged across the 50 cycles for each epoch of the cycle. Data are expressed in percentages (0-

100%) with respect to the cycle duration.  Significant difference between hypertonic saline 

condition compared to baseline:  * p<0.01; significant difference between hypertonic saline 

condition compared to isotonic saline condition:  # p<0.01; significant difference between 

hypertonic saline condition compared to recover condition:  ‡ p<0.01. 

Copyright © 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of the article is prohibited.



Figure 5: Representative topographical maps (interpolation by a factor 8) of the EMG root mean 

square (RMS) value recorded for one subject during the stage 60% of the repetitive lifting task at 

baseline, following the injection of isotonic saline and hypertonic saline into the cranial region of 

the upper trapezius and following 15 min of rest after the last injection (recovery). Colors are scaled 

between the minimum and maximum RMS values. Areas of dark blue correspond to areas of low 

EMG amplitude and dark red to areas of high EMG amplitude. Note the overall decrease of EMG 

amplitude in the painful condition (hypertonic) and the general shift of activity towards the caudal 

region of the muscle.  

Figure 6: Mean (± SE) of the x-axis coordinate of the centroid of the RMS map estimated for each 

stage of the repetitive lifting task. Each cycle was divided in 10 epochs of equal length and the 

EMG signals were analyzed separately for each epoch of each cycle. The EMG variables were then 

averaged across the 50 cycles for each epoch of the cycle. Data are expressed in percentages (0-

100%) with respect to the cycle duration.  No significant differences were identified.  

Figure 7: Representation of entropy of EMG amplitude maps during each portion of each cycle in 

the four conditions of a representative subject. Each pixel of the map represents the entropy of the 

RMS map. Each column corresponds to each of the lifting cycles while each row represents a 

portion of the cycle. Each cycle was divided in 20 epochs of equal length for graphical reasons. 

Baseline, Isotonic and Recovery conditions show similar patterns of entropy with lower values 

between 30% and 60% of each cycle while the Hypertonic conditions shows higher values and a 

different distribution of values. 

Figure 8: Mean (± SE) of the entropy (%) of the RMS map estimated for each stage of the 

repetitive lifting task. Each cycle was divided in 10 epochs of equal length and the EMG signals 

were analyzed separately for each epoch of each cycle. The EMG variables were then averaged 

across the 50 cycles for each epoch of the cycle. Data are expressed in percentages (0-100%) with 

respect to the cycle duration.   
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