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Summary

Many real-life networks, such as social networks, can be represented as
graphs. A task one could consider doing on these graphs, is to measure the
similarity between its vertices. There exists different types of similarity that
we can measure, such as structural and semantic vertex similarity. Structural
similarity has to do with the structure around vertices and identifying roles.
One role which exists in many networks are hubs. For semantic similarity,
we are concerned with the attributes of vertices and edges, and say that two
vertices are semantically similar if they have the same attributes. Often it
is not enough to base the similar on one of these concepts, but instead a
combination of them, i.e. using both structure and attributes. Being able
to measure this kind of similarity has numerous applications. For example
classifying proteins in a protein-protein interaction network.

Recently, methods for measuring similarity have been proposed, which use
feature learning. Feature learning techniques learn embeddings for vertices
in graphs. These techniques often do this by creating random walks and use
these as input to the Skip-gram framework.

We explore in detail one such method, namely, node2vec. node2vec is
a framework for learning embeddings for vertices in graphs, i.e. mapping
vertices to euclidean space. To do this, they formalize an objective function
closely related to the objective function of Skip-gram, which aims to predict
the neighbourhood of a given vertex. They use biased random walks to
sample the neighbourhood.

The authors claim their biased random walks, configurable by two pa-
rameters, p and q, are able to determine if the sampled neighbourhoods
corresponds to structure or proximity.

One drawback of node2vec is that it ignores vertex attributes, and uses
only the ids of vertices. We propose ways of extending node2vec to utilize at-
tributes on vertices and edge relations given a multirelational graph. A walk
in node2vec is represented as a sequence of vertex ids, to utilize attributes,
the walk should instead be represented as a sequence of feature vectors.

In our exploratory analysis we examine the claims of node2vec, namely,
that they are capable of finding structural similarity or proximity by config-
uring p and q. To examine this claim, we find a set of parameters, which
are able to find structural similarity, and see how changing the parameters
affect its ability to find structure. Specifically, we see how well it distin-
guishes between three types of network roles, namely, hubs, periphery and



mainstream vertices. This is done using k-means, where the ideal clustering
is three clusters with each cluster containing only one type of the previously
mentioned network role. We found that node2vec were able to correctly dis-
tinguish between the different roles, however, p and q did not decide whether
structure or proximity were found. Instead the length and number of biased
random works, were found to have huge influence in whether structure or
proximity were found. We also performed experiments to investigate the ef-
fect of adding attribute and edge relations to the random walks. We found
that it made it possible to discover semantic similarity.

Having explored node2vec in detail, we set out to perform experiments on
real networks, to test how our extension performed in contrast to node2vec
on real tasks. These tasks include multiclass and multilabel classification.
We found that for the multiclass task that one of our extensions performed
better than node2vec. For the multilabel classification problem results were
mixed. On some datasets node2vec performed best while on another our
extensions performed better.
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Part I

Introduction

1 Introduction and motivation

Real life networks, such as social networks, can be represented as graphs. In these
graphs the entities of the network, e.g. users of a social network, are vertices and the
relations between these entities, e.g. friendship, are edges.

In these networks it is sometimes of interest to measure how similar two vertices
are. Some tasks where measuring vertex similarity is useful involve identifying ver-
tices with a certain role, e.g. teacher and students, searching for certain vertices, or
classifying vertices according to some label.

There exists many di�erent notions on what makes two vertices similar. For
example, two users in a social network could be considered similar if they have many
of the same friends. We are particularly interested in a type of similarity called
structural similarity. This type of similarity is based on the structural patterns of a
vertex.

Structural similarity is useful for determining the roles of vertices. As an example,
Figure 1 shows the Zachary Karate network, where vertices are karate instructors
and students, and edges are social interactions between them. The two highlighted
vertices, 0 and 32, are both instructors. They are considered structurally similar
because they both have a high degree and connect to many low degree vertices. This
makes sense, because instructors have interactions with many di�erent students, while
students mainly interact with the instructor and a few other students.
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Figure 1: Example graph with two structurally similar vertices highlighted

Vertices in real networks generally have several attributes, e.g. a user in a social
network may have a name and an age. In the karate network, an attribute could be
which karate club a student or instructor is a member of. We refer to similarity based
on attributes, as semantic similarity.

Combining both of these types of similarity is interesting, because it makes it
possible to distinguish between more detailed roles. With structural similarity we are
only able to distinguish instructors from students. By combining it with semantic
similarity we are able to distinguish between instructors of one club and instructors
of another club.

Some real networks have multiple relation types. For example, a social network
may have a friend relation and a family relation. Like attributes, relation types can
also give relevant information about the role of a vertex. For example, consider a
network where vertices are airports and edges are �ight routes between airports. A
relation type would be the airline that operates the route. In this network, taking the
relation type into consideration makes it possible to distinguish between hub airports
from di�erent airlines.

State of the art techniques for measuring similarity between vertices make use of
feature learning. The goal of feature learning is to learn embeddings of vertices such
that two vertices are similar if the distance between their embeddings is small. One
method that makes use of feature learning is node2vec[6], which uses the structure
of the graph to learn vertex embeddings. Since we wish to combine structural and
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semantic similarity we extend node2vec to take attributes and relation types into
account.

Our contributions are as follows:

• We perform an extensive analysis of node2vec and investigate the authors claims
that node2vec can �nd both structural similarity and communities by changing
two parameters.

• We propose extensions to node2vec, which makes it possible to utilize vertex
attributes and edge relation types.

• We demonstrate that our extensions results in better classi�cation performance
than node2vec in some cases.

1.1 Use cases

In this section we highlight real-life use cases where vertex similarity measures may
be useful.

1.1.1 Airline network

An airline network consists of airports and routes for di�erent airlines. This can
be represented as an attributed undirected multirelational graph, where airports are
vertices and routes are edges. Each relation is associated with one airline. Attributes
include passengers carried, and identi�cation code, e.g. International Air Transport
Association. Vertex similarity can be used for performing search in this network. If
we are given an airport of a certain size, the search problem might entail �nding other
airports of similar size.

1.1.2 Social network

There are many opportunities for vertex similarity to be useful, when considering
real-life social network data, such as a blogging network or Facebook.

For example, consider a blogging network. This can be represented as an at-
tributed undirected graph, where vertices are blogs and edges exist between two
blogs, if the authors of the blogs are friends. In such a network, attributes may in-
clude when the blogs was posted, tags or keywords describing the blog, and the text
of the blog. An interesting task to perform on this network, could be classi�cation
of tags. Vertex similarity could be utilized here, as blogs that are similar in terms
of their attributes and their structure, should have similar tags. If a blog is posted
without any tags, this could be used for automatic tagging.

Additionally, it might be possible to use this for friend recommendation, as users
who share similar interest(i.e. writing blogs with similar tags), might be candidates
for being friends.
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1.2 Outline

The report is structured as follows. In section 2 we present the concepts used from
graph theory. In section 3 we explore similarity in detail. In section 4 we highlight
ways of measuring similarity. In section 5 we present di�erent criteria one should think
when choosing a similarity measure for their problem domain. In section 8, section 9,
and section 10 we perform a comprehensive analysis of node2vec and our proposed
extensions. In section 13 and section 14 we show the results of our experimental
study.

2 Graph Theory

This section, except 2.1 and 2.3.3, is largely based on last semesters report: Vertex
Similarity in Graphs

A graph is an ordered pair G = (V,E), where V = {v1, v2, . . . , vn} is the set of
vertices in G and E ⊆ V × V is the set of edges in G. We use V (G) to denote the
vertices of graph G and E(G) to denote the edges of graph G. A vertex vi is said
to be adjacent, or neighbour, to a vertex vj if vi and vj are connected by an edge,
sometimes denoted vi ∼ vj. An edge ei is said to be incident on a vertex vi if vi is an
endpoint of ei.The size of G, denoted |G| is the amount of vertices in G.

A graph G can be represented as the adjacency matrix:

Aij =

{
1, if (vi, vj) ∈ E(G)

0, otherwise
(1)

In a directed graph the set of edges consists of an ordered pair of vertices, while in
an undirected graph the set of edges consists of unordered pairs of vertices. A simple
graph is a graph without self loops and multiple edges.

A graph can have attributes on both vertices and edges. An attribute has a name
and a value. Let α be an attribute name and Φα be the range of values this attribute
can take. A graph G then has a function α : V (G) → Φα for every attribute.
The attribute functions for edges are de�ned similarly. An example of a numeric
attribute could be age where Φage = N, and a discrete attribute could be gender
where Φgender = {Male, Female}. Graphs with a single numeric attribute on the
edges are called weighted graphs.

A walk h on a graphG is a sequence of vertices and edges vh1, eh1, vh2, . . . , ehn−1, vhn
such that ∀i : (vhi ∈ V (G) ∧ ehi ∈ E(G) ∧ ehi = (vhi, vhi+1)). The length of walk h,
denoted |h|, is the number of edges in h. A path is a walk that does not contain any
duplicate vertices i.e. ∀i, j : vhi 6= vhj i� j 6= i. Two vertices are said to be connected
if there exists a path between them.

A subgraph H of G is a graph where V (H) ⊆ V (G) and E(H) ⊆ E(G). Subgraphs
can be induced from vertices. A vertex-induced subgraph H ′ of G is a subgraph
formed by a subset of vertices V (H ′) ⊆ V (G) and E(H ′) = {(vi, vj) ∈ E(G) | vi ∈
V (H ′) ∧ vj ∈ V (H ′)}.
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The k-neighbourhood of a vertex v, denoted Nk(v), is the subgraph induced by
the set of all vertices that are reachable from v with a path of length at most k.

2.1 Multirelational graphs

In real networks two vertices can be connected by several di�erent types of edges.
For example, consider a social network where there are edges between people if they
are friends or co-workers. These kind of networks are often called multirelational
networks. Other closely related names for these kinds of networks are multidimen-
sional, multilayer, and multiplex networks[3][8]. Formally a multirelational network
is a triple G = (V,E,R) where V is a set of vertices, R is a set of relations, and E is
a set of labelled edges, (u, v, r), where u, v ∈ V and r ∈ R.

This is equivalent to a single-relational graph with an attribute relation : E → R
that maps edges to relations.

An example of a multirelational network can be seen in Figure 2. This network
has three di�erent relations, r1, r2 and r3.

r1

r1

r2

r3 r3

Figure 2: A multirelational network

2.2 Graph properties

Graphs have certain properties that are helpful when analysing the graph. This
sections covers some of them.

2.2.1 Degree

The degree of a vertex v in an undirected graph, denoted deg(v), is the number of
edges that are incident on v. For a directed graph, we di�erentiate between indegree,
denoted deg−(v), outdegree, denoted deg+(v), and degree deg(v) = deg−(v)+deg+(v).
The indegree is the number of incoming edges on v, and the outdegree is number of
outgoing edges of v. In Figure 3, examples are illustrated of both an undirected and
a directed graph, with each vertex labelled with its degree. Here the labels of the
undirected graph speci�es total degree for the given vertex, while vertex degrees for
the directed graph are labelled as (deg−(v), deg+(v)).

5



43 1

2

2

Undirected graph

1,31,2 1,0

2,0

1,1

Directed graph(deg−(v), deg+(v))

Figure 3: A directed and undirected graph with vertices labelled by their degrees

2.2.2 Distance

The distance between two vertices, denoted dist(vi,vj), is de�ned as the number of
edges in a shortest path from vi to vj. The shortest path is de�ned as the path from vi
to vj with the least edges, or in case of a weighted graph, the path from vi to vj with
the smallest accumulated weight. If no shortest path exists, dist(vi, vj) is de�ned to
be in�nite.

The eccentricity of a vertex v, denoted ε(v) = maxvi dist(v, vi), is the largest
shortest path distance between v and any other vertex. The diameter of a graph,
dia(G) = maxv ε(v), is the maximum ε(v) for any v ∈ V (G). Figure 4 shows an
example of a graph G where the vertices are labelled with their eccentricity. This
graph has a diameter of four, due to the largest ε(v) in G being four.

3

2

3

4

4

4

Figure 4: Graph G whose vertices are labelled with their eccentricity

2.3 Graph statistics

In this section we introduce common statistics used for graph analysis.
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2.3.1 Closeness Centrality

The closeness centrality of a vertex v is a measure of how central v is located in a
graph. It is determined by summing the lengths of the shortest paths between v and
all other vertices in the graph. The closer v is to all other vertices, the larger its
closeness centrality is. Formally, closeness centrality is de�ned in Equation 2.

C(v) =
N − 1∑N

i distsp(v, vi)
(2)

Where C(v) is the closeness centrality of vertex v ∈ V (G), N is |G| and distsp(v, vi)
is the shortest path distance between v and vi. Figure 5 shows an example of a graph,
where vertices are labelled with their closeness centrality.

10.57 0.57

0.57

0.57

Figure 5: Graph G whose vertices are labelled with their closeness centrality

2.3.2 Graph Density

The density of a simple graph is de�ned by how close the graph is to having the
maximal number of edges it can possible have. Graph density is formally de�ned in
Equation 3 and Equation 4 for undirected and directed graphs respectively.

D =
2|E(G)|

|V (G)|(|V (G)| − 1)
(3)

D =
|E(G)|

|V (G)|(|V (G)| − 1)
(4)

Where D is the density of a graph G.

2.3.3 Local clustering coe�cient

The local clustering coe�cient is used to quantify how connected the neighbours of
a vertex is. Given a graph G = (V,E), let kv be the degree of v ∈ V and Nv denote
the amount of links between the neighbours of v. Then the clustering coe�cient is
the ratio of connections in Nv over all possible connections that could exist between
them. This is formally de�ned in Equation 5 for directed graphs, where kv = deg+(v).
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CC(v) =

{
Nv

kv(kv−1) , if kv > 1

0 otherwise
(5)

Here CC(v) is the clustering coe�cient for vertex v. We say that the clustering
coe�cient of a vertex is zero, if it has less than two neighbours.

For undirected graphs the de�nition is slightly di�erent, as a fully connected
undirected graph can only contain half as many edges as a fully connected directed
graph. Thus, for undirected graphs kv(kv − 1) would need to be divided by two.

In Figure 6 is an example of a directed and undirected graph respectively, whose
vertices are labelled with their clustering coe�cient.

0.5 0.5 0

0.5 0.42

0

0.33 1

1

Figure 6: (Left) A directed graph with vertices labelled with their clustering co-
e�cient, (Right) An undirected graph with vertices labelled with their clustering
coe�cient
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Part II

Similarity

In this part we formally de�ne what is understood by similarity, and what types of
similarity exist. After that we show some of the popular methods for computing
similarity on graphs and vertices. Next we introduce node2vec, a state of the art
method which uses feature learning to learn vertex embeddings.

Node2vec does not make use of vertex attributes or relation types. We propose
extensions to node2vec that makes use of these.

Finally we de�ne some criteria that can be used to examine similarity measures.
These criteria cover what types of data the similarity measures are applicable on, and
how the measures behave on the data.

3 Similarity

A similarity measure is a function s(x, x′) that gives a numerical quanti�er on the
similarity between the two objects, x and x′. The more similar two objects are, the
larger s(x, x′) is.

Most similarity measures exhibit certain properties. For example, similarity mea-
sures usually lie in the range [0, 1] or in some cases [-1, 1]. To ensure that values fall
in these ranges, the measures may need to normalized. A reason why it is attractive
to have the values in these ranges is because it allows for comparison of results over
di�erent similarity measures.

Another property for these measures is that an object should be maximally similar
to itself. More formally, for a similarity measure s we have that s(x, x′) = 1 if
x = x′(0 ≤ s ≤ 1).

A third property is that similarity measures should be symmetric s(x, x′) =
s(x′, x).

Similarity measures can often be transformed into a distance measure d(x, x′),
and vice versa. In other words, a distance measure can be seen as the inverse of a
similarity measure. For example, the euclidean distance between two points (de�ned
in Equation 6) can be converted to a similarity measure by simply multiplying by -1.

d(x,y) =

√√√√ n∑
i=1

|xi − yi|2 (6)

Other ways to transform a similarity measures can be seen below, where s is a
similarity measure and d is a distance measure.

s = 1− d

s =
1

1 + d
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For network data we have measures that work on three di�erent types of data:
Graphs, edges and vertices. A graph similarity measure sg(G1, G2) compares entire
graphs, an edge similarity measure se((v1, v2), (v3, v4)) compares two pairs of vertices,
and a vertex similarity measure sv(v1, v2) compares two vertices. In this report we
are only interested in similarity measures between vertices.

In addition to di�erent types of similarity measures, we also di�erentiate between
di�erent types of similarity. These will be discussed in the following section.

3.1 Types of Similarity

In real life networks there exist di�erent types of similarity between vertices. We
consider three di�erent types, namely, structural similarity, semantic similarity and
proximity.

From a structural perspective, the similarity depends only on the structure of the
network. Examples of such vertex structures are hubs and outliers. As an example,
two people in a social network would be considered structurally similar if they are
both hubs.

Similarity in the semantic setting depends only on the attributes of vertices and
edges. Again, consider a social network with people, and the only attribute we have
available is the age of each person. Two people would be considered maximally
semantically similar if they are of the same age, independently of the amount of
friends they may have.

Finally, from a perspective of proximity, we have that vertices that are closely
connected are more similar. So two people in a network would be considered similar
from a proximity perspective if they are closely associated.

While these concepts de�ne some form of basis for similarity, one might be inter-
ested in a measure that combines the di�erent settings. Structurally dissimilar people
may still receive a high similarity score because they have similar attributes.

To illustrate the di�erent concepts, consider Figure 7. The two labels are at-
tributes.

Vertices v1 and v3 are maximally semantically similar as they have the same
attributes. However, they are only somewhat structurally similar as their amount
of neighbours di�er. Vertices v1 and v7 can be seen as somewhat similar from a
semantic perspective as they share some attributes. However, their structure looks
nothing alike. Vertex v1 is maximally structurally similar to v6.

Based on proximity, v1 and v5 will be seen as very similar, even though both their
structure and attributes are nothing alike. Utilizing the combination of these concepts
might yield v2 as being the most similar vertex to v1, as they not only share some
attributes, they are also close to having a similar structure and are closely connected.
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0, 1 2, 1

0, 1

1, 2

4, 4 3, 4 0, 2

v1 v2

v3

v4

v5 v6 v7

Figure 7: Example graph to illustrate di�erent types of similarity

3.2 Structural Vertex similarity

There are several di�erent notions on how to quantify the structural similarity between
vertices. One commonly used notion is that two vertices are similar if they have
many of the same neighbours [10]. For this notion, several well established similarity
measures can be used. Let v and u and be two vertices in the same graph, then the
following measures can be used:

sjaccard(v, u) =
|N1(v) ∩N1(u)|
|N1(v) ∪N1(u)|

(7)

scosine(v, u) =
|N1(v) ∩N1(u)|√
|N1(v)||N1(u)|

(8)

This kind of similarity is based on what they in sociology refer to as structural
equivalence, where two vertices are similar if they can be exchanged without changing
any property of the graph. We refer to it as proximity. The drawback with this notion
of similarity, is that for two vertices to be similar, they have to be close in the graph.
In fact, vertices that are a distance of three or farther away, or disconnected from
each other, will always have a similarity of zero, as they will never have any common
neighbours.

Depending on the task, this kind of similarity may not be su�cient. There are
several cases where two vertices should be considered structurally similar, but they do
not have any neighbours in common. Consider the graph in Figure 8. Here the three
vertices v1, v2, and v3 are far away from each other, in fact, they are disconnected
from each other. Yet, they all share similar structural properties in that they are the
centre of a star.

A naive approach to construct a structural similarity measure that does not require
connectivity, could be to utilize vertex properties such as closeness centrality and
degree. For example, if we return to Figure 8, and consider the distance measure
sdegree(v, u) =

√
(deg(v)− deg(u))2. It is clear that the centres of the stars are closer

to one and another, than to the rest of the vertices. In fact, we can see that v1 and
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v1 v2 v3

(A) (B) (C)

Figure 8: Example of a graph modelling three di�erent learning institutions. Vertices
are students and teachers. Edges exists between vertices if one is being taught by the
other.

v3 are identical using sdegree, as they have a distance of zero i.e.
√

(8− 8)2 = 0. This
measure allows us to di�erentiate between teachers and students, as teachers will be
closer to other teachers than to students.

One concept of structural similarity is the idea of identifying roles in networks.
Roles are speci�c structural patterns that often occur in real life networks. One
notable such role, is a hub. A hub is a vertex which is highly connected in the
network and has a signi�cantly larger degree relative to its neighbours, as de�ned in
Equation 9.

deg(v) >>

∑
vn∈N1(v)

deg(vn)

|N1(v)|
(9)

Here N1(v) is the immediate neighbourhood of vertex v and vn is a vertex in the
immediate neighbourhood of v. For hubs it is su�cient to consider only the immediate
neighbourhood, but for other structural patterns it may be bene�cial to increase the
neighbourhood size.

This de�nition highlights an important aspect of structural similarity, which is
that it is not only dependent on the structural properties of an individual vertex, but
also on the structure of its neighbouring vertices. However, note that determining
roles and measuring similarity is not the same exact task. Focusing on Figure 8 again,
it is clear that v1, v2, and v3 are all hubs, as they have a much larger degree than
their neighbours. However, v1 and v3 are clearly more structurally similar, than v1
and v2 as we saw before.

Closely related to the concept of hubs are two other roles, namely periphery and
mainstream vertices. The de�nitions of these are more loose compared to hubs. For
a vertex v to be considered a periphery vertex, it must have a distance of dia(G) for
some graph G to some other vertex, i.e. ε(v) = dia(G). Periphery vertices generally
have low degree, and are mostly connected to either hubs or mainstream vertices.
Mainstream vertices are vertices which are neither hubs nor periphery vertices.

In the following section we will see how to combine structural and semantic simi-
larity.

12



3.3 Structural and Semantic similarity

Utilizing only the structure of a network as a similarity measure may not be enough
for some real networks. These networks often contain rich data such as attributes
on vertices and edges, which are not utilized when looking purely at structure. For
example, if we recall the graph modelling di�erent institutions from the previous
section, we could have that the teachers and students were annotated by their age,
as seen in Figure 9.

4011

10

10 9 11

11

1011

40

11

9 10

10

11 10

4023

24 23 23

22

232324

(A) (B) (C)

Figure 9: Example of a graph modelling three di�erent institutions, (A) and (B) are
elementary schools, and (C) is a university. Vertices are students and teachers and
are labelled with their age. Edges exists between vertices if one is being taught by
the other. v1 is the centre of (A), v2 is the centre of (B), and v3 is the centre of (C)

These attributes should be incorporated into a vertex similarity measure. The
straightforward approach to this is to use one of the many similarity/distance mea-
sures for numeric values, such as Euclidean distance, to measure similarity of at-
tributes. This measure can be combined with a structural similarity measure by
either multiplying or adding the similarity scores together.

It is important to also consider the attributes of the neighbours when comparing
vertices. If we do not consider the neighbours, we can see from Figure 9 that v1, v2
and v3 are all maximally similar to each other. This result is not any better than what
we obtained from using just the structure, as we are still only able to di�erentiate
between teachers and students.

If we use the attributes of the neighbours we can see that v1 and v2 are connected
to a lot of vertices with the same attributes, while v3 is connected to vertices that
do not have the same attributes as the neighbours of v1 and v2. This means that,
while the three vertices are all considered hubs, v1 and v2 should be considered more
similar based on their connections, compared to v3.

This also makes sense, since v1 and v2 are both elementary school teachers, while
v3 is a university professor. Additionally, v3 should still be considered more similar to
v1 and v2 than to any periphery vertex, since they are all hubs, i.e. teachers and not
students. Similarity measures using attributes in combination with structure should
not only be able to tell the di�erence between students and teachers, but also the
di�erent kinds of students and teachers, i.e. elementary school teachers and university
professors.
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3.4 Structural similarity in multirelational graphs

For multirelational graphs it can be more complex to de�ne what the similarity be-
tween two vertices should be. For example, consider a social network modelling a
workplace where there are two di�erent relations: Co-worker and Friend. Two peo-
ple, e.g. two managers, may be structurally similar(hubs) in the co-worker relation,
while in the Friend relation one might socialize a lot with co-workers, while the other
prefers separation between personal and professional life. This means that two ver-
tices can be very similar in one relation but dissimilar in another.

This leads to an initial notion of how to de�ne similarity in multirelational graphs,
which is that two vertices are similar if they are similar in every relation. Figure 10
shows a multirelational graph with two relations. The two vertices v1(blue) and
v5(orange) are maximally similar in both relations.

v1

v2

v3 v4

v1 v5

v6

v7 v8

v5

Relation 1

v2

v1

v3 v4

v1

v6

v5

v7 v8

v5Relation 2

Figure 10: Multirelational graph (relations pictured separately)

v1

v2

v3 v4

v1 v5

v6

v7 v8

v5

Figure 11: Multirelational graph

To obtain a single similarity score for v1 and v5, the average similarity of the pair
across all the relations could be considered.

Formally, let s be a vertex similarity measure for a single relational graph. Let
G = (V,E,R) be a multirelational graph, and let u and v be two vertices in G. Then
the multirelational version of s, denoted sm, is de�ned in Equation 10. Here, si(u, v)
is the similarity between u and v in relation i.
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sm =
1

|R|

|R|∑
i=1

si(u, v) (10)

It may be bene�cial to look at the similarity score as a vector, where entry i is
the similarity score for the two vertices in relation i, see Equation 11.

sm(u, v) = (s1(u, v), s2(u, v), ..., s|R|(u, v)) (11)

This simple notion on multirelational vertex similarity may not be appropriate in
all cases. In Figure 12 we have a multirelational graph with two relations. In both
relations, v1(blue) and v4(orange) are maximally similar. From our previous notion,
these two vertices should be maximally similar.

v1

v2

v3

v1 v4

v5

v6

v4

Relation 1

v1

v2

v3

v4v1

v6

v5

v4

Relation 2

Figure 12: Multirelational graph (relations pictured separately)

However, the same graph is depicted in Figure 13 as a single graph. In this �gure
it can clearly be seen that the two vertices v1(blue) and v4(orange) are not maximally
similar.

v1

v2

v3

v4

v5

v6

v1 v1

Figure 13: A multirelational graph
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From this example it is clear that it can be too coarse to consider each relation
as independent. The simplest way to deal with this is to convert the multirelational
graph to a simple graph and then use a similarity measure designed for simple graphs.
This is a good strategy if the relations themselves do not matter for the task at hand.
However in many cases the information provided by the di�erent relations should
be utilized. As an example of how such a measure could be created, we extend the
Jaccard similarity, de�ned in Equation 7. For a vertex v, let X(v) = {(u, r)|(u, v, r) ∈
E}, then the similarity between two vertices can be de�ned in Equation 3.4.

smult-jaccard(u, v) =
|X(u) ∩X(v)|
|X(u) ∪X(v)|

(12)

3.4.1 Hubs in multirelational networks

For single relational networks, hubs are considered vertices which have a large de-
gree relative to its neighbours. However, for multirelational networks it is a little
less obvious what should be considered a hub. Some examples of possible hubs for
multirelational networks are shown in Figure 14 �gures. a is hub due to having a
large degree relative to its neighbours. However, all edges belong only to a single
relation. b is a hub for mostly the same reason as a, however, it is connected to all
other vertices by two relations, and can be considered a hub in both the black and
the green relation. c and d are more interesting, as they do not have a large degree
in any one relation, but if we consider all relations at the same time both could be
considered hubs.

a b

c d

Figure 14: Four di�erent multirelational graphs, with centres as hubs.

Being able to identify hubs in networks is of interest, because they play a central
role in many real life networks. This includes protein-protein interaction networks,
where the deletion of hub proteins are more likely to be lethal for an organism,
compared to the deletion of lesser connected proteins[7].
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4 Methods

Sections 4.1 to 4.4(excluding 4.1.1) are largely based on last semesters report: Vertex
Similarity in Graphs

Many similarity measures exist and they come in many forms. In the following
sections we explore some of the more popular similarity measures for both graphs and
vertices. We also introduce node2vec, a state of the art feature learning method, and
show our extensions to it.

4.1 Isomorphism

The strictest type of similarity between two graphs is to check whether the two
graphs are identical. When two graphs are identical we say that they are isomorphic.
Formally two graphs G1(V1, E1) and G2(V2, E2) are isomorphic when there exist a
bijection µ : V1 → V2 such that ∀vx, vy ∈ V1 it holds that vx ∼ vy i� µ(vx) ∼ µ(vy).

The de�nition of isomorphism is slightly di�erent if the graph is labelled, as label
preservation is required for the bijection.

Assume we have a similarity measure siso(G1, G2), that checks whether two graphs
are isomorphic. If they are isomorphic then siso(G1, G2) = 1 and if they are not
siso(G1, G2) = 0. An example of where siso(G1, G2) works is when you are only
interested in whether two graphs are completely alike and all other cases are not
important.

An obvious disadvantage of isomorphism is, that it is not possible to quantify how
similar two graphs are, unless they are isomorphic. So if any data is missing or there
is noise in the data, testing for isomorphism may not yield any useful results. For
example in Figure 15 we can see that the two graphs are structurally similar, but
siso(G1, G2) = 0.

G1 G2

Figure 15: Two almost identical graphs

In Figure 16 we see two isomorphic graphs. They may not initially look isomor-
phic, but that is caused by how they are projected. We can see that they are isomor-
phic, because the two graphs have the same number of vertices, the same number of
edges, and their degree sequences are the same. Furthermore, for any two vertices in
G3, if they are connected, they are also connected in G4 after being applied to the
bijection µ.

17



v1

v2v3

v4v5

v′1

v′2 v′3

v′4v′5

G3

G4

Figure 16: Two isomorphic graphs. Arrows indicate the mapping

4.1.1 Automorphism

Closely related to isomorphism is automorphism, which is a graph being isomorphic
to itself. Formally there exist an automorphism for a graph G(V, E) if there exist a
bijection µ : V → V such that ∀vx, vy ∈ V it holds that vx ∼ vy i� µ(vx) ∼ µ(vy). An
example of an automorphism can be seen in Figure 17, where v2 and v3 are mapped
to themselves, v1 is mapped to v4 and v4 is mapped to v1. As with isomorphism it
is also possible to create a similarity measure, sauto(v1, v2), for two vertices, where
sauto(v1, v2) = 1 if there exist an automorphism where v1 is mapped to v2 and
sauto(v1, v2) = 0 otherwise. This similarity measures has the same problem as siso in
that it is too strict.

v2 v4

v1 v3

v2

v4

v1

v3

G G

Figure 17: An automorphism of a graph. Arrows indicate the mapping
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4.2 Graph edit distance

The Graph Edit Distance(GED) of two graphs, G1 and G2, is a distance measure
between two graphs. GED measures the distance between the two graphs G1 and G2

based on the minimum number of operations required to transform G1 into a graph
which is isomorphic to G2. GED is de�ned in Equation 13.

GED(G1, G2) = min
(o1,...,ok)∈P (G1,G2)

k∑
i=1

c(oi) (13)

where P (G1, G2) is the set of edit paths transforming G1 into G2 and c(o) ≥ 0 is
the cost of operation o.

Some common operations for transformation include:

• vertex insertions/deletions/substitutions

• edge insertions/deletions/substitutions

• label substitutions

The problem of computing the GED is NP-complete, thus for larger networks, it
is too computational expensive.

4.3 Graph Kernels

A graph kernel k is a function k : X×X → R, where X is either a set of graphs, ver-
tices or edges. The function has to ful�ll two criteria to be considered a kernel. Firstly
the kernel has to be symmetric i.e. k(x1, x2) = k(x2, x1). Secondly the kernel must be

positive de�nitive, i.e.
n∑
i=1

n∑
j=1

cicjk(xi, xj) has to be positive for any (c1, c2, . . . cn) ∈ R

and (x1, x2, . . . xn) ∈ X. A kernel can often be thought of as a similarity measure.
One problem these kernels share, is that some graph is not necessarily maximally

similar to itself. This is because the similarity score is obtained by counting. This
has the unfortunate downside of allowing a graph to be more similar to some other
graph than to itself, simply because the other graph might be larger. To solve this
problem, as with similarity measures previously mentioned, kernels are normalized to
be in the range of zero to one. This normalization can be done using Equation 14.

k′(x, y) =
k(x, y)√

k(x, x)k(y, y)
(14)

Additionally, we use graph similarity measures as vertex similarity measures. This
can be done by considering the k-neighbourhoods of two vertices. Let Nk(v1) ⊆ G1

and Nk(v2) ⊆ G2 be the k-neighbourhood subgraphs induced by v1 ∈ V (G1) and
v2 ∈ V (G2) respectively. The similarity of v1 and v2 is then ksim(Nk(v1), Nk(v2)),
where ksim is a graph similarity measure.

The following subsections show some popular graph kernels, namely the Marginal-
ized kernel and the Shortest Path kernel.
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4.3.1 Marginalized Graph Kernel

One example of a graph kernel, explained in Tsuda et al.[18], is the marginalized graph
kernel(MG), which compares random walks in two attributed graphs. An example
of di�erent random walks in a graph can be seen in Figure 18. In this example only
vertices have attributes, but if the edges have attributes these will need to be included
in the walks.

A B

C

A
D

A

B

C

Random walk paths
1. A
2. ABA
3. CCCC
4. DBAAAB
5. BDCC
6. ACCCCCCB
7. BAAAAAAAA
8. DCCCAC
9. CBABDCCA
10. . . .

Figure 18: Example of random walks on a graph

A random walk h is created by �rst choosing a starting vertex vh1 with proba-
bility pstart(vh1). When the walk is on vertex vhi it may continue to vertex vhj with
probability pt(vhj|vhi) or end the walk with probability pstop(vhi).

The probability for an entire random walk h is given in Equation 15:

p(h|G) = pstart(vh1)pt(vh2|vh1) . . . pt(vhn|vhn−1)pstop(vhn) (15)

The start, transition and stop probabilities depend on the application domain, but
if no domain knowledge is available it is common to assume uniform probability distri-
butions for start and stop probabilities. For transition probabilities the distribution
for a vertex is uniform only over its neighbours.

MG measures the similarity of two graphs based on the random walks that can
be created in the graphs, and is formally de�ned in Equation 16.

kmg(G,G
′) =

∑
h

∑
h′

kwalk(h, h
′)p(h|G)p(h′|G′) (16)

where h and h′ are walks in graph G and G′ respectively, p(h|G) is the probability
that walk h occur in graph G, de�ned in Equation 15, and kwalk(h, h

′) is a kernel that
compares the two walks. kwalk(h, h

′) is de�ned in Equation 17.

kwalk(h, h
′) =

kv(vh1, vh′1)
|h|∏
i=2

ke(ehi−1, eh′i−1)kv(vhi, vh′i), if |h| = |h′|

0 if |h| 6= |h′|
(17)
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Here |h| is the length of walk h, vhi is the i'th vertex in h, ehi is the i'th edge in h,
and kv and ke are kernels that compare vertices and edges respectively. An example
of a vertex kernel, which could be used in case of a single discrete vertex attribute α
could be the identity kernel:

kid(v, v
′) =

{
1 if α(v) = α(v′)

0 otherwise
(18)

In case of a single continuous vertex attribute α the Gaussian kernel could be
used:

kgau(v, v
′) = exp

(
−||α(v)− α(v′)||2

2σ2

)
(19)

The identity kernel or Gaussian kernel can also be used as edge kernel. If a graph
has no edge attributes, the edge kernel can be de�ned to always return one.

A problem with kernels based on random walks is that in some cases they can
not di�erentiate between graphs with di�erent structures. This case is illustrated in
Figure 19. In these graphs all label attributes on the vertices are the same, so the
random walks generated in the two graphs would always be the same. This results
in the normalized marginalized kernel returning one (maximum similarity) when it
compares the two graphs. However, as can be seen, the graphs are structurally
dissimilar.

C

C

C

C C C

Figure 19: Two graphs that are structurally dissimilar but receives maximum simi-
larity by MG

4.3.2 Marginalized Vertex Kernel

Another kernel based on random walks is the marginalized vertex kernel(MV). Li et al
[11] shows how this kernel can be used to predict gene functions in a gene interaction
networks. MV works similarly to MG, but instead of comparing graphs it compares
vertices. Let v and v′ be vertices in graph G. MV is de�ned in Equation 20.

kmv(v, v
′) =

∑
h

∑
h′

kwalk(h, h
′)p(h|G)p(h′|G) (20)

where h and h′ are walks starting from v and v′ respectively. p(h|G) is the prob-
ability that walk h occur in graph G, shown in Equation 15, with the starting prob-
abilities for v and v′ set to one, and set to zero for all other vertices. kwalk(h, h

′) is a
kernel that compares the two walks, and is de�ned in Equation 17.
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MV can be e�ciently computed using matrices. This allows you to use optimized
matrix operations to compute the kernel values of all vertex pairs at the same time.
Let M = {Mi,j} = {pt(j|i)} be the transition matrix and Q = {Qi,j} = {pstop(j)} be
the stopping probability matrix. Here, pt(j|i) is the probability that a walk transitions
to vertex j given that it is in vertex i, and pstop(j) is the probability that a walk stops
in vertex j. The kernel is then de�ned in Equation 21.

K =
l∑

i=1

Ki, K1 = (M ∗Q)Kv(M ∗Q)T , Ki+1 = M(Kv ∗Ki)M
T (21)

where K = {kmv(vi, vj)} is the MV kernel matrix, Kv = {kv(i, j)} is the vertex
kernel matrix, l is the maximum walk length, and * is the Hadamard product. In this
equation, Ki represents walks of length i.

MV has the same limitation as MG regarding graph structure.

4.3.3 Shortest Path Graph kernel

The shortest path graph kernel(SPG)[4] compares two graphs using shortest path
transformations. It starts by transforming the graphs compared into so called shortest
path graphs, and then comparing these based on their edges. A shortest path graph
sG of the graph G has every vertex of G, and sG has an edge between every vertex
that are connected by a path in G. The weight of an edge (vi, vj) in sG is the length
of the shortest path between vi and vj in G.

An example of a shortest path transformation can be seen in Figure 20 and Fig-
ure 21. Here it can be seen, for example, that the shortest path between vertex a and
vertex d is of length four, so because of this, in the shortest path graph there is an
edge between a and d with weight four.

a

b c

d

1

2

1

Figure 20: Original graph G

a

b c

d

1
3

4

2

3
1

Figure 21: Shortest path transformation
sG

Let sG and sG′ be the shortest path transformations of the graphs G and G′, then
SPG is formally de�ned in Equation 22

kspg(sG, sG
′) =

∑
e∈E(sG)

∑
e′∈E(sG′)

kwalk(e, e
′) (22)
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where kwalk(ei, ej) is the previously introduced walk kernel in Equation 17, in which
the edges ei and ej are considered walks of length 2. For example, if ei = (vi, vj),
then kwalk(ei, ej) considers ei to be a walk of the form vi, ei, vj.

4.3.4 Shortest Path Vertex kernel

While SPG compares two graphs, we are interested in a measure for measuring the
similarity between two vertices. We propose the shortest path vertex kernel(SPV)
which is based on the concepts used by SPG. This similarity measure compares two
vertices. The �rst step to SPV is to create shortest path stars for the two vertices
that need to be compared. The shortest path star s∗v for a vertex v ∈ V (G) contains
all the vertices from G that are connected with a path to v. There is an edge between
v and every other vertex in s∗v. The weight of an edge (v, v′) in s∗v is the length of
the shortest path between v and v′ in G. Figure 22 shows a graph and Figure 23 its
shortest path star transformation for the vertex labelled a.

a

b c

d

1

2

1

Figure 22: Original graph

a

b c

d

1
3

4

Figure 23: Shortest path star transforma-
tion

Once the shortest path stars have been created, SPV can be de�ned exactly as
SPG, see Equation 22, with the exception that the shortest path stars are used instead
of sG and sG′.

4.4 Feature based methods

Another approach to measuring the similarity between two graphs, is to transform
them into feature vectors. Subsequently, a similarity measure that is based on vectors,
such as the dot product, can be used. Features can, for example, be based on paths
or frequent substructures.

Features can also be used for labelling unlabelled graphs, allowing for graph sim-
ilarity measures that require labelled graphs to be used on unlabelled graphs. Ex-
amples of such approaches are the graphlet kernels[17] and the Weisfeiler-Lehman
Subtree Kernel[16]. Another useful aspect of features is that they allow for indexing
graphs based on the features they have[19]. This can help speed up information re-
trieval in large graph databases, as you are able to �lter out graphs that does not
contain these features.
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4.4.1 Weisfeiler-Lehman Subtree Kernel

The Weisfeiler-Lehman Subtree Kernel(WL)[16] is based on the Weisfeiler-Lehman
test of isomorphism between two graphs. The isomorphism test works in iterations,
where each iteration updates the label attribute of each vertex based on the labels of
their neighbours. It runs until the label sets of the two graphs di�er, or it has run n
iterations and the two graphs still have the same label set. The two graphs are not
isomorphic if their label sets di�er. Unlike the isomorphism test, the subtree kernel
doesn't stop when the two label sets di�er, but instead runs the full n iterations. It
generates a feature vector for each graph which counts the labels of the graph, and
outputs the dot product between these. The algorithm works as follows:

(a) WL takes two labelled graphs as input (see Figure 24)

(b) Each vertex label is represented as a multiset of labels, and the labels of its
neighbours are added in sorted order (see Figure 25)

(c) Each multiset of labels is mapped to a new label with an injective mapping. We
map to labels by going through the multisets in sorted order, and incrementing
the label whenever a new multiset is encountered (see Figure 26)

(d) The labels of the graphs are updated to the new labels created in step (c) (see
Figure 27)

(e) After n iterations we have a feature vector φ for each graph, which counts
how many of each label (both original from Figure 24 and updated ones from
Figure 27) each graph has. The kernel outputs the dot product of these feature
vectors (see Figure 28, the counts are of the labels in sorted order, where the
�rst �ve are the original labels)

1 2 3

3

4

5

G

1

2 3

4

4

5

G′

Figure 24: Given labelled graphs G and G'
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1,23 2,134 3,25

3,15

4,2

5,33

G

1,35

2,344 3,125

4,2

4,2

5,13

G′

Figure 25: Neighbour labels added to the label multiset after one iteration
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Figure 26: Compressed labels after one iteration

6 8 12
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13
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G

7

9 10

13

13

14

G′

Figure 27: Relabelled graph after one iteration

φ(G) = (1, 1, 2, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1)

φ(G′) = (1, 1, 1, 2, 1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0)

kwl(G,G
′) = 〈φ(G), φ(G′)〉 = 9

Figure 28: Feature vectors after one iteration
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WL is faster than most other graph kernels, and works well for use cases where
isomorphism is important. Because the kernel uses discrete vertex labels it is only
useful on data where it is possible to create meaningful discrete labels.

4.5 Feature learning

Recently, methods have been proposed which use feature learning techniques, from
natural language processing(NLP), to create embeddings of vertices. Speci�cally, they
create random walks which are used as input to the Skip-gram framework[15][14]. In
this section we will explain the Skip-gram model as well as node2vec[6], one of the
newest feature learning methods for vertices. We will also detail how to extend
node2vec, such that it is able to utilize vertex and edge attributes.

4.5.1 Skip-gram model

Skip-gram is a probabilistic model used in the NLP domain for learning embed-
dings of words[14][15]. Often NLP models aim to estimate the likelihood of ob-
serving a word, wt, given some context, i.e. P (wt|wt−c, ...wt−1, wt+1, ..., wt+c) where
{wt−c, ...wt−1, wt+1, ..., wt+c} is the context. However, Skip-gram aims to do the op-
posite, that is, predict the context given a word. This is accomplished by maximizing
the following log-likelihood objective function, see Equation 23.

T∑
t=1

logP (wt−c, ...wt−1, wt+1, ..., wt+c|wt) (23)

T is the text corpus. Larger sizes of c can results in more accurate predictions at
the cost of training time. The probability P (wt−c, ..., wt+c|wt) is computed as shown
in Equation 24. ∏

−c≤j≤c,j 6=0

P (wt+j|wt) (24)

It is assumed that the words in the context are conditional independent given the
target word wt. The equivalent to Equation 24 using log is:∑

−c≤j≤c,j 6=0

logP (wt+j|wt) (25)

The probability P (wt+j|wt) is often de�ned using the softmax function as de�ned
in Equation 26.

P (wo|wi) =
exp(v′>wo

vwi
)∑W

w=1 exp(v′>w vwi
)

(26)

wo correspond to the context word and wi to the target word. Here vw and v′w are
input and output embeddings for the word w, andW is the vocabulary. As Skip-gram
only takes as input two words at a time, input(target)/output(context), one can view
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the training data to consist of not sentences, but context-target pairs created from
these sentences. For example, consider the sentence "The dog barks" with context
size being one. Then two context-target pairs are created with "dog" as the target
word are (the, dog) and (barks, dog).

One problem with Skip-gram is that using softmax is often impractical due to
its computational cost being proportional to W , which can be quite large in some
cases. Instead, either hierarchical softmax or negative sampling is used for training
the skip-gram model.

Hierarchical softmax Hierarchical softmax is an e�cient approximation of the
softmax function shown in Equation 26. Hierarchical softmax assign output words
to the leaves of a binary tree, where every vertex represents the relative probabilities
of its children. Using this representation the prediction problem now becomes to
maximize the probability of paths from the root to leaves.

More formally let B(wo) = {b0, b1..., w} be the path from the root vertex(b0) to
the word wo. In addition, for any inner vertex b let ch(b) be a random child vertex of
b, and let [x] be one if x is true and minus one otherwise. Then Hierarchical softmax
de�nes the probability P (wo|wi) as in Equation 27.

P (wo|wi) =

|B(wo)|−1∏
j=1

σ
(
[bj+1 = ch(bj))]v

′
bj
vTwi

)
(27)

Sigma is de�ned as σ(x) = 1
1+exp(−x) . vbj , which is the vector representation of the

inner vertices in the binary tree.
The cost of computing the Hierarchical softmax is proportional to log(W ) instead

of W .

Negative sampling Instead of using hierarchical softmax one can use negative
sampling, which is a model for di�erentiating data from noise utilizing logistic regres-
sion. One way to de�ne negative sampling, is shown in Equation 28.

log σ(v′>wo
vwi

) +
k∑
I=1

EwI∼Pn(w) log(σ(−v′>wI
vwi

) (28)

Equation 28 replaces all instances of logP (wo|wi) in Equation 25.
The task of negative sampling is to learn the di�erence between the target word

wo and k samples drawn from a noise distribution Pn(w) via logistic regression. The
samples from the noise distribution are assumed to be negative i.e. they do not appear
in the same context as the input word wi. Mikolov et al.[15] estimate that for small
datasets an appropriate value for k is 5-20, but for larger datasets k can be 2− 5.

The distribution Pn(w) which negative samples are drawn from is a free parameter.
Mikolov et al.[15] found that the best distribution was the unigram distribution(U(w))

raised to the 3/4th power. For a more formal de�nition see 29, where U(w) = freq(w)
|T |

and Z is a normalizations constant.
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Pn(w) =
U(w)

3
4

Z
(29)

Frequent word subsampling It can be common in text corpora, that there are
words which appear with a very high frequency. This is usually words such as "the",
"a" etc.. These words often provide less information than less common words, for
example, in the sentence "the dog barks", "dog" and "barks" is a more meaningful co-
occurrence than "the" and "dog". In addition, the feature vectors for frequent words
do not change much after many million occurrences. Therefore skip-gram employ
subsampling of frequent words. Basically, when learning there is a certain probability
for a word being kept in the corpus, which is de�ned in Equation 301.

P (wi) =
(√U(wi)

0.001
+ 1
)
· 0.001

U(wi)
(30)

Here P (wi) is the probability of word wi being kept, and U(wi) is the frequency
of wi.

4.5.2 Node2vec

Node2vec is an example of feature learning by Grover et al.[6]. Node2vec is a frame-
work for learning vertex embeddings. Practically, this means learning a mapping
of vertices to euclidean space that maximizes the likelihood of preserving network
neighbourhoods of vertices. Formally they de�ne the objective function seen in Equa-
tion 31.

max
f

∑
u∈V

logP (NS(u)|f(u)) (31)

Here u is a vertex, NS(u) is the network neighbourhood of vertex u generated by
sampling strategy S and f(u) is the embedding of u.

This objective function is very similar to the Skip-gram objective function, where
f(u) is the input word and NS(u) is the context, so to solve this function the authors
use Skip-gram. There is, however, one problem which needs to be solved, before
Skip-gram can be applied, and that is to determine how the neighbourhood should
be represented.

They take in�uence from two sampling strategies, namely, Breadth-�rst sam-
pling(BFS) and Depth-�rst sampling(DFS). BFS samples the immediate neighbour-
hood of the source vertex, and DFS samples vertices which are increasingly far away
from the source vertex. According to the authors, vertices sampled by BFS closely
corresponds to structural similarity, meaning roles such as a hubs in networks can be
inferred using this strategy. Vertices sampled by DFS re�ect proximity. The authors
do not directly use these sampling strategies, but instead sample 2nd order biased

1This is the probability used in the implementation. Mikolov et al.[15] uses a di�erent de�nition
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random walks, which can be con�gured to behave like either BFS, DFS or a mix of
both.

These 2nd order random walks are used to represent the neighbourhood of a vertex.
The walks are con�gurable by the parameters p and q. p a�ects the likelihood of
revisiting vertices in the walk. A high p value(> max(q, 1)) ensures that already
sampled vertices are less likely to be sampled again, which encourages moderate
exploration of the network in the veins of DFS. A low p value(< min(q, 1)) leads to
a lot of backtracking, keeping the walk local to the source vertex like BFS would.
q a�ects whether the walk is biased towards visiting vertices that are close or far
away from the start vertex. If q > 1 the walk is biased towards vertices close to the
source vertex, approximating BFS behaviour. If q < 1, the walk is biased towards
visiting vertices far away from the source vertex, re�ecting a DFS-like exploration.
The unnormalized transition probability of the biased random walk, πvx, is de�ned
as αpq(t, x) ·wvx, where v, x, t ∈ V and v is the current vertex, t is the previous vertex
and x is the next vertex. Here αpq(t, x) is the search biased de�ned by p and q as seen
in Equation 32, and wvx is the weight on edge(v, x). For unweighted graphs wvx = 1.

αpq(t, x) =


1
p

if disttx = 0

1 if disttx = 1
1
q

if dtx = 2

(32)

Here disttx is the shortest path distance from t to x. An example of this is shown
in Figure 29, where the walk has just traversed edge(t, v) and are now stood at vertex
v. We can see that lower values of p encourages the walk to backtrack and lower
values of q leads to exploration away from the source vertex.

t

v

x1

x2

x3α = 1
p

α = 1 α = 1
q

α = 1
q

Figure 29: An example of the biased random walk where edges are labelled with
search bias

In Figure 30 the implementation of node2vec is shown. We can see that node2vec
has six parameters in total, with p and q being two of them. Additional parameters
include number of dimensions d, number of walks r, length of the walks l and size of
the context k.
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Figure 30: node2vec psudocode as seen in their paper[6]

node2vec consists of three phases, namely, preprocessing, walk simulations and
optimization. In the preprocessing phase, the transition probabilities are computed
according to p and q. In the walk simulations phase, random biased walks are done
r times for each vertex. The optimization phase is where the objective function in
Equation 31, i.e. Skip-gram, is maximized. The maximization is done using stochastic
gradient descent, and the �nal results f is a resulting vertex embedding of size d for
every vertex. For the Skip-gram part, node2vec uses negative sampling by default.

One drawback of node2vec is that it only uses the identi�ers of vertices, thereby
ignoring information such as vertex attributes or relation types. In the following
sections we present extensions to the node2vec framework, which makes it possible
to use this additional information.

4.5.3 node2vec for attributed graphs

In node2vec a random walk is a sequence of vertices i.e.

walk = {v1, v2, ..., vn}

where the vertices are represented by an identi�er. In attributed graphs the attributes
can provide valuable information. We propose capturing this information by still
considering a walk as a sequence of vertices, but instead of a vertex being represented
by an identi�er, it is represented by a feature vector i.e.

walk = {φ(v1), φ(v2), ..., φ(vn)}

where φ(vn) is the feature vector for vertex vn. Liu et al. [12] represents vertices in
a similar fashion.

A problem that now arises is what should these feature vectors contain. This
highly depends on the kind of network or graph that one is working with.
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In case of an attributed graph with only one categorical attribute, a simple feature
vector for a vertex could consist of a vertex id and the attribute of the vertex.

As an example consider the graph in Figure 31 where the attribute of a vertex is
shown as the label.

A B

C

C A
v1 v2

v3

v4 v5

Figure 31: A graph labelled with an attribute

The random walk

{v1, v2, v4, v5} (33)

will then be

{v1, A, v2, B, v4, C, v5, A} (34)

This extension we refer to as node2vec-attr, and its feature vector looks as follows:

φattr(v) = id, attribute

The expectation behind adding the attribute information to the walks, is that
vertices who often appear with the same attributes should have embeddings which
are closer together, than vertices that appear with di�erent vertex attributes.

Note that as the vertex attributes are included in the walks, this means that Skip-
gram will create embeddings for the attributes. These might provide some interesting
information. For example, in networks where vertices with one attribute often have
neighbours of the same attribute, it would be expected that the attribute embeddings
should be close to these vertices.

With this representation there are three di�erent kind of context-target pairs
which are be created: vertex-vertex, vertex-attribute, and attribute-attribute pair.
Note that with the vertex-attribute pair, both vertices and attributes can appear as
context and target. Dependent on the task one might consider only using one or
two of these kinds of pairs, for example, if one is only interested in the relationship
between vertices and attributes the two other kinds of pair can be removed.

One problem that could arise from including attributes is that it becomes more
di�cult to learn the structural or proximity equivalences i.e. all that it might learn,
is that a vertex often appears with an attribute or attributes.

As we are particularly interested in structural and semantic similarity, we intro-
duce another extension, referred to as node2vec-attr+. We propose two vertex features
for this extension, which could assist in learning these similarities.
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The �rst feature is the sorted multi set of neighbour attributes, which we call all-
neighbours. This is inspired by the Weisfeiler-Lehman kernel. This feature captures
information not only on the neighbour attributes, but also on the degree of a vertex.
This feature is strict as it will only be same for vertices with the same degree and with
neighbours with the same attribute. For v2 in Figure 31 this feature will be ACC.

The second feature is very related as it is simply the sorted set of neighbour
attributes. We call this feature unique-neighbours. This feature is a less strict version
of the �rst all-neighbours. For v2 this feature is will be AC.

The feature vector for node2vec-attr+ will look as follows:

φattr+(v) = id, attribute, all-neighbours, unique-neigbours

Adding extra features to the walks naturally increases the length of the random
walk. Let l be the walk length parameter used by node2vec and let |φ(v)| be the
length of the feature vector, the �nal walk length fl is then:

fl = l · |φ(v)| (35)

If the graphs vertices have several attributes, the feature representation of a vertex,
could simply be all the attributes of the vertex. One problem can arise, if any of the
vertex attributes are numeric, because Skip-gram were designed for words i.e. discrete
inputs.

4.5.4 Multirelational graphs

Up to now we assumed the graph operated on by node2vec were not multirelational.
In non multirelational graphs there is no need to include what edge was taken in
a random walk as this is implicit. The same can not be said for random walks
in multirelational graphs. Consider the graph in Figure 32 and the random walk
v1, v2, v4, v5. This walk can be created in several di�erent ways, for example, to go
from v1 to v2 the R1 or R2 edge could be taken.

A B

C

C D
v1 v2

v3

v4 v5R1

R2

R3

Figure 32: Multirelational graph

The simplest approach to a multidimensional extension, which we call node2vec−
multi, is to include the speci�c edge taken in the feature vector of the vertex, i.e.

φmulti(v) = (id, relation)

32



So the walk from earlier could be {v1, R1, v2, R3, v4, R3, v5}.

5 Similarity measure criteria

This section includes some material from last semesters report: Vertex Similarity in
Graphs

When deciding which similarity measures to use for a given problem, there are
some criteria that should be examined. These criteria provide a quick overview of
which similarity measures can be applied to datasets with di�erent properties. I.e. if
a similarity measure can only handle discrete data, and the dataset contains continu-
ous data, the measure can quickly be discarded unless some manipulation is done to
the data. The categories of the criteria we consider are: Connectivity, Local/Global,
Discrete/Continuous, Multi-attributed, Multi-relational.

Connectivity: The connectivity criteria states that in order to have a similarity
of above the minimal(zero in most cases) between two vertices, they need to be
connected by a path.

Consider the case of having two isolated isomorphic graphs, as illustrated in Fig-
ure 33. When comparing any two vertices from di�erent graphs, as there is no path
between any vertices of the two graphs, their similarity will always be minimal using
any similarity measure that requires connectivity. For example, a measure such as
the Jaccard coe�cient(see Equation 7) would not be able to provide any meaningful
similarity between two vertices in di�erent graphs, as they would never share any
common neighbours, see Equation 36 and Equation 37.

sjaccard(a, a
′) =

0

4
= 0 (36)

sjaccard(a, d) =
1

3
= 0.33 (37)

While a and a′ clearly look more similar than a and d, similarity measures that
require connectivity will not be able to express this.

a

b c

d

a′

b′ c′

d′

Figure 33: Example of two disconnected isomorphic graphs
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This becomes relevant if we for example have a network modelling a university,
where the di�erent vertices correspond to the personnel of the university, students
of the university, etc.. Let the two graphs in Figure 33 be two universities where in
the left network a is a supervisor for students b and c. Using a similarity measure
we would want to �nd a vertex(person) in the right network, which served a similar
role(supervisor). As demonstrated earlier, a measure such as the Jaccard coe�cient
is unable to do this, whereas measures that does not require connectivity will be able
to provide some similarity.

Local/global: In similarity measures for which the local criteria holds, only the
intermediate neighbourhood(or k-neighbourhood for small k) of each given vertex are
considered when determining the similarity. Similarity measures for which the global
criteria holds, all vertices are considered when determining the similarity.

v1

v2

Figure 34: Example tree network

If we consider the tree-like network shown in Figure 34, we can see the di�erence
between the local and global criteria. If we for example only consider the immediate
neighbourhood of v1 and v2 they would be automorphic. However, from a global
perspective, this is not the case, here v1 and v2 are seen as being di�erent. Looking
at their closeness centrality, we can also see that they are di�erent, with C(v1) = 0.60
and C(v2) = 0.50.

Discrete/Continuous: The discrete/continuous criteria states whether a mea-
sure works on discrete or continuous attributes. This is important to understand as
it determines what network data it can be applied to, and real world networks often
contain both.

Attributed: The attributed criteria states whether a measure can handle network
data with attributes.

Networks often contain many di�erent attributes, such as age and interests for
social networks or keywords and publication date for citation networks. For certain
problems, utilizing this data in combination with the structure of the network is
crucial. For example, if we consider the two citation networks in Figure 35 and
Figure 36 respectively. If using a measure which only looks at the structure, it would
report v1 and v2 as being maximally similar. However, if we look at the attributes,
we can see that they di�er. Perhaps these attributes describe the domain in which
these papers has been published, one in physics, one in biology. Depending on the
task, you might have wanted to �nd similar papers to v1, which is a physics papers.
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Thus looking only at the structure in this case would not yield a satisfactory result,
where a combination of structure and attributes might have.

phy

phy

phy

phy

v1

Figure 35: Citation network for v1

bio

bio

bio

bio

v2

Figure 36: Citation network for v2

Multi-relational: Lastly, the multi-relational criteria states whether a measure
can handle di�erent types of relationships between vertices.

We choose these criteria as they re�ect important aspects of network data, that
a�ects how similarity measures behave.

In Table 1 is an overview of the criteria of the similarity measures we have chosen
to focus on in the analysis.

Connectivity Local/Global Discrete/Continuous Attributed Multi-relational
Jaccard Yes Local None None Yes
Cosine Yes Local None None Yes

MV No Global Both Yes Yes
SPG No Local Both Yes No
SPV No Global Both Yes No
WL No Local Discrete No No

node2vec No Local Discrete Yes* Yes*

Table 1: Overview of method criteria

The criteria we consider can be split into two groups: Applicability and Be-
havioural. Discrete/Continuous, attributed and multi-relational falls under the Ap-
plicability group. These criteria represent the practical shortcomings of the di�erent
measures, for example, if the data you have only contain continuous attributes, it
would not be possible to obtain useful results using WL.

The other group, Behavioural, which includes the connectivity and local/global
criteria, represent how the similarity measures behave on the data. For some tasks,
on certain networks which show a strong tendency of homophily, a measure such
as Jaccard might be su�cient. However, for other networks, which contain many
disconnected components, or where the attributes of the network carry important
information, Jaccard's expressiveness may not be enough.

From Table 1 we see that the similarity measures are fairly varied in terms of
what criteria they handle. Immediately we can see that both Jaccard and Cosine
is not very applicable, as they both fully ignore any form of attributes. This means
that these are not good measure in networks where using the attributes are important.
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These are also the only measures requiring connectivity, as they produce the similarity
score by looking at the immediate neighbours. If we look at the other measures, we
see that WL is the least �exible, as it is not only restricted to discrete attribute
values, it also cannot handle multiple attributes nor multi-relational networks. MV is
the most �exible measure, as it works with both discrete and continuous attributes,
as well as multi-attributed and multi-relational networks. The original node2vec
implementation proposed by Grover et al., is less �exible than WL in terms of what
network data it uses, as it ignores attributes entirely, using only vertex ids. Our
proposed extensions make use of much more data available in networks.
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Part III

Exploratory analysis

This part presents an exploratory analysis of node2vec. There are two primary goals
of this analysis. The �rst goal is to examine the claims made by Grover et al.[6].
More speci�cally, we examine the claim that node2vec is able to �nd structural simi-
larity with certain p and q parameters, and that changing these two parameters will
cause node2vec to �nd proximity. The second goal of this analysis is to examine the
behaviour of our node2vec extensions on attributed and multirelational graphs.

For this analysis we use a Python implementation of node2vec made available by
Grover et al.2.

We start o� with a short description of the procedure. Next we introduce the var-
ious datasets used throughout this analysis. After that we examine the claims made
by the node2vec authors. Next we examine the behaviour of our attribute extension.
Finally we have a case study on the airline network to examine the multirelational
extension.

6 Procedure

This section covers some of the methods and metrics used for this analysis.

6.1 K-means

For this analysis we use k-means clustering on vertex embeddings to see how well
node2vec distinguishes between di�erent structural vertex types such as hub vertices.

K-means is a clustering algorithm where the goal is to �nd groups(i.e. clusters)
in the data, where the number of groups is represented by k. K-means iteratively
re�nes its result until it converges or a speci�ed number of iterations has run.

The algorithm has three steps, which can be summarized as follows. First k
centroids are randomly initialized. A centroid is a point in space which de�nes one
of the k clusters.

Then each data point x is assigned to their closest centroid ci, based on the squared
euclidean distance. This is formally de�ned in Equation 38.

arg max
ci∈C

disteuc(ci, x)2 (38)

Where C is the set of centroids, and disteuc(ci, x)2 is the squared euclidean distance
between centroid ci and data point x.

Finally the position of each centroid is updated by taking the mean of all of its
assigned data points, see Equation 39. Step two and three are repeated until it
converges.

2https://github.com/aditya-grover/node2vec
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ci =
1

|Si|
∑
xi∈Si

xi (39)

Where Si is the set of data points assigned to centroid ci.

6.2 Adjusted rand index

We use the adjusted rand index to measure how well the clusterings generated by
node2vec, compare to the manually determined structural role groups. A high value
of the adjusted rand index means that the clustering is close to the ground truth.
Consider two clusterings, X and Y , where X is the ground truth, then the adjusted
Rand index is de�ned as in Equation 40.

RIadj =
2(ad− bc)

(a+ b)(b+ d) + (a+ c)(c+ d)
(40)

Here a are the number of pairs which are in the same cluster in X and in the same
cluster in Y . b are the number of pairs which are in the same cluster in X but in
di�erent clusters in Y . c is the number of pairs which are in di�erent clusters in X
but in the same cluster in Y . Finally, d is the number of pairs which are in di�erent
clusters X and also in di�erent clusters in Y .

6.3 Graph cluster cohesion

To quantify whether node2vec �nds structure or proximity we measure the graph
cluster cohesion, which is the average shortest path distance between any pair of
vertices in a cluster. The assumption here is that if structural roles are discovered,
the average distance will be high (low cohesion), while if proximity is discovered
the average distance will be low (high cohesion). We formally de�ne graph cluster
cohesion in Equation 41.

cohesion(Cl) =
−1

|Cl| · (|Cl| − 1)

∑
v,u∈Cl,v 6=u

distsp(u, v) (41)

Where Cl is a cluster of vertices, |Cl| is the amount of vertices in Cl, and distsp(u, v)
is the shortest path distance between vertices u and v.

7 Dataset overview

This section describes the datasets used in this analysis. A summary of the di�erent
datasets is shown in Table 2.
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|V| |E| Avg. Degree Diameter Multirelational
Airline 304 3076 19 (sd = 24) 5 Yes
Karate 34 78 4.59(sd = 3.89) 5 No
Les Miserables 77 254 6.6(sd = 6) 5 No

Table 2: Overview of the datasets used for the exploratory analysis

7.1 Airline

A dataset containing air routes were obtained from OpenFlights.org[2]. This dataset
was found in two parts, the �rst part containing information about 3334 airports(vertices),
the second part containing information about 67,663 �ight routes(edges) operated by
547 di�erent airlines(edge labels). We �lter the data to include only airports situated
in Europe.

OpenFlighs provide their own internal id for the airports, which makes it possible
to connect the airports to another dataset from OpenFlights. We use this id to connect
the airport and the �ight route datasets. Additionally, airports are also identi�ed by
their International Civil Aviation Organisation(ICAO) code, which we use to extract
airport attributes from a third dataset.

The OpenFlight dataset does not contain any attributes by default, but an at-
tribute we would like to include in the dataset, is the amount of passengers carried by
each airport. A dataset containing passenger and goods information, from 1997-2016,
is made available by the Eurostat project[1] for airports in EU member countries.

In the Eurostat dataset, airports are identi�ed by country code and ICAO. For
example, London Heathrow airport(ICAO:EGLL) will be denoted by UK_EGLL.
We remove the country code, which makes it possible to connect the Eurostat data
to the OpenFlights data.

The OpenFlights and Eurostat data both contain some airports that are not in
the other dataset. We keep only the airports that exist in both. This leaves us with
304 airports, all of which have a single attribute denoting the amount of passengers
carried.

We divided the airports into three di�erent categories based on their passenger
amount, representing small, medium and large airports, see Table 3.

category small medium large
interval ]2248, 496 000] ]496 000, 10 000 000] ]10 000 000, 75 000 000]
nr of airports 102 162 40

Table 3: The intervals

An example of the route network for the Lufthansa airline can be seen in Figure 37
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Figure 37: Lufthansa airline

For our exploratory analysis we consider a multirelational version of this airline
data, where there is an edge between two airports if one of the ten largest airlines
has a route between the airports. We determine what are the largest airports by the
amount of �ights. The top ten airlines can be seen in Table 4. In summary, this
leaves us with a dataset with 304 airports (vertices), 3076 �ight routes (edges), and
10 airlines (relation types).

Airline Nr of routes
Ryanair 1122
easyJet 460
Air Berlin(AB) 323
Iberia Airlines(IB) 285
Norwegian air shuttle 260
Lufthansa(LH) 250
Alitalia(AL) 239
Germanwings(GW) 218
SAS 214
Wizz air(Wizz) 209

Table 4: Top ten largest airlines
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7.2 Zhachary Karate Club

The Zhachary Karate Club dataset, referred to as Karate, is a social network model-
ing the members of a university karate club[20]. It can be represented as a undirected
unweighted graph, which contains 34 vertices(members of the karate club), one mem-
ber being an instructor, and one being an administrator. Furthermore is has 78 edges,
representing interaction between members outside club activities.

7.3 Les Misérables

The Les Misérables dataset is a network modelling characters and coappearances of
characters in the novel "Les Mis¯ables" by Victor Hugo[9]. It can be represented as
an undirected graph with 77 vertices and 254 edges. Vertices are characters and edges
are coappearances. Edges exists between two characters if they appear in the same
chapter of the book.

8 Node2vec unattributed graph experiments

This section examines the behaviour of node2vec without attributes. The primary
goal of this section is to verify the claim by the authors, that node2vec is able to
�nd structural similarity and proximity, and that you can adjust which type it �nds
by changing the p and q parameters. To do this, we test node2vec on the Zachary
Karate Club network. First we �nd a set of parameters where node2vec succeeds in
�nding structural similarity. Next, we examine the e�ect of changing the parameters
of node2vec. Finally we use what we learned from the karate network to examine the
Les Misérables case study from their article.

We use the euclidean distance between vertex embeddings to measure how similar
node2vec �nds two vertices. Additionally, we cluster the vertices into clusters based on
their embeddings using k-means. We use three clusters that should ideally represent
hub vertices, periphery vertices, and mainstream vertices.

We manually determined whether each vertex were a hub, periphery or main-
stream vertex, see Table 5.

Vertices
Hubs 0, 1, 2, 32, 33
Mainstream 3, 5, 6, 7, 8, 10, 13, 19, 23, 27, 28, 29, 30, 31
Periphery 4, 9, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26

Table 5: The structural roles of vertices in the Zachary network

8.1 Structural parameters

To verify that node2vec can �nd structural similarity, we use the same p and q pa-
rameters as the authors. The other parameters were not speci�ed, so we found them
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through trial and error. The set of parameters where node2vec is able to �nd struc-
tural similarity on the karate network are:

dim = 8, wl = 5, numWalks = 100, windowSize = 3, p = 1, q = 2

In this section we show the results of node2vec with these parameters.
First we want to see whether node2vec can �nd hub vertices. In Figure 38, hub

vertex 33 is compared to the other vertices. We expect it to be similar to other hub
vertices. The vertices are coloured on a gradient from red to blue, representing the
distance of their embeddings to the embedding of vertex 33. Red is minimum distance
and blue is maximum distance.

The vertices that are closest to 33 are vertices 0, 1, 2, and 32. These are all of the
hub-vertices, so node2vec is able to �nd those.

Figure 38: Distance between hub vertex 33 and other vertices

Figure 39 shows the same comparison of vertices to the periphery vertex 11. This
shows that the vertices closest to vertex 11 are periphery vertices, while the hub-
vertices have the highest distance to vertex 11. This means that node2vec does
distinguish between hub vertices and periphery vertices.
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Figure 39: Distance between vertex 11 and other vertices

To test whether node2vec can distinguish all three structural roles we look at the
clusterings. In Figure 40 we see the result of this. All of the hub vertices except
vertex 2 are in the red cluster, and all of the periphery vertices except vertices 4,
24 and 25 are in the green cluster. The mainstream vertices are spread between the
blue and green clusters. From this, it appears that node2vec can detect hub vertices
and periphery vertices, but it clusters some mainstream vertices with the periphery
vertices.
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Figure 40: k-means clustering on karate with 3 clusters

To examine how well node2vec distinguishes these three structural roles, we used
multidimensional scaling(mds) to get a visual representation of the embeddings. The
points are coloured according to their structural role, where red is hub vertices, green
is periphery vertices, and blue is mainstream vertices. In Figure 41, we see a clear
separation between the hub vertices and the other two roles. The separation between
periphery vertices and mainstream vertices is less clear. There is a bit of separation at
the top right corner, but the rest of them are fairly mixed. This is consistent with the
graph structure, where the di�erence in degree between the hub vertices and main-
stream vertices, is bigger than the di�erence between the mainstream vertices and
the periphery vertices. From this, it appears that node2vec correctly �nds structural
similarity in this network, but struggles a bit to distinguish mainstream vertices from
periphery vertices.
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Figure 41: Multidimensional scaling of the embeddings given by node2vec

Finally we wanted to test whether node2vec works on disconnected graphs. To
do this, we created the duplicated karate graph. Node2vec could not �nd structural
similarity on this graph with the same parameters as above. Each vertex was more
similar to all other vertices in the same disconnected subgraph, than to any vertex in
the other subgraph. If we lower the walk length from �ve to four, node2vec is able to
�nd structural similarity like in the original graph. In Figure 42 we see the clustering
with walk length four. The results are similar to the clustering on the karate network.

45



Figure 42: k-means clustering on duplicated karate with 3 clusters

8.2 Changing parameters

The following subsections examine the e�ect of changing the parameters of node2vec.
We use the structural parameters from subsection 8.1 except for the one parameter
we change.

The main claim of the authors is that changing the p and q parameters, allows
node2vec to discover either structure or proximity. To quantify how well node2vec
discovers structure we use the adjusted Rand index. In addition, we use graph cluster
cohesion to quantify if node2vec �nds proximity.

8.2.1 Dimensions

We �rst tested the e�ects of changing the amount of dimensions. We tested from 1
to 1024 dimensions. When manually inspecting the clusterings there did not appear
to be any di�erence between the dimension amounts.

To investigate the di�erences more closely we look at the cohesion and adjusted
Rand index as a function of the amount of dimensions, as seen in Figure 43. Node2vec
was run 100 times for every dimension amount. The x-axis shows the amount of
dimensions, the y-axis shows the mean cohesion over the 100 runs, and the error bars
show the standard deviation.

For dimensions of one and two the cohesion and rand index is a little bit lower
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than at higher amount of dimensions. This suggests that the results are a bit more
random at one and two dimensions. At dimensions four and above the results are
relatively stable with very little di�erence between them. The standard deviation for
cohesion is high at dimension one which suggests that the results are more random
here, while the standard deviation is similar for all other dimensions.

Figure 43: Cluster cohesion and adjusted Rand index for 1 to 1024 dimensions

8.2.2 Walk length

We also tested the e�ect of changing the walk length. We tested for walk lengths
1-20. In Figure 44 we see how the walk length a�ects the cohesion and adjusted
Rand index.

For walk lengths 1-3 the cohesion and adjusted Rand index are both low, which
indicates that for these walk lengths neither proximity nor structure can be found.

At walk lengths of 4-5 there is a noticeable jump in the adjusted Rand index, and
a slight increase in cohesion. This suggests that node2vec is able to �nd structural
similarity at these values. This is consistent with the results of the previous section.
At these walk lengths the standard deviation is signi�cantly larger than at other walk
lengths, which suggests that there is some randomness in the results.

At a walk length of six node2vec starts showing a tendency towards proximity as
the cohesion starts rising while the adjusted Rand index drops rapidly. At a walk
length of seven and above node2vec �nds proximity as both the cohesion and adjusted
Rand index more or less remain stable at -1.6 and zero respectively.
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Figure 44: Cluster cohesion and adjusted Rand index for walk lengths 1-20

To con�rm the �ndings given by the cohesion and adjusted Rand index, we look
at the clusterings. In Figure 45 we see the clustering for walk lengths four and seven.

As we can see, with a walk length of four all the hub vertices are clustered in
the red cluster, while most of the periphery vertices are in the green cluster. The
mainstream vertices are spread between the green and blue clusters. Overall, these
results are quite similar to those for the structural parameters.

For walk length seven all vertices are clustered together with their neighbour
vertices. It appears, that node2vec cannot �nd structural similarity with this walk
length, but �nds proximity instead.
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Figure 45: k-means clustering on karate with three clusters and walk length four
(Left), walk length seven (Right)

To look closer at how node2vec distinguishes the clusters, we look at the mds
representations for these walk lengths, seen in Figure 46. In these �gures the points
are coloured based on their structural role, where red points are hub vertices, blue
points are mainstream vertices and green points are periphery vertices.

For walk length four we see a clear separation between the hub vertices and non-
hub vertices. There is some separation between the periphery vertices and main-
stream vertices as well, but there is a bit of overlap between the two roles.

For walk length seven there is no clear separation between the three roles. Some
hub vertices are in the bottom left and some are in the top right. Vertices are
embedded close to their neighbours in the graph, instead of being close to other
vertices of the same role.

49



Figure 46: Multidimensional scaling of the embeddings given by node2vec with a walk
length of four (Left), and walk length seven (Right)

8.2.3 Number of walks

For the number of walks we tested from 10 to 250 by increments of ten. We show
how the graph cohesion and adjusted Rand index is a�ected by the number of walks
in Figure 47.

The �gures are very similar to the �gures for walk length. At low amount of walks
it is unable to �nd any structure at all, like with short walk lengths. Somewhere in
the middle it is able to �nd structure, and at large amount of walks it �nds proximity
like with long walk lengths. Overall, changing the walk length and number of walks
have the same e�ect on the results.

For cohesion, the standard deviation appear to increase as number of walks in-
creases, while the adjusted Rand index has the largest standard deviation in the
middle.
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Figure 47: Cluster cohesion and adjusted rand index for 10-250 walks

8.2.4 Walk length and Number of walks

It seems that increasing the walk length has a similar e�ect to increasing the number
of walks. This is most likely because both parameters control how much data is used
for training. The amount of data D can be explained by Equation 42.

D = n · walk length · number of walks (42)

Where n is the number of vertices.
In Figure 48 and Figure 49 we can see a heat map of cohesion and adjusted Rand

index respectively, as a function of walk length and number of walks. From the
cohesion heatmap, we see that increasing either the walk length or number of walks
increases the cohesion, which leads to proximity. However, it needs a walk length of
at least �ve before it �nds proximity.

From the adjusted Rand index heatmap, we see that there are certain combinations
of walk lengths and number of walks, where the clusterings are closer to the ground
truth. Increasing or decreasing either of the parameters, causes the clusterings to get
worse. This suggests that there is a sweet spot for the amount of data that allows
node2vec to �nd structural similarity.
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Figure 48: Heat map of cohesion as a function of walk length and number of walks

Figure 49: Heat map of adjusted rand index as a function of walk length and number
of walks

8.2.5 p and q

Finally we want to examine how node2vec behaves as we change the p and q pa-
rameters. These are supposed to the be main parameters for deciding which type of
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similarity node2vec should �nd, i.e. structure or proximity. We test on p and q values
of 0.2 to 5.

First, we test using the structural parameters from subsection 8.1. Looking at the
clusterings for di�erent combinations of p and q show little di�erence between them.
To determine the e�ect of p and q on the results, we look instead at the cohesion and
adjusted Rand index. In Figure 50 and Figure 51 we see a heat map of the cohesion
and adjusted Rand index as a function of p and q. The cohesion does not seem to
follow any pattern, and it is roughly the same for all combinations of p and q. This
suggests that changing p and q does not have any e�ect on whether node2vec �nds
communities.

The adjusted Rand index shows something di�erent though. It seems that low
values of q make clusters that are closer to the ground truth than high values of q.
Changing the p value does not have as large an e�ect, but it seems to generate slightly
better clusters at high p values. According to the authors, low q values and high p
values correspond with a depth �rst search, which should �nd communities instead
of structure. However, our results seem to indicate that depth �rst search is better
at �nding structure.

Figure 50: Heat map of cohesion as a function of p and q with structural parameters
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Figure 51: Heat map of adjusted rand index as a function of p and q with structural
parameters

Next we want to see if changing p and q has any e�ect with parameters where
node2vec �nds proximity. In Figure 52 and Figure 53 we see the heatmaps with the
walk length increased to ten. The cohesion and rand index does not change in any
noticeable way when p and q are changed. This suggests that when node2vec �nds
proximity, changing p and q will not make it �nd structure instead.

Figure 52: Heat map of cohesion as a function of p and q with proximity parameters
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Figure 53: Heat map of adjusted rand index as a function of p and q with proximity
parameters

8.3 Les Misérables

In this section, we use what we learned from the karate network to further examine
the authors claims. In the article they do a case study on the Les Misérables network,
where they show the results with 16 dimensions and two di�erent combinations of p
and q. They do not say what other parameters they use. They �nd that node2vec is
able to �nd structural similarity with p = 1 and q = 2, and proximity with p = 1 and
q = 0.5.

To verify their claims we test node2vec with p = 1 and q = 2 on the Les Misérables
network, and vary the walk length and amount of walks until we �nd structural
similarity. The parameters that �nd structural similarity are:

dim = 16, wl = 3, numWalks = 100, windowSize = 3, p = 1, q = 2

In the left plot in Figure 54 we see the clusters using these parameters, while the
right plot shows the clustering with walk length �ve.

With walk length three node2vec �nds a bit of structural similarity. All of the
green vertices are hub vertices, and the red ones tend to be periphery and mainstream
vertices. The blue cluster seems to be a mix of all three structural roles. With a walk
length of �ve node2vec �nds proximity. This seems to mirror the results of the karate
network, where increasing the walk length makes node2vec �nd proximity.
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Figure 54: (k-means clustering on Les Misérables with 3 clusters and walk length 3
(Left), walk length 5 (Right)

Since we found some parameters that �nds structural similarity on the Les Mis-
érables network, we want to examine whether changing the p or q values can cause
node2vec to �nd proximity. To test this, we measure the cluster cohesion of di�erent
p and q values to see if changing them makes a di�erence. In Figure 55 we see the
cohesion as a function of p and q. As we can see changing p or q does not change the
cohesion noticeably, which suggests that changing p and q does not cause node2vec
to �nd proximity.
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Figure 55: Heat map of cohesion as a function of p and q when node2vec �nds
structure

Next we look at the case where the authors claim that node2vec �nds proximity,
with p = 1 and q = 0.5. We �nd the same results as above. Parameters (dim: 16,
walkLength: 5, numWalks: 100, window: 3, iter: 2, p: 1, q: 0.5) �nds proximity, and
changing walk length to three �nds structure.

Keeping the parameters that �nd proximity, we want to determine if changing
p or q can make node2vec �nd structure. In Figure 56, we see a heatmap of the
cohesion as a function of p and q. As we can see, changing p and q does not change
the cohesion, which once again shows that changing p and q does not cause node2vec
to �nd structure. This contradicts the authors claims that changing p and q changes
whether node2vec �nds structure or proximity.
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Figure 56: Heat map of cohesion as a function of p and q when node2vec �nds
proximity

9 Node2vec attributed experiments

In this section we investigate e�ect of adding attributes to node2vec using our exten-
sion node2vec-attr. In particular, we want to see if it successfully combines structural
and semantic similarity. We do this by examining the clustering and mds results of
node2vec-attr, and compare these to the results for node2vec. As a reminder, in the
walks of node2vec-attr, vertices are represented as follows:

φattr(v) = id, attribute

The experiments for this are done on the synthetic network 5Comm, which is
described further in subsection 9.1. The experiments and results are shown later in
subsection 9.2.

9.1 5Comm

To test our extension node2vec-attr we constructed a synthetic graph referred to as
5Comm, which can be seen in Figure 57. The graph has 29 vertices and 28 edges.
In order to include attributes, we assign each vertex of 5Comm one of four colours
{blue, red, black, green}. These vertex colours are assigned in such a way that a
local community is formed for each colour, resulting in network being split into �ve
communities thus the name 5Comm. The colour assignments for the vertices of the
network are shown in the table below.
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Colour Vertices
Red 0-5
Blue 6-10 and 18-22
Green 11-17
Black 23-28

Table 6: Assignment of vertex colours in the 5Comm network

Figure 57: 5Comm with two blue communities

As in section 8 we consider three structural roles, namely, hubs, periphery and
mainstream vertices. We manually de�ned them for this network, as shown in Table 7.

Vertices
Hubs 0, 6, 18, 28, 11
Mainstream 5, 17
Periphery 1, 2, 3, 4, 10, 9, 7, 8, 13, 16, 15, 14, 12, 19, 21, 22, 20, 23, 24, 25, 26, 27

Table 7: The structural roles of vertices in the 5Comm network

9.2 Experiments

For the experiments on 5Comm we chose the following parameters, identical to the
ones used for the karate network, as we found that they were also �t for �nding
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structure in the 5Comm network:

dim = 8, wl = 5, numWalks = 100, windowSize = 3, p = 1, q = 2

To determine what types of similarity node2vec-attr can �nd, we investigate
whether the clusterings correspond to the communities of Figure 57.

For the purpose of comparison, we �rst conduct experiments for node2vec. Fig-
ure 58 shows the result of node2vec for k-means clustering with k = 4, with the
colours representing the clusters. The corresponding mds plot is seen in Figure 59,
where the points are coloured according to their real community.

From this, we see that the hubs; 0, 6, 11, 18 and 28 are clustered together, while
the vertices of other structural roles are mixed. This is also visible in the mds where
the hubs are clearly separated from the rest of the vertices, while mainstream vertices
5 and 17 are mixed along with the periphery vertices. In other words, some notion of
structure is found.

Figure 58: 5Comm unattributed for kmeans with k = 4
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Figure 59: 5Comm unattributed mds for k-means with k = 4

Figure 60 shows the result for node2vec-attr when clustering with k-means for
k = 4, and the corresponding mds plot in Figure 61. For these experiments the
window size is doubled to windows size = 6 in order to account for the inclusion of
the attributes.

Here the resulting clustering is the same as the communities of the original 5Comm
network. The vertices of the two blue communities are clustered together, which sug-
gests semantic similarity. However, in the mds there is a slight separation between the
two blue communities, which means that the results are likely to be somewhat proxim-
ity based. Furthermore, all vertices have a short distance to their colour embedding,
except the two mainstream vertices 5 and 17. These two vertices are somewhat
separated in the middle, but they are still closer to their immediate neighbourhood
communities, as well as the color embedding they belong to. For example, vertex 17
is closer to the immediate neighbourhood communities of hubs 11(green), 18(blue)
and 28(black), than to the other communities. Additionally, it is also closer to the
green colour embedding, and community, than to any other communities. Thus, the
clustering here is based on a mix of semantic similarity and proximity.
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Figure 60: 5Comm attributed for kmeans with k = 4

Figure 61: 5Comm attributed mds for k-means with k = 4

Lowering the number of walks, i.e. the amount of data, can lead to more struc-
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turally based results due to sub-sampling. This is because adding attributes makes it
less likely for vertex ids to be subsampled, and as such node2vec-attr gets more vertex
ids than node2vec with the same parameters. For example on one run of node2vec
with a walk length of �ve and 100 walks vertex 11 has a frequency of 1459. The total
amount of vertices in the random walks are 14500. then the probability of keeping
vertex 11 is P (11) = 0.0011, where as if we add attributes to the walks we double the
data an then P (11) = 0.1609. This causes it to �nd proximity. Lowering the number
of walks for node2vec-attr will make it �nd structure.

This e�ect can be seen in Figure 62, which shows the attributed mds result when
lowering the number of walks to 50. Here, the hubs of each community are more clearly
separated from the rest of the vertices in that community, with the arguable exception
of vertices 6 and 18 in the two blue communities. They are close to vertex 21, but
they are still somewhat separated from the rest of the community. This indicates
that node2vec-attr can distinguish between hubs and non-hubs, while still preserving
the communities. Furthermore, the vertices of each community are now further away
from their colour embedding, but for each color embedding, the community closest to
it, is still the correct one. This suggests that node2vec-attr combines structural and
semantic similarity.

Figure 62: 5Comm attributed mds for k-means with k = 4 for number of walks 50

9.2.1 Summary

When using parameters that produce structure based clustering for node2vec, node2vec-
attr �nds a mix between proximity and semantic based clustering. When decreasing
the amount of walks node2vec-attr seems to combine structural and semantic simi-
larity.
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10 Case study: Airline network

To demonstrate the multirelational extension for node2vec, we performed a case study
on the airline network using node2vec-multi. To recap, the network has 304 vertices,
3076 edges, and ten di�erent relations representing the top ten airlines. In the walks
of node2vec-multi, vertices are represented as follows:

φmulti(v) = id, relation

The two main focus points for this case study are:

• Do the airline embeddings provide useful information?

• Can you use the airport embeddings for a search task?

To answer the �rst question we visualize the embeddings of both the airport and
airlines using mds. In addition, we investigate if any meaningful clusterings can be
generated from the embeddings. To answer the second question we use the euclidean
distance between embeddings as a similarity measure, and use this measure in a search
task, to see if it provides any meaningful results.

Node2vec does not take multirelational graphs as input. We handle this by com-
bining multiple edges into one edge and assigning it a weight based on how many
edges were combined. So if there were three edges between two airports we replace
this with a single edge with a weight of three.

10.1 Airline embeddings

In this section we examine whether the embeddings given by the multirelational ex-
tension of node2vec, referred to as node2vec-multi, provides any useful information.
The parameters used for this analysis are:

dim = 128, wl = 80, numWalks = 10, windowSize = 3, p = 1, q = 4

Most of these are typical values for node2vec according to Grover et al. [6]. We
decreased the window size from the default, to hopefully ensure that a vertex only
appears in the context of close neighbours. For the same reason, we set p to one and
q to four, which should keep the random walks local to their start vertices. We want
to keep the walks relatively local to better capture local similarity.

We ran node2vec-multi with these parameters and applied mds to both the airline
and airport embeddings, which is shown in Figure 63. The airport vectors are coloured
blue, and the airline vectors are orange.

In general it does not seem like there is any clear clustering for the airports. It
looks more like one large cluster, with the airlines located in the periphery of this
cluster. Ryanair is an exception, as it is slightly closer to the centre, than the other
airlines.

There are some airports which can be considered outliers. An example of this,
is Trapani Airport(airport 69) in the left most middle (-1.8, 0.8), which only has
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�ights by Ryanair. There is also a small group of outliers on the right most middle
(2.2,0.5). These airports are mostly smaller Scandinavian airports, such as Lycksele
(airport 288) and Tromså (airport 252) airport. Both of these two airports are mostly
serviced by SAS and Norwegian. This suggests that in general, airline embeddings
will be close to embeddings of airports with many �ights of said airline.

Figure 63: Multidimensions scaling of the embeddings given by node2vec-multi for
airlines and airports

The airline embeddings seem to form four groups, see Table 8. It could be argued
that easyjet and Lufthansa are in their own �fth group. Wizz Air appears to be an
outlier because it lies far away from the other airlines, and isn't close to many airports
either.

These groupings have inherent meaning. For example, it is sensible for SAS and
Norwegian to be close together as these two airlines operate more heavily in Scandi-
navia than other airlines. Similarly, Lufthansa, Germanwings, and Air Berlin all tend
to operate in central Europe, especially Germany. This suggests that our multidimen-
sional extension, can create interpretable relation embeddings, which are potentially
useful for data analysis.
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Airlines
Group 1 SAS, Norwegian
Group 2 Lufthansa, Germanwings, Air Berlin, easyjet
Group 3 Iberia, Alitalia
Group 4 Ryanair

Table 8: Airlines divided into groups based on their embeddings

To investigate whether there is a connection between the airlines and the airports,
we used k-means with k = 4 on the airport embeddings. The results are shown in
Figure 64, where airports are coloured based on the cluster they are in.

As can be seen, it is more or less the case, that the airport clusters correspond
to the airline groupings. For example, Ryanair appears to be almost in the centre of
the blue cluster. It seems fair to assume, that airports in, for example, the Ryanair
cluster should mostly have �ights by Ryanair.

Figure 64: Multidimensional scaling of the embeddings given by node2vec-multi for
airlines and airports. The colours correspond to the clusters created by k-means with
k = 4

To investigate whether this assumption holds we count, for each airline, the fre-
quency of �ights they have from the vertices in each cluster. For example, Norwegian
has 300 �ights from airports in the green cluster. This is seen in Figure 65.
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In this �gure, we can see the tendency that most airlines primarily operate in
airports of one cluster. The airline embeddings are generally closest to the cluster
in which they operate the most. For example, both Norwegian and SAS are closest
to cluster 1(green), and the airports in this cluster have �ights mainly by SAS and
Norwegian.

Figure 65: The number of �ights by airline and cluster, when using node2vec-multi.
Clusters correspond to the clusters shown in Figure 64

To compare node2vec with node2vec-multi we also ran node2vec with the same
parameters, and clustered the embeddings using k-means with four clusters. The
number of �ights by airline and cluster can be seen in Figure 66. From the �gure,
we can to a certain extent observe the same pattern as in Figure 65. The largest
di�erence is that easyjet and Alitalia now are mainly present in the same cluster as
Lufthansa, Germanwings, and Air Berlin. This suggest that node2vec and node2vec-
multi discover some of the same properties, but including relations can make some
properties of the airports more clear.
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Figure 66: The number of �ights by airline and cluster, when using standard node2vec

10.2 Airport search

The previous experiments were mainly focused on the airline embeddings. In this
section, we will take a closer look at the airport embeddings. We do this by performing
a search task, where we use the euclidean distance between airport embeddings as
a similarity measure. For three query airports, we report the most similar airports
given by the di�erent node2vec versions. The three query airports are: Frankfurt am
main Airport(Frankfurt), Václav Havel Airport Prague(VH Prague), and Norwich
Airport. These three airports represent a hub, main-stream and periphery vertex
respectively. Some basic statistics on the airports are given in Table 9.

Degree Nr of airlines Airline with most �ights
Frankfurt 116 6 Lufthansa: 89 of 116 (76,7%)
VH Prague 37 9 easyjet: 8 of 37 (21,6%)
Norwich 1 1 Alitalia 1 of 1 (100%)

Table 9: Query airport statistics

As was previously mentioned subsubsection 4.5.3, three kinds of context-target
pairs are created when adding attributes to walks: vertex-vertex pairs, vertex-attribute
pairs and type-type pairs. The situation is the same when adding relations. Too see
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whether vertex-vertex and attribute-attribute pairs are needed to measure similarity
we introduce node2vec-multi2, a version of node2vec-multi where only the vertex-
relation pairs are used for training.

We do this by splitting the random walks up into walks of length two, each of which
always consist of a vertex id and a relation. Note that from the formal formulation
of Skip-gram, a sentence(or walk) would need to be of at least length three, but the
speci�c implementation we used does not have this requirement.

For the search task we tested three di�erent versions of node2vec: node2vec,
node2vec-multi and node2vec-multi2. For all versions we used the same parameters:

dim = 128, wl = 80, numWalks = 10, windowSize = 3, p = 1, q = 4

The results are summarized in Table 10. For each query airport, we present the
top three closest resulting airports. For each resulting airport, we show the Euclidean
distance between the embeddings of the query and resulting airport, and the degree
of the resulting airport. We are both interested in observing whether the extensions
capture semantic similarity and whether any methods capture structural similarity

For Frankfurt, node2vec-multi2 appears to give sensible results. The most similar
airport it reports, is Munich, which makes sense, as Munich and Frankfurt are the
two main hubs for Lufthansa, so they are both semantic and structurally similar.
Düsseldorf is another major German airport, and while it is not a hub for Lufthansa,
it still is the airport with third most Lufthansa �ights. Zürich seems less sensible.
One reason why Zürich is in the top three most similar, is likely because its neighbours
are largely a subset of Frankfurt neighbours(25/36).

Node2vec-multi identi�es Munich as the most similar airport. However, the other
airports do not seem particularity sensible, as they both only have one �ight. The
�ight is Lufthansa so in that sense they are weakly semantic similar to Frankfurt. We
will go into further detail later on why node2vec-multi has a tendency to pick vertices
with low degree.

Node2vec also appears to give less sensible results. It is the only method to not
have Munich as the most similar. The reason node2vec reports these three airports as
the most similar, could be because the neighbours of these airports are largely just a
subset of the neighbours of Frankfurt. For example, out of Zagreb's nine neighbours
�ve are also neighbours of Frankfurt. In addition, all three results airports are directly
connected to Frankfurt. This indicates that node2vec captures proximity.
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Q Airport node2vec-multi2 node2vec-multi node2vec

Frankfurt
Munich

0.3588
142

Munich
0.8990
142

Zagreb
0.2472

9

Düsseldorf
0.7395
123

Rotterdam
1.1197

1
Larnaca

0.2611
14

Zürich
0.7898
40

Sibiu
1.1284

1
Gothenburg

0.2877
23

VH Prague
Malpensa

0.4776
61

Pau Pyrénées
0.8556

1
Larnaca

0.3694
14

Fiumicino
0.5093
118

Bolzano
0.8660

1
Athens

0.3888
32

Amsterdam
0.5227
65

Norwich
0.8878

1
Frankfurt

0.4033
116

Norwich
Humberside

0.2169
1

Humberside
0.2289

1
Sundsvall-Timrå

0.1065
1

Pau Pyrénées
0.2224

1
Durham Tees

0.2631
1

Kristiansund
0.1067

1

Leon
0.2307

1
Pau Pyrénées

0.3594
1

Durham Tees
0.1094

1

Table 10: The top three results airports according to node2vec, node2vec-multi, and
node2vec-multi2. For each result airport two properties are presented: The Euclidean
distance between the airport embeddings and the degree of the resulting airport
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For VH Prague node2vec-multi2, we will only go into further detail on Malpensa.
There can be several factors why that Malpensa is picked as the most similar airport.
One factor could be that they are directly connected, and share 17 neighbours. An-
other factor, is that they have a somewhat similar distribution of airlines among their
�ights: for example, they both have most �ights by easyjet. The distributions are as
follows:

VH Prague
AB AL easyjet GW LH IB NOR SAS Ryanair Wizz

( )0 5 8 3 2 3 5 3 2 6

Malpensa
AB AL easyjet GW LH IB NOR SAS Ryanair Wizz

( )3 10 32 5 3 3 1 2 0 2

This once again indicates that node2vec-multi captures semantic similarity. node2vec-
multi once again has airports with a degree of one in its top three.

For node2vec we have a similar situation as with Frankfurt, in that the airports
often have common neighbours.

All methods give reasonable results for Norwich. Recall that Norwich had one
�ight which was Alitalia. Both node2vec-multi2 and node2vec-multi pick airports
with one Alitalia �ight. Node2vec also �nds airports with one �ight, but as node2vec
does not take into account airline information only one of the airports have an Al-
italia �ight. Interestingly, Humberside and Durham Tees are structural equivalent
i.e. sjaccard(Humberside,DurhamTees) = 1, because they are both only connected
to Amsterdam airport.

From the table, it is clear that node2vec-multi will often pick airports with only
one �ight. This is appropriate for Norwich, but less so for VH Prague and Frankfurt.
For all of these one �ight airports, it is never the case that it is connected to the
query airport. For example, both Sibiu and Rotterdam Hague are only connected to
Munich. To see why node2vec-multi has this tendency of having one �ight airports
in the top three, we further examine the results for VH Prague. For the sake of
simplicity, we primarily look into why Bolzano were in the top two results airports
for VH Prague.

In Figure 67 we see part of the 2-neighbourhood of VH Prague, containing the
following vertices: Charles De Gaulle, Fiumicino, Bolzano and Pau Pyrénées. The
�rst observation to be made is that, while Bolzano and Pau Pyrénées are not directly
connected to VH Prague, they are close with a distance of two.
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Figure 67: Parts of the neighbourhood of VH Prague. The weights of the edges are
the number of �ights. The degree of a vertex is written inside it

To understand the results of node2vec, it is important to further investigate the
random walks. Recall that the random walks are used as input for the Skip-gram
model. The Skip-gram model creates embeddings such that two words, or two vertices
in our case, have similar embeddings when they often appear in the same context.
Vertices with a degree of one will always have the same immediate context. For
example, if we consider walks including Bolzano there are two cases. In the �rst
case, it is the start vertex of the random walk, and in the second case, we go from
Fiumicino to Bolzano. Example walks of the two cases are:

Case 1 : (Bolzano,Alitalia, F iumicino, ...)

Case 2 : (..., F iumicino,Alitalia, Bolzano,Alitalia, F iumicino, ...)

This means that Bolzano will very often occur together with Fiumicino and Al-
italia. VH Prague likely appear in more diverse contexts, but it should also occur
somewhat often with Fiumicino and Alitalia. The reason that VH Prague often ap-
pears with Fiumicino, is that the edge going from VH Prague to Fiumicino have the
highest weight among all incident edges on VH Prague. In addition, since almost half
of the Fiumicino �ights(57/118) are Alitalia, we could often have:

(..., V HPrague, {easyjet, Alitalia,WizzAir, Iberia}, F iumicino,Alitalia, ...)

This would mean that Bolzano and VH Prague often appear in the same con-
texts(Fiumicino and Alitalia), and would therefore at least have somewhat similar
embeddings, even though they might not appear together. The situation is much the
same with Pau Pyrénées as half(40/80) of Charles de Gaulle's �ights are Alitalia.

To see whether the observations made for VH Prague and Bolzano regarding their
context were correct, we further examined the frequency of words appearing in the
context of the two airports, see Figure 68. The top row shows the frequencies of
the ten most frequent context vertices given by node2vec-multi, while the bottom
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row shows the frequencies given by node2vec. The left column shows the results for
VH Prague, the right column for Bolzano. Alitalia is coloured orange and Fiumicino
green.

Figure 68: The frequency of context vertices for VH Prague and Bollzano. The
left column is VH Prague and the right column is Bolzano. The top row is the
contexts created by using node2vec-multi and the bottom row is the context created
by node2vec.

The most apparent observation, is that Fiumicino and Alitalia appear much more
frequently in the context of Bolzano, than any other airport. For VH Prague, it is
the case that Alitalia and Fiumicino are the �rst and third most frequent context
respectively, but they are not much more frequent than the other "words". As both
airports often have Alitalia and Fiumicino as their context, they should at least be
somewhat similar. However, VH Prague have many contexts that Bolzano does not
have.

The reason why Bolzano is the most similar to VH Prague could then be that the
speci�c contexts in which VH Prague appear are so unique that it essentially is only
similar to itself.

In node2vec there are no airlines in the context, so it is only required that two
airports have similar airport contexts, which is more lenient. For example, in the
bottom row of Figure 68, we can see the context frequency for VH Prague and Bolzano.
In this case, both airports appear mostly with Fiumicino, but as was seen in Table 10,
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Larnaca aiport was most similar to VH Prague. This indicates that they probably
appear more often in the same contexts.

To summarize, there are several choices which need to be made, when using
node2vec for a search task. The �rst, which we did not explore in detail, is choosing
the parameters. The second is then to choice the version of node2vec to use. For this
speci�c dataset it seems that node2vec-multi2 were the most sensible choice. We also
showed that including relations in walks can help discovering semantic similarity. In
addition to understanding the results of any node2vec version, one can gain additional
insight by investigating the the context-target pairs created by Skip-gram.
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Part IV

Experimental study

In this part we present an experimental study of node2vec and our extensions on real
networks. The goal is to test how well our extensions hold up to node2vec in terms
of performance and scalability.

We perform two classi�cation tasks, namely, a multiclass and multilabel classi�-
cation. The multiclass task is performed on the airline network, where the task is to
predict the size of airports. To evaluate the e�ect of adding attributes to node2vec,
we perform multilabel classi�cation on three di�erent networks, used by the authors
of node2vec.

We evaluate the scalability for node2vec and two of our extension with attributes,
by running them with default parameters on Erdos-Renyi graphs.

11 Experimental procedure

This section details the experimental procedure. It covers the vertex classi�cation
task, the evaluation measures used, and the methods used for the experiments.

11.1 Vertex classi�cation

A vertex classi�cation task can be summarized as follows. Given a training set D =
{(v1, c1), . . . , (vn, cn)} of labelled vertices and ci ∈ C = {c1, c2, ..., cm} is a class label.
We want to train a classi�cation model γ that maps unlabelled vertices to classes.

In this section we describe the methods used for the classi�cation tasks.

11.1.1 K-nearest neighbours classi�cation

k-nearest neighbours(kNN) classi�es instances based on a similarity or distance mea-
sure. In our case we use euclidean distance, so the lower the distance between two
instances, the nearer they are. When a new instance is classi�ed, it is assigned to the
most frequently represented class amongst its k nearest neighbours.

11.2 Evaluation measures

This subsection includes some material from last semesters report: Vertex Similarity
in Graphs

For evaluating how well the similarity measures perform on the classi�cation tasks,
we use classi�cation evaluation measures.

Classi�cation evaluation measures

To evaluate the performance of our methods, we use F1-score. The F-score is a way
of combining precision and recall to a single score, and can be seen in Equation 43. It
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is primarily used as a way to compare the performance of di�erent methods as it does
not tell you whether the precision or recall are the cause of a high or low F-score.

Fβ = (1 + β2) ∗ precision ∗ recall
(β2 ∗ precision) + recall

(43)

The β constant can be used to weigh precision di�erently than recall. The tradi-
tional F-score(F1-score), which is the one we consider, uses a β value of one, weighing
both precision and recall equally.

The F-score presented here is de�ned for binary classi�cation tasks. For multiclass
classi�cation there exist di�erent versions of the F-score, macro and micro F-score.
The macro F-score is obtained by �rst calculating the precision, recall and f-score
for each class, and then �nding the mean. The micro F-score is obtained by globally
counting all true positives, false positives and false negatives.

Precision measures the proportion of correctly classi�ed positive instances, for-
mally de�ned in Equation 44.

Precision =
TP

(TP + FP )
(44)

where TP is the number of true positives and FP is the number of false positives
.

Recall measures the proportion of true positive instances retrieved, which can be
seen in Equation 45.

Recall =
TP

(TP + FN)
(45)

where FN is the number of false negatives.

11.3 Methods used

For the experiments we use the following methods:

• Majority: A simple method that always guesses the majority label. In the case
of multi label instance with n labels, the top n most frequent labels are chosen.
Ties are handled by randomly picking a label.

• Neighbour count(NC): A method that guesses the most frequent label among
the neighbours of a vertex. In the event that all labels of the neighbours for a
vertex are unknown, the majority method is used. Like the majority method
the top k most frequent labels are chosen in the case of multi label instance
with n labels. Ties are handled randomly.

• node2vec: node2vec is explained in greater detail in 4.5.2. We consider several
of the extensions we proposed. When we run node2vec with attributes, we use
the class label as the attribute. Furthermore, when training the model, the
labels of the test data were set to "?".
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• K-nearest neighbours+feature(KNN+gp): Classi�es an instance based the k
closets instances. What are the closets instances is based on a distance measure
such as euclidean distance. In the +gp version, the vertices are represented
by one or more simple vertex properties/statistics, such as degree or closeness
centrality. For all experiments we set k= 5.

12 Dataset overview

A summary of the di�erent datasets used for the experimental study is shown in
Table 11.

|V| |E| Avg. Degree Diameter Multirelational
BlogCatalog 10,312 333,983 64.78(sd = 177.70) 5 No
Wikipedia 4777 184,812 38.73(sd = 138.98) 3 No
PPI 3890 76,584 39.37(sd = 68.82) 8 No
Airline 304 3076 19 (sd = 24) 5 Yes

Table 11: Overview of the datasets used for the exploratory analysis

12.1 BlogCatalog

The BlogCatalog dataset is a social network containing information about bloggers
and their blogs[21]. It consists of 10,312 vertices(bloggers), 333,983 edges(friendships),
and 39 labels(groups). Here groups are categories a blogger can tag their blog with,
such as art and fashion. One blog may be tagged with multiple groups. An edge
exists between two bloggers b1 and b2 if b1 has included b2 to be part of his social
network of other bloggers.

12.2 Wikipedia

The Wikipedia dataset[13] is a network of the cooccurrence of words appearing in
the �rst million bytes of the Wikipedia dump. Labels in this network represent Part-
of-Speech (PoS) tags inferred from the Stanford POS-Tagger. The network consists
of 4777 vertices (words), 184,812 edges (cooccurrence), and 40 di�erent labels (POS
tags). An edge between two words exist if they co occur within a 2-length window in
the Wikipedia corpus.

12.3 PPI

The Protein-Protein Interactions (PPI) dataset[5] is a network of interactions be-
tween proteins for Homo Sapiens. The network has 3890 vertices (proteins), 76,584
edges (biological interactions), and 50 di�erent labels (biological states). Labels are
obtained from hallmark gene sets.
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13 Airline results

We do a multiclass classi�cation task on the airline dataset. The purpose is to predict
the size of airports, with the assumption that the size of an airport is highly dependent
on the structural patterns of the vertices.

Experimental procedure

We performed nine di�erent train-test splits for each method, where the training data
was incremented by 10% for each split, starting at 10%. For each train-test split, we
run the experiments ten di�erent times with di�erent random seeds, and report the
average results.

For the node2vec based methods, we learned the optimal p and q by training the
methods on an 80-20 training-test split on 20% of the original labelled data for all
possible combinations of p, q ∈ {0.25, 0.5, 1, 2, 4}. The optimal p and q values can be
seen in Table 12.

(p, q)
node2vec (4, 1)
node2vec-attr (1, 0.5)
node2vec-attr+ (0.25, 1)
node2vec-multi2 (0.5, 1)

Table 12: Chosen p and q values for node2vec representations

The other parameters were:

dim = 128, wl = 80, numWalks = 10, windowSize = 3

The embeddings produced by the di�erent node2vec representations, were given
as input to a knn with k = 5. The following methods will be used for the airline
experiments: node2vec, node2vec-attr, node2vec-attr+, Neighbour count(NC) and
Majority. In Table 13 is an overview of the di�erent node2vec walk representations.

Walk example
node2vec (1, 29, 40, 1, 21)
node2vec-attr (1 A, 29, B, 40, ...)
node2vec-attr+ (1, A, AAB, AB, 29, B ...)
node2vec-multi2 ((1, R1), (1, R2), (2,R1))

Table 13: node2vec representations

In node2vec-attr and node2vec-attr+ we use class labels as attributes.
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Results

Figure 69: Results for the airline network

Figure 69 shows the results for the micro and macro F1-score for the airline dataset.
Neighbour count does poorly both in regards to micro and macro F1-score. Major-
ity achieves together with NC the worst macro F1-score, however, it achieves micro
F1-scores comparable to the node2vec based methods. This is because of the class
labels imbalance in the airline network. Almost all node2vec extensions were slightly
worse than the original node2vec, with exception of node2vec-multi2 which is the
best extension by a large margin. node2vec-multi2 together with knn+degree and
knn+closeness-centrality are the best methods both in terms of macro and micro
F1-score. knn+degree being among the best methods were expected, as in gen-
eral small airports will have few �ights(low degree), and large airports will have
many �ights(high degree). The reason that node2vec-multi2 was almost as good as
knn+degree, could be because airports of similar degree are often mapped closer
together, as we observed in the Case-Study.
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Discussion

From our exploratory analysis we showed that node2vec in general seems to just
�nd proximity when the walk length or number of walks is increased. Therefore,
we examined the e�ect of increasing the walk length and number of walks. In these
experiments p and q are set to one. For the walk length experiment, number of walks
were set to ten, and in the number of walks experiment, the walk length were set to
80. We use knn again for the classi�cation. The result of the experiments are shown
in Figure 70.

Figure 70: Performance of node2vec based methods when increasing walk length and
number of walks. The y-axis denote the macro F1-score

We observe that the performance of node2vec and node2vec-attr tend to decrease,
when we increase the walk length and number of walks. Both node2vec-attr+ and
node2vec-attr have large drops in performance, going from ten to 40 walk length.
This dive in performance is mirrored for the number of walks, where the dive happens
from two to six. The performance of node2vec on the other hand decrease steadily.
Interestingly, the performance of node2vec-attr+ improves slightly when increasing
the number of walks. This slow increase might be because the vocabulary of node2vec-
attr+ is larger than the other methods, and therefore require more data.

All node2vec methods, with the exception of node2vec multi2, obtain the best
performance at low walk lengths(ten), and at low number of walks(one to two). This is
most likely because, at larger walk lengths, we no longer �nd any structural similarity,
just proximity, much like we discovered in the exploratory analysis.
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node2vec-multi2 is fairly stable over increasing walk length, however, its perfor-
mance decreases slightly when increasing the number of walks. The reason why
node2vec-multi2 does well, could be because it only uses vertex-attribute(relation)
context-target pairs. Because of this we also tested this approach for the other
node2vec extensions. In addition, we also tested a version where we kept both
vertex-vertex, and vertex-attribute context-target pairs. Finally, we also tested using
only the individual feature for node2vec-attr+ i.e. all-neighbour and the unique-
neighbours.

We used all these di�erent methods on the airline dataset, with the default pa-
rameters from the airline experiments, however, p and q were both set to one. The
training test-split were 50-50. The macro f1-score of these experiments are summa-
rized in Table 14.

n2v attr attr+ all-neighbours unique-neighbours
All pairs 0.5136 0.4066 0.2877 0.2742 0.4806
vertex-vertex, vertex-attribute - 0.5023 - 0.4563 0.5900
vertex - attribute - 0.5828 - 0.3953 0.6957

Table 14: Performance of node2vec extensions when changing the the kind of context-
target pair types used for learning

Using all pairs, the best method is node2vec, but unique neighbours is fairly
competitive to node2vec. All-neighbours and node2vec-attr+ does far worse than
all other methods. It seems that the generally poor performance of node2vec-attr+,
were due to the all-neigbours feature. When only keeping the vertex-vertex and
vertex-attribute pairs, the performance of all methods increase by a fair amount.
Now node2vec-attr is more or less equal with node2vec, and unique neighbours is
better. While the performance of all-neighbours is increased, it is still by far the
worst method. When only using vertex-attribute pairs, the performance of node2vec-
attr and unique-neighbours are increased. These two methods are now both better
than node2vec.

So to summarize we found that our node2vec extensions were able to outperform
node2vec, however, one needs to take several factors into account, such as what kind
of pairs are allowed in the training and what features should be used in the walks.

14 Multilabel classi�cation

To evaluate the e�ect of adding attributes to the node2vec walks we conduct a mul-
tilabel classi�cation task on the datasets in the same manner as Grover et al. [6].
These datasets are BlogCatalog, PPI and Wikipedia.

Experimental procedure

We performed three di�erent train-test splits for each method: 20-80, 50-50, 80-20.
The embeddings created by the node2vec methods were used as input into a one-vs-
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BlogCatalog PPI Wkipedia
node2vec (0.5 ,1) (4, 0.25) (0.5, 0.25)
node2vec-attr (4, 0.25) (0.25, 2) (0.25, 0.5)
node2vec-attr+ (1,1) (4,4) (4,2)

Table 15: p and q values for the di�erent methods on the datasets

rest logistic regression classi�er. Training instances with more than one label were
duplicated one time for each label. For example if a vertex v had labels (1,2,3)
there will be three training instances for v, each with the same embedding but with
di�erent class labels. For the test instances we assume that the number of labels is
know beforehand, so for an instance with k labels the top k most probable labels are
predicted. Regarding the node2vec extensions we view the attribute/type of a vertex
as the concatenation of that vertex's labels.

The optimal p and q were found by training the methods on an 80-20 training-test
split on 10% of the labelled data for all possible combinations of p, q ∈ {0.25, 0.5, 1, 2, 4}.
The optimal p and q values can be seen in Table 15.

For node2vec-attr and node2vec-attr+ we use the class labels as attributes. In
case of multiple labels, they are treated as a single unique label.

Results

In this section we present the results of performing multi label classi�cation on the
BlogCatalog, PPI and Wikipedia datasets.

The BlogCatalog results are summarized in Table 16. We can see that both Neigh-
bour count and Majority are consistently the worst of the methods on both macro
and micro F1-score. Majority being way worse than the rest. The di�erent node2vec
versions perform a lot better, with both of our extensions performing better than
node2vec in terms of Macro F1-score for all percent of Labelled. However node2vec
consistently achieves the highest micro F1-score.

% Labelled vertices 20 % 50 % 80 %

Macro F1-score

node2vec 0.1913 0.2195 0.2310
node2vec-attr 0.2070 0.2457 0.2677
node2vec-attr+ 0.2073 0.2479 0.2648
Neighbour count 0.1276 0.1679 0.1887
Majority 0.0254 0.02614 0.0271

Micro F1-score

node2vec 0.3627 0.3813 0.3924
node2vec-attr 0.3406 0.3644 0.3842
node2vec-attr+ 0.3354 0.3731 0.3889
Neighbour count 0.2296 0.2948 0.3239
Majority 0.16468 0.1669 0.1719

Table 16: BlogCatalog macro and micro F1-score
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The results for PPI are summarized in Table 17. We still notice the trend that
Neighbour count and Majority perform the worst in terms of macro and micro F1-
score. We can also see that all versions of node2vec perform about the same, with
node2vec being slightly better in terms of micro F1-score in all con�gurations of
labelled data.

% Labeled vertices 20 % 50 % 80 %

Macro F1-score

node2vec 0.1511 0.1775 0.1904
node2vec-attr 0.1444 0.175 0.19
node2vec-attr+ 0.1470 0.1736 0.1929
Neighbour count 0.1079 0.1446 0.1668
Majority 0.0171 0.016 0.0164

Micro F1-score

node2vec 0.1818 0.2088 0.2217
node2vec-attr 0.1696 0.1957 0.2107
node2vec-attr+ 0.1699 0.1964 0.2169
Neighbour count 0.1327 0.175 0.2038
Majority 0.0667 0.0621 0.0631

Table 17: PPI macro and micro F1-score

The results for Wikipedia are summarized in Table 18. All the methods generally
perform a lot worse on this dataset compared to the others, with Neighbour count
and Majority still being the worst. Here we see that node2vec performs better than
our extensions for both macro and micro F1-score.

% Labeled vertices 20 % 50 % 80 %

Macro F1-score

node2vec 0.0915 0.1049 0.1156
node2vec-attr 0.0707 0.0776 0.084
node2vec-attr+ 0.0768 0.0869 0.0925
Neighbour count 0.0444 0.0457 0.0455
Majority 0.0342 0.0337 0.034

Micro F1-score

node2vec 0.4873 0.5087 0.523
node2vec-attr 0.416 0.4205 0.4375
node2vec-attr+ 0.4159 0.4357 0.4539
Neighbour count 0.2334 0.2529 0.2967
Majority 0.4119 0.4085 0.4159

Table 18: Wikipedia macro and micro F1-score

Generally it can be observed that the node2vec extensions perform better than
NC and Majority by a large margin. On all datasets node2vec achieves the highest
micro f1-score for all con�gurations. In terms of macro F1-score it di�ers from dataset
to dataset which node2vec version is the best.
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Discussion

To obtain a better understanding of the results, we �rst examine the distribution
of labels in the di�erent networks, see Figure 71. The Wikipedia dataset is very
imbalanced, with three labels(1, 8, 9) making up 59 % of all labels. In addition,
20 labels have a frequency of ten or lower. This imbalance explains the low macro
F1-scores and the high micro F1-score for Wikipedia. The BlogCatalog dataset also
appear to be somewhat imbalanced, while PPI is relatively balanced.

Figure 71: Distribution of class labels in the Blogcatlog, Wikipedia and PPI networks

To get a better understanding of why our extensions obtained a better Macro F1-
score on the BlogCatalog data, we take a more detailed look at the F1-scores for the
individual classes. One label that appears interesting, is label 27, where node2vec-attr
obtained an F1-score of 0.1852, whereas node2vec obtained a score of zero. Label 27
appears a total of 94 times, 58 times as the only label and 36 times with at least one
more label. To set these number in perspective, this means that they appear in 0.911
% of the vertices compared to the majority class, which appears in 15.73 % of the
vertices. Even though there are so few instances, there are 17 vertices that have a
label with 27 in it, and where the majority(or equal to the majority) of its neighbours
have label 27. These vertices are shown in Appendix A. In some cases, it is not a
very convincing majority, but nonetheless, these vertices should have label 27 in their
context more often than other vertices in BlogCatalog. This is likely to be re�ected
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in the embeddings, resulting in the better F1-score.
While node2vec-attr and node2vec-attr+ did better on the BlogCatalog, it did

worse on the Wikipedia dataset and comparable in the PPI dataset to node2vec. Re-
call that our strategy on how to represent a multilabel instance in node2vec-attr and
node2vec-attr+, were to treat the multiple labels as one unique label. This may have
been a too naive representation, especially for node2vec-attr+, as the features, all-
neighbours and unique-neighbours, might become unique for every vertex. This would
essentially mean that node2vec-attr+ becomes more or less the same as node2vec just
with more data. In Table 19 we summarize how many unique labels are created for
a single attribute, unique neighbours, and all neighbours.

BlogCatalog Wikipedia PPI
Single attribute 1059 188 1063
Unique neighbours 9928 4775 3593
All neighbours 9993 4777 3613
Network size 10312 4777 3890

Table 19: Number of unique labels for single attribute, unique neighbours and all
neighbours for the three datasets

It is evident from the table that our strategy to deal with multiple labels is not
optimal. This is especially true for node2vec-attr+ as the additional features we add
to the walks, are almost unique for every vertex for all datasets.

A better strategy to deal with the multiple label problem, could be to consider
the multiple labels as a set of labels. So the unique neighbours feature for a vertex
with two neighbours which have labels "1 2" and "1 3", will be "1 2 3" instead of "1
2 1 3". Using this approach the amount of unique labels are summarized in Table 20.

BlogCatalog Wikipedia PPI
Unique neigbours 8639 4585 3562
All neighbours 9981 4776 3630
Network size 10312 4777 3890

Table 20: Number of unique labels for, unique neighbours and all neighbours for the
three datasets if multiple labels are treated as a set

This approach only marginally reduce the number of unique labels. This low
reduction is most likely due to the large number of classes in each network. Possible
further solutions could be to consider the top k labels instead of every neighbour
label.

15 Scalability

In this part we perform a scalability test of node2vec and our proposed extensions.
We test three di�erent con�gurations, id, attr and attr+. We focus on the scalability
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of the learning part of the algorithm because they do not di�er in the sampling part.
We test with the default node2vec parameters on Erdos-Renyi graphs with increasing
sizes from 100 to 100000 vertices, with a constant average degree of ten. Each graph
size is run ten times, and the average time is taken. The hardware used to run the
experiment has the following speci�cations:
CPU: Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz
Memory: 16,0 GB RAM
OS: Win 7 64 bit
Python 2.7.13

In Figure 72 we see that the three versions all scale linearly with the number of
vertices. We also see a small constant overhead for the attr+ version.

Figure 72: Scalability of node2vec on Erdos-Renyi graphs with an average degree of
10
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Part V

Conclusion

We investigated the problem of measuring similarity between vertices in graphs. There
are various di�erent notions of similarity that can be measured on vertices, among
these are: structurally, proximity and semantically based similarity.

State of the art techniques utilize feature learning, which objective is to learn
embeddings of vertices. These embeddings could be used to determine the similarity
between vertices. One novel feature learning technique is node2vec, which the authors
claim is able to �nd either structure or proximity depending on parameters p and q.

We examined these claims and found that node2vec could �nd both structure and
proximity, however, the parameters p and q had little to no e�ect on this. Instead,
this was based on the walk length and the number of random walks.

Additionally, we proposed multiple extensions for node2vec, which allows it to use
the attributes of vertices and edges. We perform experiments with these extensions
on classi�cation and search tasks and evaluate how they compare to node2vec. We
found that for multiclass classi�cation on an airline network, at least one of our
multirelational extensions performed better in terms of F1-score than node2vec.

For future work, many directions can be considered. It would be interesting to
further investigate why node2vec can only �nd structure at lower number walk length
and number of walks.

Additionally, our extensions for attributes only work for discrete values, ways of
handling continuous attributes could be interesting as many real networks contain
attributes with continuous values.
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Appendix A

Degree Nr of neighbours with label 27 Proportion of neighbours with label 27
75 6 1 0.1667
5201 2 1 0.5
612 3 1 0.3333
132 1 1 1
8862 61 5 0.0820
6840 61 7 0.1147
9939 13 4 0.3077
2263 4 1 0.25
6283 2 1 0.5
4382 15 2 0.0667
3208 5 2 0.4
10071 12 6 0.5
3485 17 7 0.1176
3003 67 2 0.1044
9663 9 2 0.2222
4576 9 4 0.4444
2038 5 1 0.2

Table 21: The 17 vertices where label 27 is among the majority of neighbour labels
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