
Aalborg Universitet

Generating Approximative Minimum Length Paths in 3D for UAVs

Schøler, Flemming; la Cour-Harbo, Anders; Bisgaard, Morten

Published in:
Intelligent Vehicles Symposium (IV), 2012 IEEE

DOI (link to publication from Publisher):
10.1109/IVS.2012.6232120

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Schøler, F., la Cour-Harbo, A., & Bisgaard, M. (2012). Generating Approximative Minimum Length Paths in 3D
for UAVs. In Intelligent Vehicles Symposium (IV), 2012 IEEE (pp. 229-233). IEEE Press.
https://doi.org/10.1109/IVS.2012.6232120

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.1109/IVS.2012.6232120
https://vbn.aau.dk/en/publications/514f8111-bc27-49cf-be39-28580740eeab
https://doi.org/10.1109/IVS.2012.6232120

Generating Approximative Minimum Length Paths in 3D for

UAVs

Flemming Schøler, Anders la Cour-Harbo, and Morten Bisgaard

Aalborg University, Fredrik Bajers Vej 7C, Aalborg University, 9220 Aalborg East, Denmark.

E-mail: {�s, alc, bisgaard}@es.aau.dk.

Abstract

We consider the challenge of planning a minimum length path from an initial position to a de-

sired position for a rotorcraft. The path is found in a 3-dimensional Euclidean space containing a

geometric obstacle. We base our approach on visibility graphs which have been used extensively

for path planning in 2-dimensional Euclidean space. Generalizing to 3-dimensional space is not

straight-forward, unless a visibility graph is generated that, when searched, will only provide an ap-

proximative minimum length path. Our approach generates such a visibility graph that is composed

by an obstacle graph and two supporting graphs. The obstacle graph is generated by approximat-

ing a mesh around the con�guration space obstacle, which is build from the convex hull of its work

space counterpart. The supporting graphs are generated by �nding the supporting lines between the

initial or desired position and the mesh. An approximation to the optimal path can subsequently

be found using an existing graph search algorithm. The presented approach is suitable for fully

known environments with a single truly 3-dimensional (not merely "raised" 2-dimensional) obstacle.

A example for generating a path for a small-scale helicopter operating near a building is shown.

keywords: UAV, path planning, helicopter, visibility graph

1 INTRODUCTION

Path planning and trajectory generation are fundamental areas for UAS development and both provide

the ability to �gure out a way to e�ciently and safely travel through an environment under a set of

constraints. Speci�cally, for tasks such as surveillance, inspection, aerial mapping, etc., small-scale

autonomous helicopters are increasingly being used. In many such tasks it is advantageous to operate

in close proximity to the obstacles or to follow their surface.

1.1 Background

The practical use of the presented work is to obtain methods for path planning that can be used for

operating a small-scale helicopter in an environment constrained by obstacles. The presented method

1

is near-optimal, that is, able to produce a path arbitrarily close to the Euclidean shortest path inside a

space. This space is constrained by a single obstacle such that no parts of the vehicle may intersect the

obstacle at any time. In this space the vehicle is represented by its bounding sphere, which is centered

in center-of-mass. The presented approach for path planning use visibility graphs (VG). Theses VGs

are based on describing the obstacles in a con�guration space (CS), which in turn are based on the work

space (WS). The generation of those CS obstacles and VGs are the main contribution of this paper.

The WS obstacle can be build from any set of vertices such as a point-cloud from sampled data.

The WS obstacle is made convex since non-convex parts are not relevant when searching the VG for a

solution. In fact, when computing the shortest path between two points in the CS, the shortest path

is a series of connected edges that are either on the convex hull of the obstacle, or tangents from the

points to the obstacle.

1.2 Previous work

Previous work on how to practically, automatically, and e�ciently generate a con�guration space from

a 3D point-cloud in WS seems limited to building primitive solids or geometric representations, and in

many path planning publications an existing con�guration space is simply assumed.

Visibility graphs for 2D path planning have been used extensively. However �nding an optimal

solution to the general path planning problem in 3D is NP-complete, see [1, 2]. The di�culty of

the problem is that the shortest path around a polyhedral obstacle does not in general traverse only

vertices of the polyhedron, but also points somewhere on the edges of the polyhedron. The concept of

adding additional vertices along these edges in con�guration space so that no edge vertices are spaced

more than a speci�ed maximum length is introduced by [1]. This approach generally results in a good

approximation to the optimal path.

In [3] an algorithm is presented for the 2D case that use the Minkowski sum (see [4] for details on

Minkowski sum) to generate a CS obstacle from a polygonal obstacle and a polygonal vehicle. While

CS obstacles could be generated by approximating the vehicle with a geodesic dome, the obstacles

are described by a sequence of algebraic equations, which makes the optimization problem di�cult to

solve without resorting to numerical methods. Also [5] describe algebraic algorithms for generating the

boundary of CS obstacles.

1.3 Present work

We propose a method for generating a VG from 1) a point-cloud that represent the WS obstacle, 2)

a vehicle bounding sphere with radius rbs, and 3) an initial and desired position for the vehicle. The

generalized visibility graph VG(N,L) contains a node set N and a link set L of links between node

pairs. Each node in the graph is assigned a possible con�guration (or position), and each link represents

an visible (linear) connection between them. The VG is composed of two parts; an obstacle visibility

graph VGo that links node-pairs near the obstacle surface, and a supporting visibility graph VGvp that

2

connects the initial and desired position (denoted "via points") to the CS obstacle by supporting lines:

VGf = VGo ∪VGvp (1)

An example of such a graph is shown in Figure 1. The advantage of separating the obstacle and via point

Figure 1: The VGf for a helicopter �ying between two via points around an obstacles. Part of the

obstacle visibility graph VGo is drawn in blue. Part of the supporting graph VGvp is drawn in orange.

The shortest found path is red and connects the two via points drawn as gray spheres. The larger sphere

represents the vehicle bounding sphere. The CS obstacle is not shown.

(VP) graphs is that while both graphs must be generated when creating the initial full VG, only VGvp

has to be created when either the obstacle is moved or rotated or either via point is moved. The full VG

is generated such that it contains only links that are relevant when computing the Euclidean shortest

path between via points, and subsequent pruning is not necessarily. The full VG can be searched to

obtain the shortest path using a graph search algorithm, e.g. Dijkstra's algorithm, see [6] or A*, see [7].

This part is not the focus of this research and will not be discussed further.

2 METHOD

Generating the obstacle graph VGo and supporting graph VGvp are treated in Section 2.1 and Sec-

tion 2.2, respectively.

2.1 Obstacle Visibility Graph

An obstacle visibility graph VGo is based on the con�guration space of a spherical vehicle moving

amongst convex, polyhedral obstacles, i.e. obstacles described by facets. Thus, CS obstacles are grown

as the Minkowski sum of a sphere and convex WS polyhedra generated from the convex hull (see e.g. [8]

for a robust O(n2) algorithm for �nding the convex hull) of the point-cloud. As seen from the example

in Figure 2, this is equivalent to generating the CS obstacle by translating each facet of the WS obstacle

3

along its outward pointing normal by rbs, while �lling the occurring gaps between edges of translated

facets by cylindrical patches, and gaps at facet vertices by spherical patches. Any such generated CS

obstacle will have a surface with G1 continuity. As shown in Figure 2(c) the VG of a CS obstacle can

be seen as a mesh wrapped around (and fully enclosing) that obstacle. The mesh points acts as nodes

in the graph, and the links are edges of a convex hull of the obstacle. The mask size of the mesh is

given by the desired accuracy of the near-optimal path. To fully enclose the obstacle, these nodes must

be located slightly above the obstacle surface. This distance is denoted re and increases as the desired

accuracy decreases.

(a) Cuboid in workspace and trans-

lated facets

(b) Cuboid in con�guration space (c) Cuboid visibility graph

Figure 2: The con�guration space and visibility graph generated from a cuboid. VG nodes are colored

according to origin.

The nodes (mesh points) are a combination of the points from the edges of the patches and points

internally to the patches. Only cylindrical and spherical patches are used when generating the nodes.

Points in facets can be skipped since interior points will not be part of an optimal solution, and edges

are shared with cylindrical patches. Once the node set is generated for a patch, the link set can

be determined using the convex property of the CS obstacle. Convexity means that links exist only

between nodes of the same patch. In the following, we describe how to �nd the nodes for both patch

types.

2.1.1 Sphere patch vertices

The vertices on a sphere patch has four separate origins as seen by the black, white, green, and blue

vertices in Figure 2(c). The black endpoint vertices form the sphere patch polygon, the white vertices lie

along the polygon edges, and green or blue vertices are inside the polygon. The black vertices are given

by the neighboring translated facets, while the other types are interpolated to achieve a su�ciently high

resolution of the VG. The blue central vertex is used when interpolating the green vertices.

To obtain the interpolated nodes, let Nsn be the number of neighboring cylindrical patches, then the

spherical polygon is composed by Nsn edges between Nsn vertices. The set of these vertices is denoted

{vi} for i = 0, . . . , Nsn − 1. Using a central vertex inside the polygon, the spherical patch polygon can

4

now be decomposed into Nsn spherical triangles. Each triangle use a di�erent edge but all share the

central vertex.

A central vertex that minimize spherical distance to the vertex set is given as

argmin
vc

N−1∑
i=0

widistgeo(vc, vi)
2 ,

where distgeo(vc, vi) is the geodesic distance from vc to vi, and wi are non-negative weights that sum to

1. This problem is well-de�ned for vertices on a hemisphere and a fast iterative algorithm with quadratic

convergence rate exists, see [9].

All remaining nodes in the patch are found by two consecutive interpolations. The �rst interpolation

is along the edges of the sphere patch polygon to �nd a set of vertices va. The second interpolation is

along the edges formed by each of these vertices and the central vertex.

The number of vertices generated by interpolation is controlled by the parameter lmax that determines

the maximum allowed surface distance between two neighboring vertices. Since the VGmust fully enclose

the obstacle, a lower interpolation resolution requires a larger patch radius to ensure no links intersect

the obstacle. Both factors a�ect the near-optimality of solution, since a smaller obstacle and more nodes

are more likely to result in a solution closer to optimal.

The number of nodes Nse(i) along an exterior edge i of a spherical polygon is

Nse(i) = d(rbs + re) arccos(vi · vi+1)/lmaxe ,

where {vi} is the set of consecutive endpoint vertices in the spherical polygon. Using the following

function for spherical linear interpolation

p(v, w, s,K) =
(
1− (v · w)2

)− 1
2
(
sin
(s
K

arccos(v · w)
)
w

+sin
((

1− s

K

)
arccos(v · w)

)
v
)
,

the vertices on the arc between vi and vi+1 are given by

va(i, s) = p
(
vi, vi+1, s,Nse(i)

)
(2)

and then (with a slight abuse of notation)

Va =

Nsn−1⋃
i=0

Nse(i)⋃
s=0

va(i, s) . (3)

In Figure 2(c) the white and black nodes are the set Va.

Interior nodes are then added by spherical linear interpolation between vc and the vertices in Va.

The required number of nodes for each edge is given by

Nsi(i, s) = d(rbs + re) arccos (va(i, s) · vc)/lmaxe .

The vertex for each interpolation is then

nsp(i, s, t) = p
(
va(i, s), vc, Nsi(i, s)

)
, (4)

5

and the total set of vertices for the spherical patch is

Vs = vc ∪
Nsn−1⋃
i=0

Nse(i)⋃
s=0

Nsi(i,s)⋃
t=0

nsp(i, s, t) . (5)

The interior nodes in this set are shown in Figure 2(c) as green nodes. The interpolation functions

above have no singularities since the angular spacing between consecutive vertices are always less than

π for any obstacle that extends three dimensions.

2.1.2 Cylinder patch vertices

From the sphere patch a set of vertices was found at the arc edges of the cylinder patch. Both arc edge

has the same number of vertices, since the edges have the same length and are both interpolated using

lmax. Assume now that the vertices vi at one end is paired one-to-one with the vertices wi at the other

end, in an ordered manner starting at the same facet edge. Since the height of the cylinder is constant,

the number of vertices along this height must be

Nc = d||w0 − v0||/lmaxe .

Each interpolation point for pair i is given by

ncp(i, j) = vi + (wi − vi)j/Nc

for j = 1, . . . , Nc − 1 and for i = 0, . . . , Nse(u), where u is the index of the corresponding sphere patch

polygon edge. Now the set of all cylinder patch vertices is given as

Vc =

Nse(u)⋃
i=0

Nc−1⋃
j=1

ncp(i, j) (6)

2.1.3 Full obstacle visibility graph

The VG for the obstacle is now given as the union of the sets Vs in (9) and Vc if (12). The links of

each patch is found by connecting all its vertices. Links between vertices on the same facet edge can be

removed unless both are endpoint nodes, since such links will not be part of the shortest path.

2.2 Via Points Visibility Graph

When generating a VG between a via point (initial or desired vehicle position) and the obstacle nodes,

only links on supporting lines are part of the shortest path and hence included.

In order for a link Ln from a node ne to a node ns on a polyhedron surface S to be on a supporting

line, at least one of the Nf facets of ns must be 'visible' and at least one facet must be non-'visible'. A

facet k of ns is visible from node ne if

fv(ne, ns, k) = (ne − ns) · g(k)

6

is ≥ 0. The function g(k) gives the outward-pointing normal vector for a facet k of ns. This means that

Ln is a on a supporting line i� there exists j = 0, . . . , Nf − 1 such that fv(·, ·, j) ≥ 0 and there exists

k = 0, . . . , Nf − 1 such that fv(·, ·, k) < 0.

We now de�ne the full graph as

VGvp = tg(vp0,VGo) ∪ tg(vp1,VGo) ∪ int(vp0, vp1) ,

where tg(p,G) is a function that gives the supporting VG from the supporting link set between p and

G, and int(p0, p1) is a function that returns the VG between p0 and p1, if its link does not intersect the

CS obstacle. Such a function can be based on segment/triangle intersection, see e.g. [10].

3 RESULTS

An example is created by generating a VG from the vertices of an obstacle shaped as a building. The

setup and results can be seen in Figure 3. A small-scale helicopter with radius rbs of 1.70 m is used. The

interpolation parameter lmax is set to 0.75 m and re to 0.076 m. The VPs are located at (−1, 0,−11)

[m] and (0, 2, 10) [m], and a path is calculated by searching the VG. This approximated shortest path

pa is then compared to the optimal path. The optimal path pg is composed of geodesics and tangents

on the CS obstacle and is calculated using a minimization algorithm.

The building consists of 33 thousand vertices and 59 thousand triangles. The resulting WS obstacle

has 128 vertices and 182 facets. In CS this obstacle consists of 182 facets, 128 sphere patches, and 308

cylinders patches. A VG was generated in 551 miliseconds1 that has 4 thousand nodes and 53 thousand

links. A path was found in 457 miliseconds by searching the VG with Dijkstra's graph search algorithm.

Figure 3 shows how a (local) minimum on one side of the chimney has been found, whereas the

optimal path is located on the other side. Although di�erent paths have been chosen, both have nearly

same length. The optimal path is 27.4 m while the approximated path is 27.9 m, giving an increase in

distance of less than 2%. To improve the solution, the interpolation parameter lmax can be reduced.

To generate a smaller VG that is faster to search, lmax can be increased. However, theres is a limit on

how small the VG will become for a given obstacle model. An example is the dome in the left part of

the building in Figure 3(b). Since all points on the sphere are part of its convex hull, a dome will add

many smaller patches to the CS, which results in a higher density of nodes. To overcome this, a polygon

reduction algorithm can be applied to the model before generating the workspace.

4 CONCLUSIONS

Finding an optimal solution to the path planning problem in 3D is NP-complete. The shortest path

around a polyhedral con�guration space obstacle does not in general traverse only vertices of the poly-

hedron, as in the 2D case, but also points on its edges. For a given resolution the presented method gives

1All tests were done on a single core of a 2.2GHz Intel Core 2 Duo laptop

7

(a) Front view of building

(b) Side view of building. The CS is shown by the outline of the translated facets

and patches are also drawn. Facet are drawn in yellow, sphere patches in red,

and cylinder patches in alternating red and yellow. The helicopter is drawn with

its bounding sphere.

Figure 3: All nodes in the VG as drawn as small spheres. The larger spheres show the VPs, between

which the red approximated path and the green optimal path is drawn.

8

a path for which the length is close to optimal, and converges towards optimal by increasing resolution.

This means that the proposed method might �nd a path that takes di�erent route than the optimal

path, but the approximated path will be almost as short as the optimal.

We proposed a method that generates a VG that is improved for �nding a shortest path in an

environment with a single obstacle. The applied method is based on �rst constructing the CS obstacle

from the WS obstacle described by a point-cloud, then generating an obstacle VG for the CS obstacle

that approximates its surface. This VG is combined with VGs that links the obstacle VG to the initial

and desired con�guration. If a path exist that connects the initial to the desired con�guration, it can

be found using a graph search algorithm.

Extending the method to work with multiple via points and multiple obstacles is possible, though

the latter would require intersection testing of link and node candidates in the VG.

REFERENCES

[1] M. A. Wesley T. Lozano-Perez. An Algorithm for Planning Collision-Free Paths Among Polyhedral

Obstacles. Communications of the ACM, 22, 1979.

[2] J. H. Reif J. Canny. New lower bound techniques for robot motion planning problems. In Proc. 28th

Annu. IEEE Sympos. Found. Comput. Sci., 1987.

[3] T. Lozano-Perez. Spatial Planning: A Con�guration Space Approach. IEEE Transactions on Com-

puters, 32, 1983.

[4] M. Sharir E. Oks. Minkowski Sums of Monotone and General Simple Polygons. Discrete and

Computational Geometry, 2006.

[5] M. Kim C. Bajaj. Generation of con�guration space obstacles 1: the case of a moving sphere. IEEE

Journal of Robotics and Automation, 1988.

[6] E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathematik 1:

269-271, 1959.

[7] B. Raphael P. E. Hart, N. J. Nilsson. A Formal Basis for the Heuristic Determination of Minimum

Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC4: 100-107, 1968.

[8] J. O'Rourke. Computational Geometry in C. Cambridge University Press, 1998.

[9] J. Fillmore S. R. Buss. Spherical Averages and Applications to Spherical Splines and Interpolation.

ACM Transactions on Graphics 20, 2001.

[10] B. Trumbore T. Moller. Fast, Minimum Storage Ray-Triangle Intersection. J. Graphics Tools 2(1),

1997.

9

