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Abstract

There is no doubt that real-time systems are ubiquitous in our information
society. They are the brains of many critical systems, and becoming more
pervasive with the rise of cyber-physical systems and industry 4.0. Incorrect
designs of those critical systems can result in a significant loss of money for
re-design and fixing, or more seriously in catastrophe for system safety. The
challenge summons a new development methodology that should be more
rigorous and precise. Therefore “model-based systems engineering” based
on a series of automated model-based formal methods has been proposed to
facilitate design, analysis, optimization, verification and validation activities.

Network of timed automata is an elegant framework for modeling real-
time behaviors, constraints and interactions between concurrent components
of a real-time reactive system in a natural way. Timed automata have been
widely used as the input models for real-time model checking. Time optimal
reachability analysis is a novel use of timed automata for solving scheduling
and planning problems in a static environment. However it also inherits
state-space explosion from model checking. The thesis develops distributed
algorithms for time optimal reachability to efficiently accelerate finding the
optimal results and battle the state-space explosion.

An extended form of time optimal scheduling is multi-objective schedul-
ing regarding a variety of quantitative objectives. The thesis extends timed
automata with discrete prices on transitions, and develops algorithms for
Pareto optimal reachability analysis to compute a set of schedules that are
in Pareto optimum. Engineers can choose a schedule that is close to their
preference and optimized for all objectives in the best balance.

Stochastic hybrid automata and timed game automata are extended for-
malisms of timed automata that are able to model more complexities about
a real-time reactive system as well as handling unpredictable environments.
They are the input models for statistical model checking and controller syn-
thesis separately. The thesis integrates controller synthesis and (statistical)
model checking, such that users can conveniently verify a synthesized strat-
egy for additional correctness properties by model checking, and evaluate the
performance aspects of the strategy by statistical model checking.

iii





Resumé

Real-tidssystemer er allestedsværende i vores moderne informationssamfund,
hvor de forestår den centrale styring af mange kritiske systemer. De har sti-
gende udbredelse i takt med introduktionen af cyber-fysiske systemer og
industri 4.0. Forkert design af sådanne kritiske systemer kan resultere i bety-
delige økonomisk omkostninger til re-design og fejl korrektion, eller værre, i
manglende system sikkerhed. Denne udfordring kræver nye udviklingsme-
toder, der er mere omhyggelige og præcise. Forskere har foreslået “model-
based system engineering”, som baserer sig på en række af automatiserede
model-baserede formelle metoder til at støtte design, analyse, optimering,
verifikation og validering.

Netværk af tidsautomater er en elegant og naturlig formalisme til mod-
ellering af real-tidsadfærd, krav, og interaktioner imellem samtidige sys-
temkomponenter. Ligeledes understøttes tidsautomater modeller af værk-
tøjer til model-check analyse. Tidsoptimal opnåelighedsanalyse er en ny an-
vendelse af tidsautomater til løsning af schedulerings- og planlægningsprob-
lemer i statiske omgivelser. Denne teknik arver dog problemet med eksplo-
sion i størrelsen på modellens tilstandsrum fra model-check. Denne afhan-
dling udvikler nye distribuerede algoritmer til tidsoptimal opnåelighedsanal-
yse for at accelerere beregningen af optimale resultater, og for at reducere
tilstandsrums-eksplosions problemet.

Afhandlingen adresserer endvidere en udvidet form for tidsoptimal plan-
lægning, hvor multiple kvantitative mål indgår. I afhandlingen udvides tid-
sautomater med multiple diskrete priser på transitioner, og der udvikles op-
timeringsalgoritmer, der beregner mængden af Pareto optimale planer. In-
geniører kan derefter vælge den plan, der er bedst i forhold til deres præfer-
encer, og som giver den bedste balance iblandt de indgående mål.

Stokastiske hybride automater og timed game automater er udvidelser til
tidsautomater, der håndterer komplekse reaktive real-tidssystemer og ufor-
udsigelige omgivelser. De anvendes som input til værktøjer til henholdsvis
statistisk model-check og kontrol syntese. Denne afhandling integrerer kon-
trol syntese og (statistisk) model-check således, at brugere bekvemt kan ver-
ificere en synteseret strategi for yderligere korrekthedsegenskaber ved hjælp
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af model-check, og kan evaluere dens performance ved hjælp af statistisk
model-check.
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Overview

1 Introduction

1.1 Model-Based Engineering

Real-time systems are ubiquitous in our information society. Particularly,
they are the brains of many critical systems such as vehicles, avionics, robotics,
traffic control, financial transactions, industrial applications, and telecommu-
nication infrastructures etc. The correct behavior of these systems depends
not only on the logic order of the performed events but also on their tim-
ing [AILS07]. For instance, the precise real-time temperature control is crit-
ical for chemistry plants, the high-speed rail network must have accurate
real-time monitoring and control over the vast simultaneously fast moving
trains, and the upcoming 5G mobile networks standard imposes extremely
high real-time responsive requirement on the base stations and switches.

Industry is often haunted with the challenge that incorrect designs of
safety critical systems made on early stages can result either in catastrophic
consequences for system safety or in a significant loss of money for re-design
and fixing or both [DRA15]. Model-based systems engineering (MBSE) is based
on a series of automated model-based formal methods to facilitate design,
verification, validation, quality assurance, performance evaluation or opti-
mization during the whole system development life cycle [HB13]. These
methods are supported by techniques that include but are not limited to
design space exploration, model checking, runtime verification, model-based testing,
statistical model checking, controller synthesis etc. Effective use of these support-
ing techniques has been proposed to assist industry to improve automation,
productivity, quality, management, and time-to-market.

Design space exploration discovers and evaluates different design alterna-
tives of system construction and configuration, then selects the optimal one
for a particular application according to the given requirements [DRA15].
Making sure a system is bug free is of vital importance. Several methods are
available to ensure reliability and safety of systems including: testing, model
checking, runtime verification and controller synthesis. Testing shows the
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presence of bugs very effectively on the real implementation. Model-based
testing [Rus05] is a technology for automated test case generation from mod-
els. Model checking [Cla08] is a formal verification method that guarantees a
verified system model always satisfies the formalized correctness and safety
properties. Runtime verification [BLS11] is a lightweight verification tech-
nique complementing model checking and testing. It avoids the complexity
of – but has less coverage than – model checking. It is also applicable to
black box systems and allows executing user-defined code. Controller syn-
thesis [MPS95] automatically computes a control strategy for a game model,
and hence may relieve the design complexity of reactive systems. The syn-
thesized strategy is guaranteed to supervise the prototyped system under
control to achieve a certain control objective while handling environment
uncertainties in the model. Finally, statistical model checking [You05] uses
statistical inference on simulated runs of a stochastic model to make prob-
ability estimation or hypothesis testing of properties. Engineers can predict
reliability or performance aspects of the system behaviors at the model level
before the implementation phase.

1.2 Scheduling & Planning

Scheduling and planning is an important optimization activity in embedded
systems engineering, production, logistics etc. In a nutshell, scheduling and
planning is about choosing and ordering a set of tasks in chronological order
to achieve a certain goal, while resolving resource constrains between those
tasks. A schedule is a table or plan comprising the starting time and access
to resources for each allocated task. The scheduling problem is a very wide
and active research area. It may be classified into basically two methodolo-
gies [AAM06, GNT16]: domain-specific or domain-independent.

Domain specific methods are tailor-made algorithms with the domain
knowledge in mind to solve specific applications [GNT16] like flight navi-
gation planning, logistic planning, or industrial process planning etc.

Many generic numeric optimization paradigms from operation research
have been proposed to support solving domain-specific scheduling problems
such as linear programming [Sch86], dynamic programming [DL77], genetic
algorithm [Gol89], simulated annealing [KGV83] etc. But engineers still need
to code domain specific constrains, heuristics, or transition relations between
tasks into the optimization algorithm. The solution remains ad hoc, lacking a
unified scheduling discipline. Particularly, this approach is not the most natu-
ral one for expressing some complex real-life scheduling situations [AAM06].

Domain-independent (also called model-based) methods describe a prob-
lem as a generic state transition model, then apply generic graph search al-
gorithms in that model, providing more freedom and reusability [GNT16].
Therefore engineers can focus on modeling the scheduling problem itself.
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1. Introduction

Certain characteristics of the scheduling problem should be considered in
order to choose the most appropriate modeling framework.

• Time and concurrency. Time is modeled explicitly to reason about du-
rations, deadlines, time constraints, synchronizations, or handling con-
current activities. A temporal model such as the timed automata [AD94]
is appropriate. A model-checking based planner reduces the scheduling
problem on a temporal model into a time optimal reachability problem.
A pre-planned static scheduler is obtained.

• Uncertainty. The model has non-deterministic events due to a dynamic
environment, which cannot be anticipated by a scheduler. A game
model with two players – controller and environment – is needed. A
model based game solver reduces the scheduling problem into a reach-
ability game problem. The generated strategy is dynamic, which deter-
mines the next move regarding the current situation of the game. The
optimality may refer to minimizing the best or worst execution time.

• Cost. Tasks are typically associated with diverse quantitative proper-
ties expressing costs (due to the resource consumption, risk, weariness
etc). Cost can be a discrete value on a transition, or proportional to the
elapsing time of a task at a state with a given incremental rate. Cost
optimal scheduling refers to finding a schedule that has the minimum
accumulated costs for a given quantitative objective. If there are multi-
ple quantitative objectives, it is a problem of multi-objective scheduling.
There may not always exist any single solution that will simultaneously
optimize all objectives if a subset of them are conflicting.

• Stochasticity. The model has stochastic behaviors due to the envi-
ronment. A probabilistic model such as stochastic extension of timed
automata, Markov decision processes [Bel57] etc can be chosen. The
scheduling problem reduces to searching for a schedule that may min-
imize the expected execution time or cost according to the expected
behaviors of the probabilistic model.

In this thesis, we mostly target at the time and cost optimal scheduling
and planning problems for a fixed amount of tasks modeled by timed au-
tomata and simple priced timed automata. The environment is static (no
uncertainty). The behaviors of components in the model are both action de-
terministic and time deterministic. Meanwhile the generated finite schedule
has a full controllability over the components. However, we have also made
contributions forward supporting controller synthesis problems modeled by
timed game automata.

1.3 Uppaal Tool Suite

Uppaal [BDL04] is a mature and well-known model checker for real-time sys-
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tems modeled as networks of timed automata [AD94]. It was originally devel-
oped in a collaboration between Uppsala University in Sweden and Aalborg
University in Denmark since the mid-1990s. It has been successfully applied
to solve many academic and industrial case studies, and used as an educa-
tional tool in classrooms of formal methods world wide. Nowadays, Uppaal

consists of a family of tools aiming at solving a wider range of MBSE prob-
lems using techniques that are inspired by, or derived from, model checking.
Three of these techniques which are covered in this thesis are: time optimal
reachability analysis, statistical model checking, and controller synthesis.

Time optimal reachability (TOR) analysis aims at finding time optimal
schedulers for classical scheduling problems in the static environment. Around
the year 2000 [AAM06, NTY00], researchers proposed that scheduling prob-
lems could be reformulated to the reachability problems modeled by timed
automata. They were solved by finding traces with minimum span. Actually,
this problem can also be regarded as a one-player game, where the scheduler
has a full controllability over the tasks. TOR allows modeling of real-time be-
haviors, constrains and interactions of components in a natural way, as well
as flexible choices of efficiently implemented search algorithms inside model
checkers. Standard Uppaal has an option for time optimal reachability.

Statistical Model Checking (SMC) [You05] refers to a series of simulation-
based techniques that monitor the sample runs of a model, and use statis-
tical algorithms to estimate the probability of the model to satisfy a certain
property with a given level of confidence. It can handle stochastic hybrid sys-
tems which are either too complex or undecidable for classical model check-
ing. A hybrid system refers to a dynamic system that exhibits continuous
and discrete (or even stochastic) behaviors, which can be modeled by hy-
brid automata [DDL+12], where clocks have different rates (even potentially
negative) in different locations. Uppaal-smc [DLL+11b] is a statistical model
checking extension of standard Uppaal, typically used for reliability and per-
formance analysis of a stochastic hybrid model.

Since 1990s, controller synthesis (SYN) has become a topic of growing
interest as a method for automatic design of reactive systems. It can auto-
matically synthesize a controller for the reactive system to interact with its
environment, and to achieve a given control objective. The timed control
problem can be modeled as a two-player game by timed game automata, where
the actions taken by the controller (Player 1) are controllable, whereas the ac-
tions taken by the environment (Player 2) are uncontrollable and maybe con-
sidered adversarial. No matter how the environment behaves, the controller
will take the right controllable actions at the right time in order to reach its
goal [DFLZ14]. Uppaal-tiga is an efficient solver for controller synthesis of
timed games with reachability or safety control objectives [BCD+07].

One common challenge for model-checking and controller synthesis is the
notorious state-space explosion problem that the size of the state-space grows
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1. Introduction

exponentially with the number of concurrent components in the model. Gen-
erating and storing the state space consumes a lot of computing resources in
terms of CPU time and memory [ZNL16b]. One way to mitigate the state-
space explosion and accelerate the exploration process is using parallel and
distributed computing on a computer cluster. The linear improvement in the
computing power does not overcome the exponential growth problem, but
pushes the barrier up to allow analyzing larger or industrial sized models.

1.4 Research Objectives and Contributions

Figure 1 shows our research objectives and contributions (in light yellow
boxes) in connection with the existing related work (in gray boxes). As
mentioned in the previous section, various techniques derived from model
checking have been proposed to solve a wide range of MBSE problems. Al-
gorithms and Uppaal implementations exist for model checking (MC), time-
optimal reachability (TOR), controller synthesis (SYN), and statistical model
checking (SMC). Two of them already have distributed versions: distributed
statistical model checking (D-SMC) developed in 2012 [BDL+12], and dis-
tributed model checking (D-MC) [Beh05] developed in 2005. Unfortunately,
the code base of D-MC was not available for this thesis work. As a summary,
the objectives and contributions of this PhD work are three folded as follows.

1. Objective. We want to find methods for efficiently accelerating time
optimal reachability analysis and battling state-space explosion using
a computer cluster, for measuring and comparing performance of the
developed algorithms, and for possible optimizations to the algorithms.

Contribution. After surveying distributed model checking techniques,
we developed the distributed TOR algorithms for Uppaal (denoted by

SMC MC TOR SYN

D-SMC D-MC D-TOR D-POR D-SYN

SYN-MC-SMC

MC: Model checking

TOR: Time optimal reachability analysis

POR: Pareto optimal reachability analysis

SYN: Controller synthesis

D-*: Distributed version of *.

1

2

3

POR

Fig. 1: Overview of Research Objectives and Contributions
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tag Ê) in two directions: swarm verification and distributed state-space
exploration. The work was published in papers A and B separately.
In addition, the product distributed computing module are reusable to
recover D-MC and support development of D-POR and D-SYN.

2. Objective. We want to solve multi-objective scheduling and planning
problems. This entails extending the timed automata formalism prop-
erly to support multiple costs, and developing efficient algorithms for
multi-objective optimization based on the costs.

Contribution. We proposed simple priced automata that allow discrete
costs on transtions. We developed and implemented Pareto optimal
reachability (POR) algorithms (denoted by tag Ë) for Uppaal. Objec-
tives are functions on cost variables or clock variables in the model.
This work is in paper C.

3. Objective. We want to verify and evaluate the closed system of the
synthesized strategy and the timed game model. This entails extending
MC and SMC algorithms to include the strategy as an extra player to
supervise the timed game model during (statistical) model checking.

Contribution. We published two methods to exploit the synthesized
strategy in paper D. In the 1st method, we translated the strategy into
a controller automaton which is incorporated with the timed game
automata into a closed system for MC and SMC. In the 2nd method,
we integrate controller synthesis, model checking and statistical model
checking into one tool (SYN-MC-SMC) to facilitate (statistical) model
check the synthesized strategy (denoted by tag Ì).

1.5 Thesis Structure

The thesis is organized in three parts. Part I is an overview of this PhD work
including three chapters. The remaining three chapters in Part I are struc-
tured as follows. Chapter 2 describes the fundamental theories of real-time
(statistical) model checking, time optimal reachability, controller synthesis,
and the related work of distributed model checking. Chapter 3 elaborates
our three research contributions listed previously. Chapter 4 makes conclu-
sions and discusses the future work. Part II has detailed explanations on
the design and implementation of the distributed time optimal reachability
analysis. It also serves as a technical reference for maintenance and further
development. Part III includes four papers as follows.

Paper A. Time Optimal Reachability using Swarm Verification. Zhengkui
Zhang, Brian Nielsen, and Kim G. Larsen. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing, pages 1634–1640, ACM 2016.

8



1. Introduction

Abstract: Time optimal reachability analysis employs model-checking to
compute goal states that can be reached from an initial state with a minimal
accumulated time duration. The model-checker may produce a correspond-
ing diagnostic trace which can be interpreted as a feasible schedule for many
scheduling and planning problems, response time optimization etc. We pro-
pose swarm verification to accelerate time optimal reachability using the real-
time model-checker Uppaal. In swarm verification, a large number of model
checker instances execute in parallel on a computer cluster using different,
typically randomized search strategies. We develop four swarm algorithms
and evaluate them with four models in terms scalability, and time- and mem-
ory consumption. Three of these cooperate by exchanging costs of interme-
diate solutions to prune the search using a branch-and-bound approach. Our
results show that swarm algorithms work much faster than sequential al-
gorithms, and especially two using combinations of random-depth-first and
breadth-first show very promising performance.

Contribution: From an overall idea proposed by his supervisors Brian
Nielsen and Kim Guldstand Larsen, Zhengkui Zhang co-developed the dis-
tributed swarm algorithms. He designed their tool integration and imple-
mentation, and implemented them into a distributed swarm version of Up-
paal. He performed benchmark experiments and made the analysis. Zheng-
kui Zhang is the main author of this paper, wrote the complete draft and
most revisions.

Paper B. Distributed Algorithms for Time Optimal Reachability Analysis. Zheng-
kui Zhang, Brian Nielsen, and Kim G. Larsen. In Proceedings of Formal
Modeling and Analysis of Timed Systems - 14th International Conference
FORMATS 2016, volume 9884 of Lecture Notes in Computer Science, pages
157–173, Springer 2016.

Abstract: Time optimal reachability analysis is a novel model based tech-
nique for solving scheduling and planning problems. After modeling them
as reachability problems using timed automata, a real-time model checker
can compute the fastest trace to the goal states which constitutes a time op-
timal schedule. We propose distributed computing to accelerate time op-
timal reachability analysis. We develop five distributed state exploration
algorithms, implement them in Uppaal enabling it to exploit the compute
resources of a dedicated model-checking cluster. We experimentally evalu-
ate the implemented algorithms with four models in terms of their ability to
compute near- or proven-optimal solutions, their scalability, time and mem-
ory consumption and communication overhead. Our results show that dis-
tributed algorithms work much faster than sequential algorithms and have
good speedup in general.

Contribution: Inspired by other work in the area, Zhengkui Zhang de-
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veloped distributed time optimal algorithms, designed their integration into
Uppaal, and implemented them resulting in the distributed memory version
of Uppaal. He performed benchmark experiments and made the analysis.
Zhengkui Zhang is the main author of this paper, wrote the complete draft
and most revisions.

Paper C. Pareto Optimal Reachability Analysis for Simple Priced Timed Au-
tomata. Zhengkui Zhang, Brian Nielsen, Kim G. Larsen, Gilles Nies, Marvin
Stenger and Holger Hermanns. Under submission.

Abstract: We propose Pareto optimal reachability analysis to solve multi-
objective scheduling and planing problems using real-time model checking
techniques. Not only the makespan of a schedule, but also other objectives
involving quantities like performance, energy, risk, cost etc, can be optimized
simultaneously in balance. We develop the Pareto optimal reachability algo-
rithm for Uppaal to explore the state-space and compute the goal states on
which all objectives will reach a Pareto optimum. After that diagnostic traces
are generated from the initial state to the goal states, and Pareto optimal
schedules are obtainable from those traces. We demonstrate the usefulness
of this new feature using two case studies.

Contribution: Zhengkui Zhang co-developed the Pareto optimal reach-
ability algorithms with his supervisor Kim Guldstand Larsen. He extended
the query language, and proposed several extensions to the basic algorithm.
He implemented them in Uppaal. He performed the case studies, includ-
ing generalizing them with multiple objectives. Zhengkui Zhang is the main
author of this paper, wrote most of the body for the draft and most revisions.

Gilles Nies, Marvin Stenger and Prof. Hermanns are the collaborators at
Saarland University in Germany. They provided the material for the second
case study of the paper. They also reviewed the paper, and gave valuable
comments. Gilles Nies was a PhD student at Saarland University. He pro-
vided the tool to parse output traces from Uppaal into visualizable schedules
for the second case study. Marvin Stenger was a Master student at Saarland
University. He built the Uppaal-cora model which was adapted into the
Uppaal model for the second case study.

Paper D. Verification and Performance Evaluation of Timed Game Strategies.
Alexandre David, Huixing Fang, Kim G. Larsen and Zhengkui Zhang. In
Proceedings of Formal Modeling and Analysis of Timed Systems - 12th In-
ternational Conference, FORMATS 2014, volume 8711 of Lecture Notes in
Computer Science, pages 100–114, Springer 2014.

Abstract: Controller synthesis techniques, based on timed games, derive
strategies to ensure a given control objective, e.g., time-bounded reachability.
Model checking verifies correctness properties of systems. Statistical model
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1. Introduction

checking can be used to analyze performance aspects of systems, e.g., energy
consumption. In this work, we propose to combine these three techniques.
In particular, given a strategy synthesized for a timed game and a given con-
trol objective, we want to make a deeper examination of the consequences of
adopting this strategy. Firstly, we want to apply model checking to the timed
game under the synthesized strategy in order to verify additional correctness
properties. Secondly, we want to apply statistical model checking to eval-
uate various performance aspects of the synthesized strategy. For this, the
underlying timed game is extended with relevant price and stochastic infor-
mation. We first explain the principle of translating a strategy produced by
Uppaal-tiga into a timed automaton, thus enabling the deeper examination.
However, our main contribution is a new extension of Uppaal that automat-
ically synthesizes a strategy of a timed game for a given control objective,
then verifies and evaluates this strategy with respect to additional proper-
ties. We demonstrate the usefulness of this new branch of Uppaal using two
case-studies.

Contribution: Zhengkui Zhang co-authored this paper with his super-
visors Alexandre David and Kim Guldstand Larsen. He contributed to the
theory and co-developed the tool Control-smc for evaluation of strategies
using statistical model-checking. This work is now part of Uppaal-statego.
He performed the case studies and analysis. Zhengkui Zhang wrote the most
part of this paper and the most revisions.

Huixing Fang was a visiting PhD student for three months from East Nor-
mal University in China. He cooperated with Zhengkui Zhang in building
models at early phase of this paper during his stay at Aalborg University.
Fang also helped in reviewing the draft paper and giving comments.
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2 Background

2.1 Real-Time Model Checking

The origin of model checking was driven by concurrent program verifica-
tion [Cla08]. In the early days, formal verification of a concurrent system
typically resorted to theorem proving (mostly by means of invariants and de-
duction) through a set of lemmas and theorems. Theorem proving is tedious,
expensive, challenging, and requires skilled mathematical intellectuals, even
though computer aided proof assistants are available.

In 1981 Edmund M. Clark and E. Allen Emerson proposed the innova-
tive notion of model checking and the model checking algorithm prototype
in their pioneering paper [CE81]. Independently J. P. Queille and J. Sifakis
published a similar method [QS82] in 1982. Model checking is an auto-
mated formal verification technique which is much easier to use than the-
orem proving. Clarke, Emerson and Sifaksi shared the ACM Turing Award
in 1997. Model checking has been successfully used in analyzing circuit de-
signs, communication protocols, concurrent and distributed algorithms. A
number of well-known model checking tools were developed ever since such
as Spin [Hol03], NuSMV [CCG+02], Embc [MKM15], Java PathFinder [HP00],
Uppaal [BDL04], Kronos [BDM+98], mCRL2 [GRU08], Fdr3 [GABR14] etc.

The notion of time is of vital importance for real-time reactive systems that
react to stimuli received from the evolving environment. The reaction time of
these systems must obey the stringent time constraints. However, the timing
aspect was not supported in the existing modeling languages by then, until
in the early 1990s when several formalisms were proposed to model the real-
time behaviors of a reactive system. One of the most popular formalisms is
timed automata [AD94] introduced by Alur and Dill in 1994, which is capa-
ble of modeling instantaneous actions and time elapsing. Real-time model
checkers such as Uppaal and Kronos based on the network of timed au-
tomata were developed. They have been applied to solve enormous industrial
case studies [BGK+02, Feh99, SZHV09, MLR+10, BKLN14]. Uppaal is a user
friendly integrated tool environment for modeling, verification, synthesis,
simulation and analysis of real-time systems. The modeling language is an
extended version of timed automata. The properties (also called queries) are
specified by a subset of the timed computational tree logic (TCTL) [ACD93].

2.1.1 Timed Automata

A timed automaton [AD94, HNSY94] is a non-deterministic finite-state ma-
chine extended with non-negative real valued clock variables, and annotated
with conditions and resets of clocks. All clocks progress synchronously at
the same speed of one.
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2. Background

Let X = {x, y, ...} be a finite set of clocks. We define B(X) as the set of
clock constraints over X generated by grammar: g, g1, g2 ::= x ./ n | x− y ./
n | g1 ∧ g2, where x, y ∈ X are clocks, n ∈N and ./∈ {≤,<,=,>,≥}.
Definition 1. Timed Automaton (TA) [HNSY94] is a 6-tupleA = (L, `0, X, Σ, E,
Inv), where:

• L is a finite set of locations;
• `0 ∈ L is the initial location;
• X is a finite set of non-negative real-valued clocks;
• Σ is a finite set of actions;
• E ⊆ L× B(X)× Σ× 2X × L is a finite set of edges, each of which contains

a source location, a guard, an action, a set of clocks to be reset and a target
location. For simplicity an edge (`, g, a, r, `′) ∈ E is written as `

g,a,r−−→ `′;
• Inv : L→ B(X) sets an invariant for each location.

Definition 2. The semantics of a timed automaton A is a Timed Transition Sys-
tem (TTS) SA = (Q, Q0, Σ,→) [AILS07], where:

• Q = {(`, v) | (`, v) ∈ L×RX
≥0 and v |= Inv(`)} are states;

• Q0 = (`0, 0) is the initial state;
• Σ is the finite set of actions;
• →⊆ Q × (Σ ∪ R≥0) × Q is the transition relation defined separately for

action a ∈ Σ and delay d ∈ R≥0 as:

– (`, v) a−→ (`′, v′) if there is an edge (`
g,a,r−−→ `′) ∈ E such that v |= g,

v′ = v[r 7→ 0] and v′ |= Inv(`′);

– (`, v) d−→ (`, v + d) such that v |= Inv(`) and v + d |= Inv(`).

Definition 3. A run (or trace) [JR09] ρ of A can be expressed in SA as a sequence

of alternative delay and action transitions starting from the initial state: ρ = q0
d1−→

q′0
a1−→ q1

d2−→ q′1
a2−→ · · · dn−→ q′n−1

an−→ qn · · · , where ai ∈ Σ, di ∈ R≥0, qi is
state (`i, vi), and q′i is reached from qi after delay di+1. State q is reachable if there
exists a finite run with the final state of q. .

Many real-life systems consist of a number of independent components
running in parallel and communicating whenever necessary. A real-time
system model is a network of timed automata (NTA) [AILS07] composed in
parallel that can communicate with each other through synchronization. Syn-
chronization means when one component raises a request on a particular
channel, another component accepts the request on the same channel either
synchronously or asynchronously. By convention, we use action a! to stand
for raising an output on channel a, and a? to stand for accepting an input
on channel a. It is worth noting that synchronization is instantaneous – the
duration of synchronization action is zero time units.
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Let Chan denote a finite set of channels. The set of synchronization actions
on Chan is H = {c! | c ∈ Chan} ∪ {c? | c ∈ Chan}. Actions c! and c? are said
to be complementary [AILS07], which need to be performed jointly by both
involved timed automata. Let τ represent the internal communication that
is completed and unobservable similar to that in Calculus of Communicating
Systems (CCS) [Mil80]. Let O denote a finite set of internal actions that are
performed autonomously by individual automaton in an interleaved fashion.

Definition 4. A Network of Timed Automata (NTA) [AILS07] is the parallel
composition ~A = A1 | A2 | · · · | An of n timed automata, where n is a positive
integer. For each i ∈ {1, . . . , n}, Ai = (Li, `i

0, Ei, Invi) is timed automaton over a
set of clocks X and a set of actions Σ = H ∪O ∪ {τ}.

Definition 5. The semantics of a network of timed automata ~A is a timed transition
system S ~A = (~Q, ~Q0, Σ,→) [AILS07], where:

• ~Q = {(`1, `2, . . . , `n, v) | (`1, `2, . . . , `n, v) ∈ L1 × L2 × · · · Ln ×RX
≥0 and

v |= ∧
i∈{1,...,n} Invi(`i)} are states;

• ~Q0 = (`1
0, `2

0, . . . , `n
0 ,~0) is the initial state;

• Σ = H ∪O ∪ {τ} is the finite set of actions;
• →⊆ ~Q × (Σ ∪ R≥0) × ~Q is the transition relation defined separately for

ordinary action a ∈ O, synchronization action τ and delay d ∈ R≥0 as:

– (`1, . . . , `i, . . . , `n, v) a−→ (`1, . . . , `′i, . . . , `n, v′) if there is an edge

(`i
g,a,r−−→ `′i) ∈ Ei in the ith component automaton such that v |= g,

v′ = v[r 7→ 0] and v′ |= Invi(`
′
i) ∧

∧
k 6=i Invk(`k)};

– (`1, . . . , `i, . . . , `j, . . . `n, v) τ−→ (`1, . . . , `′i, . . . , `′j, . . . `n, v′) if i 6= j

there are edges (`i
gi ,α,ri−−−→ `′i) ∈ Ei and (`j

gj ,β,rj−−−→ `′j) ∈ Ej in the i-th
and j-th component automata such that α, β ∈ H are complementary,
v |= gi ∧ gj, v′ = v[ri ∪ rj 7→ 0] and v′ |= Invi(`

′
i) ∧ Invj(`

′
j) ∧∧

k 6=i,j Invk(`k)};
– (`1, . . . , `n, v) d−→ (`1, . . . , `n, v + d) such that v + d′ |=∧

i∈{1,...,n} Invi(`i) for each real number d′ ∈ [0, d].

The semantics of NTA is compatible with that of TA and the definitions
of runs also apply to NTA, because we can think of a state in NTA as a state
(~̀ , v), where ~̀ denotes the vector of locations in NTA, and v denotes the
vector of clock evaluations in NTA. The Uppaal modeling language extends
timed TA with additional features [BDL04]: data types (templates, constants,
bounded integers, arrays, etc), channels (binary or urgent synchronization,
broadcast), location modifiers (urgent, committed), user functions, and stop-
watches [CL00] for modeling task preemption.
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2. Background

2.1.2 MC Query

TCTL has a two-stage syntax where the language is classified into state and
path formulae. State formulae describe individual states, whereas path formulae
quantify over runs of the model [BK08]. Uppaal uses a simplified version
of TCTL (let us call it TCTL]) to specify a property, where the nesting of
formulae is not allowed

Definition 6. TCTL] [BDL04] state formulae Φ over the set of atomic propositions
AP (only on locations, clocks and variables) and a keyword deadlock are formed
according to the following grammar:

Φ ::= E3ϕ | A2ϕ | E2ϕ | A3ϕ | ϕ1 ; ϕ2

ϕ ::= true | p | deadlock | ϕ1 ∧ ϕ2 | ¬ϕ

where p ∈ AP, deadlock refers to the deadlock state. Quantifiers A pronounced as
“for all runs”, E as “for some run”, 2 as “always”, and 3 as “future”.

Definition 7. Let ExecA(q) denote the set of runs generated from a state q in the
timed transition system SA. The satisfaction relation |= is defined for the state
formulate of TCTL] on a state q ∈ SA by:
q |= true always satisfied;
q |= p iff p ∈ q;
q |= deadlock iff no action, synchronization or delay transition can be taken;
q |= ϕ1 ∧ ϕ2 iff (q |= ϕ1) and (q |= ϕ2);
q |= ¬ϕ iff not q |= ϕ.

q |= E3ϕ iff ∃ π ∈ ExecA(q) s.t. π[i] |= ϕ for some i ≥ 0;
q |= A2ϕ iff ∀ π ∈ ExecA(q) s.t. π[i] |= ϕ for all i ≥ 0;
q |= E2ϕ iff ∃ π ∈ ExecA(q) s.t. π[i] |= ϕ for all i ≥ 0;
q |= A3ϕ iff ∀ π ∈ ExecA(q) s.t. π[i] |= ϕ for some i ≥ 0;
q |= ϕ1 ; ϕ2 equivalent to q |= A2(ϕ1 → A3ϕ2), iff ∀ π ∈ ExecA(q)

if π[i] |= ϕ1, then ∀ π′ ∈ ExecA(π[i]) s.t. π′[j] |= ϕ2
for all i ≥ 0 and for some j > i.

The satisfaction relation of a TCTL] property Φ on the complete timed
transition system SA initiated from the initial state (`0, v0) is given by:

SA |= Φ iff (`0, v0) |= Φ

Figure 2 demonstrates the satisfaction relations of the five state formulae
of TCTL], which can be grouped into three categories as: reachability, safety
and liveness [BDL04].

• Reachability is used for sanity check of a model.
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Fig. 2: Five Basic Uppaal Verification Queries [BDL04]

E3ϕ There exists some run on which ϕ holds at some state (Fig. 2 (a)).

• Safety express that “something bad will never happen”.

A2ϕ For all runs and for all states on those traces ϕ holds (Fig. 2 (b)).
E2ϕ There exists a run on which ϕ always holds (Fig. 2 (c)).

• Liveness express that “something good should happen eventually”.

A3ϕ For all runs ϕ eventually holds (Fig. 2 (d)).
ϕ1 ; ϕ2 Whenever ϕ1 holds for a state, then ϕ2 will always hold eventually

for all runs starting from that state (Fig. 2 (e)).

2.1.3 MC Reachability Algorithms

The semantics SA of TA will result in an infinite transition system of continu-
ous time, and therefore model checking on SA is undecidable. Alur and Dill
proposed using regions [AD94] to build a finite state abstraction of SA. Re-
gions partition all clock valuations v associated with the same location ` ∈ L
into finite many equivalence classes such that two valuations from the same
equivalence class will not create any significant difference in the behavior of
the system [AILS07]. A discrete transition system region graph is built with
finitely many regions. It is timed abstract bisimilar to SA, and model check-
ing on the region graph is decidable.

However, the number of regions in the region graph is exponential in the
number of clocks and in the maximal constants appearing in the guards [AD94].
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2. Background

A more efficient finite state abstraction called zone was proposed by Yi and
Petterson in [YPD94]. Zone Z = {v | v |= gz, gz ∈ B(X)} is a convex union
of clock valuations (or regions) and allows a coarser and more compact rep-
resentation of the state-space [AILS07]. Zones are efficiently represented and
stored in memory as difference bound matrices (DBM) [BY03]. A finite symbolic
transition system named symbolic reachability graph is built on zones. Uppaal

works by exploring the symbolic reachability graph, where the nodes are
symbolic states (`, Z).

Definition 8. The symbolic reachability graph of a timed automaton A is a label
transition system TA = (S, S0, Σ ∪ {λ},;) [AILS07], where:

• S = {(`, Z) | (`, Z) ∈ L×B(X)} are symbolic states;
• S0 = (`0, Z0) is the initial state, where Z0 = Inv(`0) is the initial zone;
• Σ is the finite set of actions in A, λ denotes time elapsing;
• ;⊆ S× (Σ ∪ {λ})× S is the transition relation on symbolic states defined

separately for action and delay transitions as follows:

– (`, Z) a
; (`′, (Z ∧ g)[r] ∧ Inv(l′)) if (`

g,a,r−−→ `′) ∈ E;

– (`, Z) λ
; (`, Z↑ ∧ Inv(l)).

where Z[r] = {v[r 7→ 0] | v ∈ Z} is reset function, Z↑ = {v + d | v ∈
Z ∧ d ∈ R≥0} is future function.

Algorithm 1 shows the reachability algorithm [BY03] for checking if the
goal states satisfying the reachability property Goal are reachable from the
initial state. Waiting and Passed keep unexplored and explored symbolic
states respectively; and Waiting has initially the initial symbolic state (`0, Z0).
Inside procedure Main, as long as Waiting is not empty, an unexplored state
is popped from Waiting. If the state is a goal state, the loop is quited and

Algorithm 1: MC Reachability

Waiting←− {(`0, Z0)}, Passed←− ∅
Procedure Main()

1 while Waiting 6= ∅ do
2 select (`, Z) from Waiting

3 if (`, Z) |= Goal then return True

4 else if ¬∃(`, H) ∈ Passed s.t. Z ⊆ H then
5 add (`, Z) to Passed

6 forall the (`′, Z′) such that (`, Z) ; (`′, Z′) do
7 add (`′, Z′) to Waiting

8 return False
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message True is reported. Otherwise, the state is subject to symbolic state in-
clusion checking at line 4. The state is discarded if a previously explored state
with the same location has an equal or larger zone than that of the current
state. If the state passes inclusion checking, it is added to Passed as already
explored, and then its successor states are generated and added to Waiting.
If all states in Waiting are explored, but the goal states are not reached, the
reachability query Goal is not satisfied, and message False is reported.

The reachability algorithm is implemented in Uppaal as the pipeline ar-
chitecture shown in Figure 3. The pipeline connects of a series of filter, buffer
and pump components [BDLY03]. Filter receives input data by a put method,
processes the data, and automatically sends the processed data to the next
connecting component. Buffer awaits input data by put, stores the data, and
offers the data to other components by a get method. Pump continuously
pumps data from a buffer and sends it to a sequence of connected filters. The
component filters inside this reachability pipeline are as follows.

1. Delay computers the delay of state bounded by its invariants.
2. Extrapolation widens a state-set according to the maximum constants

that clocks are compared to in the model: for a given timed automaton,
two states only differing with respect to the value of clocks exceed-
ing the corresponding maximum constant are indistinguishable with
respect to (location) reachability [Lar10]. The extrapolated state space
is finite, which is crucial to guarantee termination of Uppaal.

3. Active Clock Reduction only saves constraints on active clocks. Clock
x is inactive at state S if on all runs initiated from S, x is always reset
before being tested.

4. Property evaluates a state against the reachability property. It stops the
pump (marked as a crossed circle) if the property is satisfied.

5. Transition computes all possible transitions from the current state.
6. Successor computes a symbolic state fired by each transition.
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Fig. 3: Reachability Pipeline of Uppaal [BDLY03]
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2. Background

7. Trace stores action transitions between states into a list container.

The initial state S0 is inserted into the pipeline at the delay stage initially.
A state is conditionally inserted into the PWList1 buffer if it passes the inclu-
sion checking (Accept = Yes), otherwise it is deallocated from memory. The
pump drains an unexplored waiting state from the PWList buffer each time
and inserts it into the pipeline.

The reachability algorithm is the basis for building safety and liveness al-
gorithms as well as the time optimal reachability algorithm in Section 2.2. We
will not continue to survey the algorithms for safety and liveness properties.
Readers can refer [BK08, JR09] for detailed explanations.

2.2 Time Optimal Reachability Analysis

Network of timed automata is an elegant formalism for modeling schedul-
ing problems with concurrent components in a static environment. It allows
modeling the real-time behaviors, constraints and interactions between par-
allel components in a natural way. It is worth noticing that we assume the
environment is static, such that the execution period of a task is fixed, and
the scheduler has full controllability over the tasks. This is a one-player game
or a open loop control. If there is uncertainty (or even stochasticity) in the
model, i.e., task execution time is not fixed or is interruptible by some events,
a dynamic schedule with replanning capability is needed.

Around the year 2000, researchers proposed that the time optimal schedul-
ing problem of real-time systems can be reduced to the time optimal reach-
ability (TOR) analysis [NTY00] on timed automata. The diagnostic trace to
a goal state offered by real-time module checkers such as Uppaal or Kro-
nos can be interpreted as a feasible schedule because the trace carries actions
of a model as well as timing information of these actions to the goal. Be-
cause model checkers typically implement efficient search algorithms, such
as breadth-first-search (BFS), depth-first-search (DFS), random-depth-first-
search (RDFS) etc, transparently of the input models, users can update topo-
logical and timing constraints in the model without being forced to change
the underlying search algorithms [Feh99]. In [AAM06], Maler et al. deemed
TOR as one orthogonal direction extending from verification, evolving from
qualitative Yes or No answers to quantitative evaluation of model behaviors.

A generalization of time optimal scheduling is the cost optimal schedul-
ing. Behrmann et al. proposed minimum cost reachability analysis on priced
timed automata in [BFH+01].

Definition 9. A Priced Timed Automaton (PTA) extends TA as a 7-tuple P =
(A, P) [BFH+01], where: A is timed automaton, P : (L ∪ E) → N assigns a
discrete price to each edge and a price rate (cost per time unit) to each location.

1PWList is implemented as an efficient uniform passed-waiting list [BDLY03].
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The total cost along a run is calculated by accumulating the costs accord-
ing to either discrete price annotations on transitions or price rates integrated
over delays on locations. The run with the minimum cost was proved com-
putable, and the tool named Uppaal-cora was developed and applied in
case studies [LKZ16, BGH+16, BBHM05, BLR04]. The optimal reachability
analysis on the more general multi-priced timed automata (MPTA) was also
proved decidable [LR08]. However, the model checking problem on MPTA
was proven undecidable [BBR04].

2.2.1 TOR Reachability Algorithms

Branch and Bound (B&B) is an algorithmic paradigm widely applied in opti-
mization and planning algorithms on graphs. The purpose of using B&B is
to find an optimal solution without necessarily having to enumerate the en-
tire solution space. By a bounding function and the current best solution to
the goal, B&B allows the algorithm to effectively prune parts of the solution
space that guarantee not to lead to an optimal solution [Feh00]. Behrmann
et al. presented a branch-and-bound minimum cost reachability algorithm on
PTA [BF01]. This algorithm was the basis for formulating the time optimal
reachability algorithm.

Definition 10. The span of a finite run ρ = q0
d1−→ q′0

a1−→ q1
d2−→ q′1

a2−→
· · · dn−→ q′n−1

an−→ qn is defined as the finite sum Σn
i=1di [NTY00].

Algorithm 2: Time Optimal Reachability [ZNL16b]

Waiting←− {(`0, Z0)}, Passed←− ∅, Cost←− ∞
Procedure Main()

1 while Waiting 6= ∅ do
2 select (`, Z) from Waiting

3 if (`, Z) |= Goal then
4 if MinCost(`, Z) < Cost then
5 Cost←− MinCost(`, Z)

6 else if ¬∃(`, H) ∈ Passed s.t. Z ⊆ H and MinCost(`, Z) < Cost

then
7 add (`, Z) to Passed

8 forall the (`′, Z′) such that (`, Z) ; (`′, Z′) do
9 add (`′, Z′) to Waiting

10 return Cost
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2. Background

Uppaal keeps track of the span of a run in NTA by including an implicit
observer clock ψ in addition to the original set of clocks X of the model. Clock
ψ advances as the global elapsing time and remains unaffected from resets or
guards or invariants in the model. Thus the zone Z is now over X ∪ {ψ}.
Definition 11. The cost function on a symbolic state (`, Z) is defined as
MinCost(`, Z) = inf{v(ψ) | v ∈ Z}. It is the infimum evaluation of the clock ψ
in the symbolic state.

Algorithm 2 shows the sequential TOR algorithm [ZNL16b] that computes
the minimum span to reach the goal states satisfying the reachability property
Goal. It resembles Algorithm 1 and has four extensions. First, a variable Cost

maintains the current best result that is infinity initially. Second, the cost
function MinCost is applied on every symbolic state to evaluate the minimum
span along a symbolic run reaching that symbolic state. Third, if the state
is a goal state, Cost is updated at line 4 rather than quiting the loop and
reporting reachable in Algorithm 1. This implies a near optimal schedule to
the goal is found. Fourth, if the state is not a goal state, it is subject to both
inclusion checking and B&B elimination rule at line 6. Consequently, this
algorithm will explore the entire state-space and reports either the minimum
span found or infinity if Goal is not satisfied.

2.3 Controller Synthesis

Scheduling by time optimal reachability analysis in Section 2.2 is limited to
a static environment. In other words, the scheduler is assumed to have full
controllability over the components in the model, so that all components
will function faithfully according to the pre-planed static schedule. In more
general cases however, components have autonomy and uncertainty in its
behaviors, and consequently the pre-planned static schedule will not work.

Scheduling a TA model with uncertainty can be formulated as a two-player
timed game [AAM06] from the game theory perspective, because the evolution
of the model depends on the actions of two players – controller and environ-
ment. The controller decides whether or not to take a controllable action
and when according to the current situation. The environment is the generic
name for all sources of uncontrollable external events or non-deterministic
factors. Computing the control strategy for a timed game is normally re-
ferred to as controller synthesis (SYN).

Around 1990s controller synthesis of reactive systems has became a topic
of growing interest. Pioneering researches on controller synthesis of discrete
event systems were performed [RW87, RW89, McN93, Tho95]. The work
inspired the research on controller synthesis of real-time reactive systems. In
mid-1990s the formulation of timed games based on timed automata and the
controller synthesis algorithms were proposed [MPS95, AMPS98]. Later in

21



2005, Cassez et al. published an efficient, fully on-the-fly algorithm [CDF+05]
for solving timed games with perfect information by forward search of goal
states and backward fix-point computation of winning states. The algorithm
was implemented in the branch of Uppaal called Uppaal-tiga [BCD+07].
Ehlers et al. proposed another concept to solve timed game by abstraction
refinement of the game [EMP10] and implemented the algorithm in a tool
called Synthia [PEM11] around 2010.

In [AM99], time optimal controller synthesis for timed games was proven
decidable. In [BCFL04], optimal cost for winning cost optimal reachability
game on priced timed game automata was proven computable under some
non-Zenoness assumption. Due to limited sensors, controller may have im-
perfect (or partial) information about the state of the environment. Timed
control under partial observability is in general undecidable, but fixing the
resources of the controller (i.e., maximum number of clocks or allowed con-
stants in guards) regains decidability [BDMP03]. Due to economic reasons,
we need to minimize the number of sensors installed. This inspires the topic
of timed game with cost minimal observability. Bulychev et al. proposed a
modeling strategy and an algorithm to solve this problem [BCD+12].

2.3.1 Timed Game

A timed game automaton is an extension of timed automaton whose actions
are partitioned into controllable actions for the controller and uncontrollable
actions for the environment. Besides discrete actions, each player can decide
to wait in the current location. As soon as one player decides to play one of
his available actions, time will stop elapsing and the action will be taken.

Definition 12. Timed Game Automaton (TGA) is a 7-tuple G = (L, `0, X, Σc,
Σu, E, Inv) [MPS95], where:

• Σc is the finite set of controllable actions;
• Σu is the finite set of uncontrollable actions;
• Σc and Σu are disjoint;
• (L, `0, X, Σc ∪ Σu, E, Inv) is a timed automaton as in Definition 1.

Let SG denote the timed transition system of G. The semantics of SG
complies with that of SA. For a run ρ in SG , its action transitions are a ∈
Σc ∪ Σu. Let ExecG denote the set of runs of G, and Exec f

G denote the set of

finite runs. The length of a finite run ρ ∈ Exec f
G is the number of delay and

action transitions on ρ. Let Execm
G denote the set of maximal runs that cannot

be extended. It includes the following three kinds of runs [JR09]:

• Runs having infinitely many action transitions;
• Finite runs ending with an infinite delay;
• Finite runs from which neither delay nor action transition is possible.
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2.3.2 SYN Query

Control objectives are described by the query language of Uppaal-tiga, which
is a subset of TCTL] as:

Φ ::= A3ϕ | A2¬ϕ

Controller synthesis is: given a timed game model G and a control objec-
tive Φ, synthesize a strategy C such that G supervised by C satisfies Φ re-
gardless how the environment behaves (C(G) |= Φ). Assume ϕ corresponds
to a set of states K ⊆ L×RX

≥0. The formulae Φ define two kinds of control
problems [JR09] supported by Uppaal-tiga.

• Reachability control problem: C(G) |= A3ϕ meaning that we want G
supervised by C to reach K eventually.

• Safety control problem: C(G) |= A2¬ϕ meaning that we want G su-
pervised by C to avoid K constantly.

Besides, there are other control objectives that are outside the scope of
this thesis, such as repeated reachability, Büchi or co-Büchi. We define a run
ρ ∈ ExecG as winning [JR09] in terms of the aforementioned control objectives.

• Reachability Game. The run ρ is winning if ∃k ≥ 0, s.t. (`k, vk) ∈ K.
• Safety Game. The run ρ is winning if ∀k ≥ 0, s.t. (`k, vk) 6∈ K.

2.3.3 Strategy

The notion of strategy is the central concept in game theory. During the
evolution of a game, it constantly tells the controller how to play in order the
win the game, depending on the history of the game.

Definition 13. A strategy for controller in timed game G is a mapping C : Exec f
G →

Σc ∪ {λ}, where λ denotes the delay transition. Then C satisfies the following con-
ditions [JR09]: given a finite run ρ ending in state q = last(ρ) = (`, v),

• If C(ρ) = a ∈ Σc, then there must exist an action transition q a−→ q′ in SG ;

• If C(ρ) = λ, then there must exist a delay transition q d−→ q′ in SG .

We denote the set of strategies for controller in G as Strat(G). In some
special situations, a strategy is independent of the history and only de-
pends on the current state of the game. That is ∀ρ, ρ′ ∈ Exec f

G , last(ρ) =
last(ρ′), implies C(ρ) = C(ρ′), it is called a positional or memoryless strat-
egy [Tho95]. The strategies for reachability and safety games, as the ones
handled by Uppaal-tiga, are memoryless.

If a timed game G is supervised by a strategy C ∈ strat(G), what would
happen? The behaviors of the game is restricted, and all possible runs ExecG
of the game is narrowed down to a subset which complies with that strategy.
The subset is named outcome, which defines the result of game.
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Definition 14. Let q = (`, v) ∈ SG be a state, and C ∈ Strat(G) be a strategy for
timed game G. The outcome of C from q in SG , denoted by Out(q, C), is defined
inductively as follows [JR09]:

• q ∈ Out(q, C);
• Any finite run in G of the form ρ′ = ρ

σ−−→ q′ ∈ Out(q, C) iff ρ ∈ Out(q, C)
and one of the following three conditions holds:

– σ ∈ Σu;
– σ ∈ Σc and σ = C(ρ);

– σ ∈ R>0 and ∀0 ≤ d < σ such that C(ρ d−−→ q′) = λ.

• An infinite run ρ ∈ Out(q, C) if all the finite prefixes of ρ are in Out(q, C).

Let Outm(q, C) = Out(q, C) ∩ Execm
G denote the maximal outcome of apply-

ing strategy C on state q. Let WinRun(q,G) denote winning runs in G from q.
The winning strategies and winning states are defined as follows.

Definition 15. Strategy C is winning from state q for the control objective Φ, if
Outm(q, C) ⊆ WinRun(q,G), where WinRun(q,G) |= Φ. A state q is winning, if
there exists a winning strategy from q [JR09].

Finally, strategy C is said to be winning in G for a control objective Φ if it
is winning from the initial state. We denote the set of winning strategies as
WinStrat(G, Φ), and the set of winning states as WinState(G, Φ).

2.4 Statistical Model Checking

Real complex cyber-physical systems (CPS) often have stochastic behaviors due
to equipment failure, unpredictable communication delay, environmental un-
certainty etc. Timed automata is not powerful enough [DLL+15] to model
these. Separately mathmatical frameworks for modeling stochastic behaviors
were proposed [Nor98, Bel57] such as discrete-time Markov chain (DTMC),
continuous time Markov chain (CTMC), Markov decision process (MDP), or
stochastic extensions of timed automata etc. Probabilistic model checkers like
Prism [KNP11] have been developed to support probability estimation or hy-
pothesis testing problems. Probabilistic model checking (PMC) aims to provide
exact probability values but suffers from complex and expensive calculations
as well as large memory requirements, making it infeasible for many realistic
large models.

Statistical model checking (SMC) [SVA04, You05] is a compromise be-
tween Monte Carlo simulation and probabilistic model checking. The core
idea of SMC is to monitor some simulated sample runs of the probabilistic
system model, then apply statistical algorithms to do probability estimation
or hypothesis testing at a given level of confidence. The simulation-based
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feature of SMC avoids exhaustive exploration of the state-space, imposing
far less memory requirements (no need to store the state-space). SMC scales
better than PMC and allows more expressiveness of the models.

Uppaal-smc [DLL+11a, DLL+11b] is an extension of Uppaal dedicated
for statistical model checking on models of stochastic price timed automata
(STPTA). It has been used to successfully solve many case studies listed at
this address2 and more [CFL+08, DDL+12, DDL+13]. Now Uppaal-smc

supports the analysis of stochastic hybrid automata (SHA), which is suitable for
expressing stochastic and non-linear dynamic features of CPS. SHA extends
STPTA by allowing the clock rates to depend not only on values of discrete
variables but also on the values of other clocks, effectively amounting to or-
dinary differential equations (ODE) [DDL+12].

2.4.1 Stochastic Semantics

A stochastic price timed automaton (STPTA) [DLL+11a] extends PTA (in Def-
inition 9) with three modifications. First, partitioning the set of actions into
disjoint input actions (Σi) and output actions (Σo) such that Σ = Σi ] Σo.
Second, assigning to each location a rate vector for all clocks denoted by
R : L → NX . For v ∈ RX

≥0 and d ∈ R≥0, we write v + R(`) · d to denote
the clock valuation defined by (v + R(`) · d)(x) = v(x) + R(`)(x) · d for any
x ∈ X. Third, refining the non-deterministic choices of output and delay
inside PTA with the following two probabilistic interpretations:

γq is the output probability function for STPTA to choose among multiple
enabled transitions at the state q.

µq is the delay density function for STPTA to choose a delay at the state q.
It is given as either a uniform distribution in case of a time-bounded
delay or an exponential distribution with a user specified rate in case
of an unbounded delay.

Stochastic semantics on a network of STPTA (NSTPTA) [DLL+11a] is the
mathematical foundation of Uppaal-smc. Consider a closed NSTPTA A =
(P1| . . . |Pn). For a concrete global state q = (q1, . . . , qn) and a1a2 . . . ak ∈ Σ∗

we denote by π(q, a1a2 . . . ak) the set of all maximal runs from q with a prefix
t1a1t2a2 . . . tkak for some t1, . . . , t2 ∈ R≥0, that is, runs where the ith action ai
has been output by the component Pc(ai)

. The probability for getting such
sets of runs is:

PA(π(q, a1a2 . . . ak)) =
∫

t≥0
µc

q(t) ·
(
∏
j 6=c

∫
τ>t

µ
j
q(τ)dτ

)
· γc

qt(a1)·

PA
(
π((qt)a1 , a2 . . . an)

)
dt

2http://people.cs.aau.dk/~adavid/smc/cases.html
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where c = c(ai) is the index of component taking a1, µc
q is the delay den-

sity function for component c to choose a delay ti at q, and γc
qt is the output

probability function for component c to choose an action ai after q is delayed
by t. The above nested integral reflects that the stochastic semantics of the
network is defined based on race among components. All components are
independent in giving their delays which are decided by the given delay den-
sity functions. The player component who offers the minimum delay is the
winner of the race, and takes the turn to make a transition and (probabilisti-
cally) choosing the action to output [DFLZ14]. Uppaal-smc engine generates
simulated runs according to this stochastic semantics.

2.4.2 SMC Query

The query language of Uppaal-smc [DLL+11a, DLL+15] is a conservative
weighted extension of TCTL] with a time- or cost-bound as:

Φ ::= 3x≤C ϕ | 2x≤C ϕ

where x is an observer clock, C is a bound, and ϕ is a combination of propo-
sitions as in Definition 6.

Let PM(Φ) denote the probability that a random run of NSTPTA model
M satisfies Φ. Uppaal-smc can solve the following three kinds of prob-
lems [DLL+15]:

1. Probability Estimation. Approximate PM(Φ), with the margin of error
ε at the level of significance α.

2. Hypothesis Testing. Decide whether PM(Φ) ≥ θ, given a threshold
θ ∈ [0, 1]. The upper (lower) probability deviations δ0 (δ1) define the
indifference region around θ. Type I (II) errors of test are α (β).

3. Probability Comparison. Decide whether PM(Φ1) ≥ PM(Φ2). It is
transfered to the hypothesis testing of H0 : PM(Φ1)

PM(Φ2)
≥ u1 and H1 :

PM(Φ1)
PM(Φ2)

≤ u0, where u0 and u1 defines the indifference region.

2.5 Distributed (Statistical) Model Checking

Model checking, time optimal reachability analysis and controller synthesis
all work by exhaustively exploring the state-space. Because the size of the
state-space may grow exponentially with the number of interactive compo-
nents in a model, the state-space explosion problem may appear if the model
is large. The state-space may grow so enormous that a single PC is incapable
of storing or exploring it. The available memory on that PC may be depleted,
or the single CPU may take a long time to explore and give an answer. A

26



2. Background

number of optimization techniques were developed to reduce the size of the
state-space, such as abstraction [CGL94], state compression [GdV99], binary
decision diagram [Bry86] etc. Other enlightened methods were to restrict
the state-space exploration to a much smaller subset such as partial order
reduction [Pel98], symmetric reduction [Sis04], branch and bound [BFH+01],
guided search [HLP00], sweep-line method [JKM12] etc. Both directions of
methods aim to squeeze the explored state-space locally.

An approach to battle the state-space explosion is parallel and distributed
model checking. The earliest monumental distributed model checker is the
parallel Murϕ verifier [SD97] proposed in 1997. Its design delineated the cor-
nerstone upon which other parallel or distributed model checkers were built
thereafter such as distributed Uppaal [BHV00, Beh05], DiVinE [BBvR10],
LTSmin [BvdPW10], parallel Fdr3 [GABR16], Cadp [GMS13] etc. These tools
work by partitioning the state-space and distributing the parts among dis-
tributed CPUs and memory resources by message passing. Given sufficient
memory and time, this paradigm can verify very large models. Meanwhile
enormous research efforts have been made to improve the state-space genera-
tion [BLvdPW11], the partition algorithm [NC97], the state storage [ESB+11],
the communication and control mechanism [FGI12], as well as many other
technical issues [VBBB09]. Since 2006 multi-core CPUs became pervasive in-
side PC, HPC and embedded markets, DiVinE, LTSmin and Fdr3 exploit
multi-core shared memory technique to achieve even better performance on
the modern hardware architecture. DiVinE also made fruitful attempts to
accelerate model checking using GPUs from 2009 [BBBC12].

Other possible paradigms for parallel model checking were also proposed.
Holzmann et al. introduced swarm verification [HJG08]. A large number of
Spin instances configured with well-tuned randomized search strategies and
bitstate hashing run in parallel. Even though the state-space generation may
be lossy and bitstate hashing may lead to false positive results, swarm verifi-
cation was shown to give high quality results fast under restricted time and
memory. Rasmussen et al. proposed agent-based search [RBL07]. Various
agents with diverse search patterns put tasks to (or get tasks from) a pool,
with tasks being sub-paths that lead to promising parts of the state-space.

Statistical model checking (SMC) is not memory intensive, because the
simulation based feature does not need to store the state-space. But SMC can
be computation intensive due to the demand of extremely high confidence.
This is called confidence explosion, because it requires the SMC engine to gener-
ate a large number of simulation runs, each of which may itself be extremely
time consuming. Paper [BDL+12] proposed the distributed SMC algorithm
based on task parallelism because the simulation runs are independent and
trivially parallelizable, but care must be taken to make hypothesis testing
results correct. The master/slave architecture is chosen for implementing
distributed Uppaal-smc: a group of slave processes register their ability to
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generate simulations with a single master process that is used to collect those
simulations and perform statistical test.

2.6 Concluding Remarks

This chapter provided an overview of a series of related timed automaton
based engineering techniques: real-time model checking (MC), statistical
model checking (SMC), time optimal reachability analysis (TOR), controller
synthesis (SYN) and the distributed technologies. The mathematical founda-
tions are defined. The up-to-date related work is surveyed. The dependencies
between the background knowledge and our papers are: papers A to C rely
on MC and TOR; paper D relies on SYN, MC and SMC.
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3 Contributions

3.1 Distributed Time Optimal Reachability

In order to accelerate time optimal reachability (TOR) analysis and mitigate
the state-space explosion problem, we proposed separately in papers A and B
two different distributed computing paradigms: swarm verification [ZNL16b]
and distributed memory state-space exploration [ZNL16a].

Our contributions are two folded. Firstly, we developed four swarm algo-
rithms and five distributed algorithms for Uppaal. An important feature of
these algorithms is that we allow all worker processes to exchange the bet-
ter results they have found. This shared knowledge allows each worker to
have efficient branch and bound pruning as well as guided exploration in the
state-space, therefore may speedup the global analysis progress [ZNL16b].
Secondly, we proposed four performance metrics to evaluate these algorithms
comprehensively as follows [ZNL16b, ZNL16a].

Metric 1 Time to find the optimal result (topt). The minimum run time for
any Uppaal instance to find the fastest trace (or schedule) to the
goal. Users wish to get the optimal result fast even before an algo-
rithm terminates.

Metric 2 Time to terminate and thus prove the optimal result (tprov). Users
prefer an algorithm to terminate fast.

Metric 3 Time to progressively improving solutions (a.k.a. near optimal so-
lutions). It shows how fast results converge to the optimal as a
function of runtime. In scheduling problems, the absolute optimal
solution is not always required, but a sufficiently good one may
suffice. Particularly when algorithms cannot terminate due to time
or memory constrains. Faster converge speed produces better near
optimal results.

Metric 4 Memory consumption and communication overhead3 of algorithms.
Smaller memory consumption improves scalability by allowing big-
ger state-space. Smaller communication overhead improves com-
puting speed.

3.1.1 Swarm Verification

Swarm verification is a promising technique to accelerate time optimal reach-
ability analysis. The large number of random searches can explore different
parts of the state-space, thus finding different traces to the goal states in par-
allel and avoiding local optimality.

3Only distributed state-space exploration algorithms in paper B has its communication over-
head evaluated because this paradigm is much more communication intensive by sending states
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Algorithms. In paper A we developed the following four swarm algorithms
using the random-depth-first search (RDFS) as the cornerstone. The two
main reasons are: (1) in [BF01] RDFS was proved to be effective in finding
sequences of usable (not necessarily optimal) solutions in a very large inex-
haustible state-space; (2) we can easily generate many different randomized
search strategies by configuring RDFS instances with diverse random seeds.

P-RDFS The basic swarm algorithm where all Uppaal instances do RDFS
independently in parallel with diverse random seeds. Local prun-
ing within each instance is enabled. Any instance that completes
first stops other peers.

S-RDFS A cooperative version of P-RDFS where all instance exchange better
costs by message passing.

S-Mix A variant of S-RDFS where one Uppaal instance runs breadth-first
search (BFS) rather than RDFS.

S-Agent The agent-based version of S-Mix, where the BFS instance serves
as root, while the rest instances are agents running RDFS. The root
takes charge of termination. Only the root starts search from the
initial state. An agent requests a state as a task from the root to
search from. When a certain time limit is met, the agent will clear
its stored state-space and ask for a new state.

We built the above algorithms incrementally and systematically by includ-
ing one advanced characteristic at a time. This allows us to clearly reveal the
effect of a new characteristic in benchmark experiments by comparing the
performance difference between the current algorithm and its previous more
primitive algorithm.

• S-RDFS vs. P-RDFS. We compare S-RDFS against P-RDFS for evaluating
the benefit of sharing costs among swarm instances.

• S-Mix vs. S-RDFS. We use one BFS instance in S-Mix because in Uppaal

BFS often runs and completes much faster than DFS/RDFS. The empirical
explanation is that DFS/RDFS can cause higher degree of fragmentation
of the underlying symbolic state-space, thus requiring generating many
more symbolic states [BHV00]. BFS however has an inherent drawback
that it typically only reports results late when it has searched nearly all
states, making it infeasible for very large state-spaces. S-Mix combines
advantages of BFS and RDFS such that RDFS can report usable solutions
fast and BFS may terminate the global swarm verification process fast.

• S-Agent vs. S-Mix. An RDFS agent is a light weight Uppaal instance. It
always clears its stored state-space when periodically asking for a new state
from BFS root to search from. Therefore agents will have much smaller
memory footprint than the full-length Uppaal RDFS instances of S-Mix.
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Results. We implemented the four swarm algorithms, and compared the
performance of sequential and swarm algorithms by the benchmark experi-
ments of four big models on a dedicated model-checking cluster (MCC)4. We
arrived at the following conclusions [ZNL16b] regarding the four metrics.

• Sequential Algoirthms: BFS terminates much faster than DFS or RDFS.
• Swarm Algorithms. Conclusions for different swarm algorithms:

– P-RDFS: It is much faster than sequential algorithms at finding near
optimal results, especially when the model is infeasible for sequential
BFS.

– S-RDFS: Exchanging costs can in general speed up finding and proving
the optimal results by 15% and 5% respectively, especially showing its
usefulness when using a low number of cores.

– S-Mix: Combining benefits of BFS and RDFS, S-Mix can report results
and terminate faster than S-RDFS. Costs reported by RDFS node can
help BFS root in pruning, but fine-grained improved costs may backfire,
leaving room for optimization.

– S-Agent: Besides the virtue of S-Mix, S-Agent has only 1/3 memory
consumption of S-Mix.

Summary. Swarm algorithms generally find optimal (or near optimal) re-
sults much faster than sequential algorithms. S-Mix and S-Agent combines
the benefits of BFS and RDFS such that they can find results and terminate
fast. S-Agent has smaller memory footprint because agents do not keep the
state-space. Exchanging cost is beneficial for speedup at lower core settings.

3.1.2 Distributed State-Space Exploration

Paper B realized time optimal reachability analysis based on the second
distributed computing paradigm – distributed memory state-space explo-
ration [ZNL16a]. This paradigm may accelerate TOR in three ways: (1) the
state-space is now partitioned and distributed among distributed CPU so
that multiple worker processes now share the state-space exploration work-
load, thus the execution time may potentially be shortened greatly; (2) more
traces/state-space will be explored in parallel, thus the fastest trace will be
potentially found even faster than the swarm algorithm; (3) the disjoint parts
of state-space are stored in the distributed memory, allowing fully use the
memory of a cluster and handle even larger models than swarm verification.

Algorithms. We developed and investigated five distributed memory TOR
algorithms [ZNL16a].

4MCC cluster at AAU: https://sites.google.com/site/mccaau
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D-BFS Distributed breath-first search. Each worker runs local BFS while
exchanging states with other workers.

D-BFSS Distributed strict order BFS (also named level synchronized BFS).
A synchronization protocol will ensure all workers completely ex-
plore states on the same current BFS level before moving on to the
next level.

D-DFS Distributed depth-first search. Same principle as D-BFS except travers-
ing depth-first.

D-DFSG Distributed greedy DFS. In addition to D-DFS, each worker always
picks the successor state of the lowest cost in each iteration.

D-RDFS Distributed random depth-first search. Same principle as D-DFS
with a randomly picked successor state.

It is worth noting that except D-BFSS, the global search orders of the
other algorithms only approximate BFS/DFS/DFSG/RDFS. Due to the vary-
ing communication delay or workload on computing nodes, states are re-
ceived in nondeterministic order from run to run. The motivation of D-BFSS

is to keep a strong point of BFS that BFS causes very low fragmentation of
the underlying symbolic state-space thus may runs faster than DFS-based or-
ders (described previously in Section 3.1.1). However D-BFSS also inherits
the drawback of BFS that it typically only reports results late when it has
searched nearly all states, making it infeasible for very large state-spaces.
Compared with the swarm verification, there are two design challenges to
consider for the distributed memory TOR algorithms.

• State-space partition. We applied a static hash function on the discrete
part5 of a symbolic state to compute the unique process ID that the sym-
bolic state belongs to. This partition is uniform and leads to the low-
est locality6. But it facilitates inclusion checking in the distributed con-
text, because all symbolic states with the same discrete part will destine
to the same worker process for deterministic and easy inclusion check-
ing [ZNL16a]. A symbolic state that does not belong to the current worker
process is send to its owner process by message passing.

• Termination detection. A distributed computation is globally terminated
iff every process is locally terminated and there is no message in transit
in the network. It is a non-trivial task because none process has com-
plete knowledge of the global state. Nevertheless, the root process must
infer when global computation and underlying communication have ter-
minated. We applied the well-known Safra protocol [Tel01] for this purpose.

5Discrete part includes a vector of locations from all parallel component timed automata and
the values for all discrete variables in the model.

6The probability for a newly generated successor state to stay local is 1/N if the algorithm
is deployed in a cluster of N worker processes
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3. Contributions

Results. We implemented the five distributed memory algorithms on the
MCC cluster. A detailed account for the implementation level contribution
is provided in Part II of this thesis. We performed benchmark experiments
for both sequential and distributed algorithms using the same four models
and same settings as in the swarm verification. We arrived at the following
conclusions [ZNL16a] regarding the four metrics listed above.

• Sequential Algoirthms: BFS terminates the fastest. DFSG is fastest at find-
ing the optimal result in general, but may be trapped by fine grained local
optimal in some model.

• Distributed Algorithms: DFS-based algorithms are generally faster than
sequential and swarm algorithms at finding near optimal results.

– D-BFSS: terminates the fastest in many cases, but suffers high synchro-
nization overhead at high core settings.

– D-DFSG: can find the optimal result very fast in general followed by
D-DFS/D-RDFS. It may be slower than the optimized sequential DFSG

at low core settings due to fragmentation.
– The exact performance may depend on characteristics of the model.

Summary. For larger models, distributed algorithms can terminate while
sequential algorithms cannot. D-BFSS can terminate fast thus prove the opti-
mal results fast. D-DFS/D-DFSG/D-RDFS are good at finding (near-) optimal
results. Distributed algorithms have high communication overhead.

3.1.3 Comparing Swarm with Distributed Memory Paradigms

Comparing the swarm verification with distributed memory state-space ex-
ploration algorithms, we summarize their pros and cons in Table 1.

Table 1: Swarm vs. Distributed

Swarm Pro Distributed Pro
• Get high quality results fast • Data parallelism accelerates
under time- and memory constrains. state-space exploration
• Easier to implement. • Handle larger models. State-

space is partitioned and stored
in distributed memories

Swarm Con Distributed Con
• No data parallelism. Barely • Harder to implement.
reduce the runtime to terminate • Communication overhead is
thus prove the optimal result. high due to sending states.
• Duplicate work, duplicate copy
of (partial) state space.
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3.2 Multi-Objective Optimal Reachability

Multi-objective optimization (MOO) problem is optimizing a plan or a sched-
ule regarding a variety of quantitative objectives in the best balance like the
makespan of a schedule, performance, energy consumption, resource inten-
siveness, risk assessment etc. Because in most cases a subset of these ob-
jectives are conflicting, there may not always exist any single solution that
can simultaneously optimize all objectives. Vilfredo Pareto (1848–1923) pro-
posed the well-known concept of Pareto optimality as “the state of allocating
resources where it is impossible to make any one individual better off without
making at least one individual worse off.” A solution is called Pareto optimal
if none of the objectives can be improved in value without degrading some
of the other objective values. Without additional preference information, all
Pareto optimal solutions are considered equally good [ZNL+16c].

In paper C we proposed the modeling formalism of simple priced automata
(SPTA) to model a subset of multi-objective scheduling problems. SPTA is a
simple extension of TA where every action transition carries a vector prices
for multiple cost variables. Every cost variable accumulates the prices on
action transitions along a run. There exist more general multi-priced timed
automata (MPTA) that also support price rates on locations. The optimal
reachability analysis on MPTA was proved decidable [LR08]. However, the
model checking problem on MPTA was proven undecidable [BBR04].

Data structures and reachability algorithms on MPTA are difficult to im-
plement. Multiple cost variables with respect to price rates entail construct-
ing high-dimensional priced zones and complex operations on priced zones.
In contrast, SPTA only need a vector of integer variables to maintain dif-
ferent accumulated costs. SPTA may also suffice for a number of classical
scheduling cases, where the tasks’ spans are pre-determined thus the energy
consumption of every task can be approximated in advance, or the resources
required by every task are not affected by the task’s span at all.

3.2.1 Pareto Optimal Reachability Analysis

Definition 16. Let c̄ = [c1, c2, . . . , ck] , b̄ = [b1, b2, . . . , bk] denote two cost vectors
of integers. Vector c̄ Pareto dominates vector b̄ (written as c̄ ≺ b̄), iff both the
following conditions are true [ZNL+16c]:
(1) ∀i ∈ {1, . . . , k} ci ≤ bi;
(2) ∃j ∈ {1, . . . , k} cj < bj.

Definition 17. Given a set of cost vectors C, a cost vector c̄ is Pareto optimal in C
if there does not exist another cost vector b̄ in C such that b̄ ≺ c̄. The set of Pareto
optimal results is called the Pareto frontier [ZNL+16c].

We provided the Pareto optimal reachability (POR) algorithm [ZNL+16c] for
Uppaal to compute Pareto optimal costs when reaching target goal states.
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3. Contributions

The algorithm resembles Algorithm 2 in Section 2.2 for time optimal reacha-
bility analysis. The extensions are five folded as follows.

1. The symbolic state of SPTA extends that of TA as (`, 〈Z, c̄〉), where c̄ is
the cost (or cost vector) of a finite run ρ that ends in (`, v) and v ∈ Z.
Therefore, symbolic states in SPTA with the same ` and Z are discrim-
inated by c̄. We call 〈Z, c̄〉 the discrete priced zone of a symbolic state in
SPTA. Note that a Uppaal model may contain both cost variables and
normal variables, so we need to identify cost variables in Uppaal.

2. We define Pareto dominance between discrete priced zones as: 〈G, ū〉 �
〈Z, c̄〉 iff Z ⊆ G ∧ (ū = c̄ ∨ ū ≺ c̄). That is, 〈G, ū〉 dominates 〈Z, c̄〉,if
zone Z is included by or equal to zone G, and cost vector ū is equal to
or Pareto dominates cost vector c̄.

3. The POR algorithm uses the Pareto dominance relation between dis-
crete priced zones for Pareto inclusion checking of symbolic states. For
every new waiting state (`, 〈Z, c̄〉), if ∃(`, 〈G, ū〉) ∈ Passed s.t. 〈G, ū〉 �
〈Z, c̄〉, then (`, 〈Z, c̄〉) is discarded for further exploration.

4. A global container named frontier maintains the Pareto optimal cost
vectors at goal states. When a goal state is reached, the current cost at
goal is checked for Pareto dominance with the solutions in the frontier,
and the frontier is updated if necessary. In the pruning process, a state
is discarded if its cost is dominated by a solution in the frontier.

5. The algorithm returns the frontier. In Uppaal, multiple runs, each of
which corresponding to a Pareto optimal solution inside the frontier,
are also computed and stored into different files.

We also introduced three extensions to the basic POR algorithm to make
it more powerful and flexible. These extensions however, work under specific
additional conditions (Section 3.2 in paper C).

1. Support the formulation of objectives as a vector of objective functions
F(c̄) = [ f1(c̄), f2(c̄), . . . , fn(c̄)] parameterized by the cost vector c̄;

2. Support a global clock (let us call it now) as a singular objective function
to measure the makespan (accumulated delay) of a finite run;

3. Support negative prices on action transitions.

We extended Uppaal with a new query to enable Pareto optimal reacha-
bilty analysis of SPTA as [ZNL+16c]:

PO ( f1, f2, . . . , fk) [−(L1|L2)] : E3ϕ,

where PO is the keywords for Pareto optimum, fi (i ∈ [1, k]) are objective func-
tions on cost variables. Next comes the optional switches to disable pruning
or Pareto inclusion checking. E3ϕ is a normal reachability query.
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Results. We implemented the Pareto optimal reachability algorithm in Up-
paal. We demonstrated the usefulness of this new feature by two case stud-
ies: (1) task graph scheduling, and (2) GomX-3 nano satellite scheduling.
Both cases show conflicting optimization objectives. Case 1 aims to finish a
group of tasks fast while minimizing the overall energy consumption. Case
2 aims to maximize the productivity of satellite while minimizing the battery
depletion risks. The tool can provide a set of Pareto optimal schedules, from
which we choose one that optimizes all objectives in the best balance.

Summary. We proposed Pareto optimal reachability analysis on the simple
priced timed automata. The technique is suitable for solving a subset of
multi-objective scheduling problems, where the prices are independent of
the elapsing time of a task in locations. Inclusion checking works on discrete
priced zones, involving computing the Pareto dominance relation between
cost vectors. The algorithm was implemented in Uppaal with the extensions
supporting objective functions, observer clocks and negative prices.

3.3 Verifying and Evaluating Timed Game Strategies

Controller synthesis can derive a strategy for a timed game for a reachability
or safety objective. The strategy ensures the hard real-time guarantee for a
controller to handle uncertainties of the environment and win the game. Pa-
per D proposed to adopt the strategy back into the timed game as a closed
system and examine robustness, reliability or performance of this strategy.
Engineers can model check this strategy for additional correctness proper-
ties. More interestingly, engineers can annotate dynamics and stochasticity
on top of the timed game model. This creates a stochastic timed game, which
may behave closer to real cyber-physical systems. Then engineers can use sta-
tistical model checking to evaluate how the strategy supervises the stochastic
timed game in terms of various reliability or performance aspects.

The effect of doing model checking (MC) and statistical model checking
(SMC) of the closed system (comprising strategy and timed game model) is

State Space

Outcome of Strategy

MC / SMC Run

Fig. 4: MC and SMC inside the Outcome of Strategy
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3. Contributions

illustrated in Figure 4. The MC and SMC runs are constrained inside the
outcome defined by the strategy. Two methods to exploit the strategy are
presented in paper D. The first method translates the strategy into a controller
timed automaton, which is then enclosed with the (stochastic) timed game
model into new closed models. The second method keeps this strategy in
memory, which is consulted by (statistical) model checking on-the-fly.

Method 1. The strategy printed out by Uppaal-tiga is list of (zone, action)
pairs indexed by locations. The action in a pair can be a controller action, a
bounded delay, or an unbounded delay. Translating a strategy into a TA
consists of transforming all the (zone, action) pairs associated to one location
into a basic TA. The complete controller TA is obtained by repeating the same
translation procedure for all locations and connecting all resulting basic TA
to the same initial state [DFLZ14]. To make the controller TA enforce control
over TGA for MC and SMC, three steps are need to establish the two-way
connections between the controller TA and all components in the TGA.

1. Use global location variables for each component in the TGA model,
and use global clocks only. This allows the locations and clock valua-
tions of the TGA components observable to the controller TA.

2. Declare channels for uncontrollable transitions, so that controller TA
can monitor when uncontrollable transitions are taken.

3. Declare channels for controllable transitions, so that controller TA can
give commands to the TGA components.

Method 2. A Uppaal extension was built to connect Uppaal-tiga, Up-
paal and Uppaal-smc. The semantics and algorithms of MC and SMC were
extended in order to apply the synthesized in-memory strategy when explor-
ing the state-space in MC, and when generating random runs in SMC. The
successor states generation under a given strategy is similar to standard MC
or SMC when considering uncontrollable transitions because they are played
by the environment. The opponent is stochastic for the purpose of SMC and
when doing MC, all possible successors are tried. However, only the con-
trollable transitions allowed by the strategy are allowed. In addition, delay
is constrained by the delays of the strategy, i.e., if a controllable transition is
to be taken after 5 time units, controller will not delay more than that. For
MC, the strategy specifies how much delay is allowed and this constrains the
standard delay operation. For SMC, this is resolved naturally through the
race between components [DFLZ14]. Finally, if the TGA model are annotated
with dynamic or stochastic information, the annotations are automatically ig-
nored in the controller synthesis and model checking phases and only taken
into effect in the statistical model checking phase.

Results. For method 1, we built the rules for (1) translating a strategy into a
controller TA, and (2) enclosing the controller TA with the timed game model
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into a closed system. For method 2, we implemented the tool integration of
SYN, MC, SMC engines inside Uppaal. We used each method to perform
the same two case studies, and cross checked the experiment results of both
methods. We also evaluated the performance of both methods regarding the
running time of intensive SMC jobs.

Summary. Method 1 demonstrates the translation procedure of a strategy
into a controller TA. Even thought it can be automated, the translated con-
troller TA is usually huge and not very interesting. Enclosing the controller
TA with the TGA model still needs a lot of manual work. Running the closed
model is slower and needs more memory, because the controller TA usually
has a lot of states and interactions with the rest components of TGA. Method
2 is preferred because it is very convenient and fast. Actually this work is
used in Uppaal-statego [DJL+15], which aims at optimizing the strategy for
a stochastic timed game towards some goal7.

3.4 Concluding Remarks

This chapter reviews our work in four papers: distributed time optimal reach-
ability analysis by swarm verification and distributed memory state-space
exploration, Pareto optimal reachability analysis, and verifying and evaluat-
ing timed game strategies. The first three papers are about timed automaton
based scheduling and planning. The fourth paper is about exploiting the
synthesized strategy of a timed game.

At the technical side, now Uppaal tool suite has three new members:
distributed version of timed optimal reachability, Pareto optimal reachability,
and Uppaal-statego which includes our work in paper D. The distributed
computing module built in papers A and B is generic and reusable by the
other members in the Uppaal family to build their distributed versions.

7Traffic dilema example http://people.cs.aau.dk/~marius/stratego/examples.html
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4. Conclusions and Future Work

4 Conclusions and Future Work

“Model-based systems engineering (MBSE) is the formalized application of
modeling to support system requirements, design, analysis, verification and
validation activities beginning in the conceptual design and continuing through-
out development and later life cycle phases [oSEI].” MBSE helps industry to
gain quality, productivity improvements, and lower risk. In particular, MBSE
can facilitate the development of trust worthy safety critical systems. A se-
ries of automated model-based techniques have been developed for MBSE. In
this thesis, we contribute to time optimal reachability analysis, Pareto optimal
reachability analysis, and evaluation of timed game strategies.

Conclusions

We fulfilled the initial research objectives defined in section 1.4. We found
that: (1) two distributed paradigms – swarm verification and distributed
memory exploration – are valuable for developing distributed time opti-
mal reachability algorithms; (2) the notions of Pareto optimum and Pareto
dominance are applicable for multi-objective scheduling problems on simple
priced timed automata; (3) it is possible and useful to verify and evaluate the
synthesized strategy of a timed game in an integrated manner.

Firstly, we proposed distributed time optimal reachability algorithms run-
ning on the cluster to efficiently accelerate finding the trace with optimal
(or near optimal) results and mitigate the state-space explosion problem.
Inside Uppaal, four algorithms were developed for the swarm verification
paradigm, and five algorithms were developed for the distributed memory
state-space exploration paradigm. The benchmark experiments showed very
promising acceleration for finding the optimal results or high quality near
optimal results. The distributed computing module is also reusable by other
members in the Uppaal tool suite.

Secondly, as the extension of time optimal reachability analysis, we pro-
posed the Pareto optimal reachability analysis on the simple priced timed
automata for solving multi-objective scheduling problems. A set of sched-
ules are optimized in Pareto optimum regarding a variety of quantitative
objectives. The objectives are either objective functions parameterized by cost
variables in the model, or an observer clock for measuring the makespan.

Thirdly, we proposed two methods to verify and evaluate a synthesized
strategy – examining the consequences of adopting this strategy in the timed
game. Timed games are useful for modeling scheduling and planning prob-
lems in the dynamic and partially controllable environment. Method 1 is ad
hoc. The synthesized strategy is translated into a controller timed automa-
ton, which is encapsulated as an extra interacting component with the timed
game into a closed system. Then the closed system is loaded into normal
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Uppaal for MC or into Uppaal-smc for SMC separately. Method 2 is inte-
grated. We combined three engines of SYN, MC and SMC into a single tool.
The synthesized strategy is stored inside the memory and consulted on-the-
fly by MC and SMC. The integration requires an extension in the semantics
and algorithms of MC and SMC. The in-memory strategy acts as a super-
visor when generating the state-space in MC, and as an extra player when
generating random runs in SMC.

In conclusion, we contributed to the timed automaton based scheduling
and planning techniques. In particular we have shown how distributed algo-
rithms may be used to speedup and scale up the computation.

Future Work

There are many topics for possible future research and development based
on this thesis. Particularly, we find the following topics are interesting.

• Investigate more search strategies for time or cost optimal reachability
analysis such as trying to combine planning algorithms or ideas from
artificial intelligence area.

• Develop hybrid algorithms that combine the benefits from distributed
memory and swarm verification.

• Develop distributed algorithms to support the liveness model checking
properties to make a fully functional distributed Uppaal.

• Develop distributed algorithms for Pareto optimal reachability analy-
sis on multi-priced timed automata, and controller synthesis on timed
game automata.

• Further improve the performance by developing parallel and distributed
algorithms applying multi-core shared memory and GPU acceleration.

• Improve robustness and fault tolerance of distributed implementations.
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Implementation

5 Distributed Time Optimal Reachability Analysis

5.1 Distributed Memory Reachability

This section elucidates important design and technical issues that were not
present in papers A and B due to the page limit. We recommend readers to
read these two papers first then go back to this chapter. We focus on the dis-
tributed memory state-space exploration paradigm because it already covers
the technologies needed by swarm verification. Algorithm 3 recalls the dis-
tributed algorithms in paper B. It extends the sequential version (Algorithm 2
in Section 2.2) with state-space partitioning, message passing and handling.

5.1.1 Distributed TOR Reachability Algorithms

Definition 18. Let N be the set of worker processes and p denote the local process
ID. The partition function is a total mapping: Hash : L → N from the set of
locations to the set of processes. Process p is the owner of a symbolic state (`, Z) if
Hash(`) = p. A symbolic state is a local state if it is generated on its owner process,
otherwise it is an emigrant state [ZNL16].

Definition 19. A process is active when doing local search or receiving messages.
Initially all processes are active. A process is idle when its waiting list is empty and
receiving no messages. Computation can terminate if all processes are idle and the
network has no message in transit [ZNL16].

Three new variables are used: Ecost maintains external better cost re-
ceived from the network; Active specifies process status (active or idle); and
Terminate controls the Main loop. Then two types of messages are defined:
(1) UPDATE carries better costs; (2) STATE carries symbolic states. At the
beginning of each iteration, Ecost compares with Cost. If Ecost is smaller, a
better cost has been found by another process, and Cost is updated. If Cost
is smaller, the current process finds a better cost, which is assigned to Ecost

and then broadcasted. Line 5 marks process to idle according to Definition
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Algorithm 3: Distributed Time Optimal Reachability for
D-BFS/D-DFS/D-DFSG/D-RDFS [ZNL16]

(Local Variables)

Waiting←−
{ {(`0, Z0)} if p = Hash(`0),

∅ otherwise.
Passed←− ∅

Terminate←− False, Active←− True, Cost←− ∞, Ecost←− ∞

(Message Types)
UPDATE, STATE

Procedure Main()

1 while ¬Terminate do
2 if Ecost < Cost then Cost←− Ecost

3 if Cost < Ecost then UpdateE(Cost),
Broadcast(UPDATE, Cost)

4 if Waiting = ∅ then
5 if receive no message then Active←− False, CheckTerm()
6 continue

7 select (`, Z) from Waiting, Active←− True

8 if (`, Z) |= Goal then
9 if MinCost(`, Z) < Cost then

10 Cost←− MinCost(`, Z)

11 else if ¬∃(`, H) ∈ Passed s.t. Z ⊆ H and MinCost(`, Z) < Cost

then
12 add (`, Z) to Passed

13 forall the (`′, Z′) such that (`, Z) ; (`′, Z′) do
14 if (r ←− Hash(`′)) 6= p then Send(STATE, (`′, Z′), r)
15 else add (`′, Z′) to Waiting

16 return Cost

Procedure UpdateE(NewCost)

17 if NewCost < Ecost then Ecost←− NewCost

Procedure CheckTerm() // Safra protocol [Tel01]

18 if p = root and all processes are idle and no message in transit then
19 Terminate←− True on all processes

(Message Processing Rules)
20 When receive UPDATE〈Ncost〉: UpdateE(Ncost), Active←− True.
21 When receive STATE〈(n, F)〉: add (n, F) to Waiting, Active←− True.
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5. Distributed Time Optimal Reachability Analysis

19. The remaining lines inside Main resembles the local search in the sequen-
tial TOR algorithm, except at line 14 a successor state is hashed to compute
its owner process ID and sent out if it does not belong to the current process
p. When the root process becomes idle, it invokes the termination detec-
tion procedure CheckTerm. For message handlers: line 20 updates Ecost on
reception of a cost message; line 21 adds a received emigrant state into Wait-
ing [ZNL16]. After termination Goal is reachable at process p if Cost 6= ∞,
otherwise it is not reachable at process p.

5.1.2 Architecture Design

Figure 5 depicts the implemented distributed reachability pipeline in Uppaal

for Algorithm 3. It differs the sequential reachability pipeline (Figure 3 in
Section 2.1) by the additional functional components highlighted in orange
red and two affected components annotated by “*”:

• Recv Msg polls the communication channels for incoming messages, dis-
patches those received messages to the corresponding message handlers
distinguished by the message types.

• Hand Msg processes a message by the corresponding message handler.
If the message contains a state, the state is conditionally inserted into the
PWList. If the message contains a better cost, this external cost may update
the local cost. If message is a stop signal, the pump is terminated.

• Bcast Cost broadcasts the local cost – reported by the property filter – if it
is better than the currently known best external cost.

• Send State sends an emigrant state to its owner process. Emigrant states
are not stored in the local PWList.
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Fig. 5: Distributed Reachability Pipeline of Uppaal

55



• Accept* as the guard of PWList insertion, it involves not only inclusion
checking but also B&B pruning using the best cost found so far.

• Trace* now contains only trace segments rather than complete traces. In
the distributed context, every trace is split into segments that scatter among
a group of worker processes. This raises a question “how to generate a
complete well-format time optimal trace.” In fact even in the Swarm Agent
algorithm, a time optimal trace may be also split into two segments – the
head part resides at root and the tail part at an agent.

5.1.3 Implementation Solutions

The target hardware is a cluster with 9 computing nodes. Each node has 1
TB memory (NUMA architecture) and 64 cores @ 2.3 GHz (4 AMD Opteron
6376 Processors each with 16 cores), a 1 TB SATA disk and the Infiniband
interconnection [ZNL16].

We used the Mpi library to build a communication module that supports
the above mentioned additional functional components inside the distributed
pipeline. This module implements a number of advanced features as follows
to facilitate development and to gain better performance.

• Asynchronous Communication. Mpi offers send and receive APIs in asyn-
chronous mode, which is the key to achieve high performance computing.
Local computation is non-blocking, and the Mpi library takes care of com-
munication automatically in the background.

• Basic and Control Messages. We defined two message categories: (1) basic
messages for carrying the necessary data for the distributed algorithms
like costs, states, trace segments etc; (2) control messages for monitoring or
imposing status control of the algorithms like initialization, termination,
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Fig. 6: Message Buffers for Dis-
tributed Reachability. In a group
of (1+N) processes, process 0 has
N channels to each of the other
processes like P0 ↔ P1, . . . , P0 ↔
PN. For each channel, there are
two buffers for sending and re-
ceiving basic messages separately,
and two smaller buffers for sending
and receiving control messages sep-
arately. Default capacity is 2 KB for
a basic message buffer, and 128 B
for a control message buffer. The
same rules apply to the rest pro-
cesses P1 ∼ PN.
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5. Distributed Time Optimal Reachability Analysis

synchronization. Control messages have higher priority in sending and
processing than basic messages.

• Message Buffer for Channel. We define a logic communication channel to
be the link between two worker processes. On a worker, every channel is
associated with four buffers for sending or receiving basic messages and
control messages separately as in Figure 6. This buffer design [Bar04] is
simple, but can achieve a high level of parallelism using asynchronous
communication, because multiple channels can work in parallel without
interference.

• Packet buffering and compression. It is more efficient to bundle sev-
eral basic messages into a bigger packet, then compress and send out this
packet [VBBB09]. However control messages are sent out immediately.

• Two Termination Modes. Active mode is broadcasting termination sig-
nal (control message) by one worker, and force all other workers to stop.
Swarm algorithms use this mode for termination. The other usage for this
mode is shutting down the cluster smoothly in case of timeout, memory-
out or error. Passive mode refers to termination detection by the Safra proto-
col. Distributed memory algorithms use this mode to terminate the global
computation normally. The other usage of this mode is to drain the re-
maining message in the network after an active termination. All channels
are cleared and prepared to initiate the next task in a batch job.

• Protocol Stack. There are totally a number of basic and control messages
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Fig. 7: Message Broadcasting using Virtual Topology. A blue core in Node 1 needs to broadcast
a message within 512 cores over 8 nodes. This blue core only broadcasts inside Node 1. Once the
red master core in Node 1 receives the broadcast message, it immediately sends this message to
the master cores in the other 7 nodes. When the master core on any node, say Node 2 receives
this message, it broadcasts this message inside Node 2. Only 7 inter-node communications are
needed by this strategy, which would be otherwise 512− 64 = 448 inter-node communications.
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designed to support the swarm and distributed algorithms. It is sensible
to manage these different kinds of messages uniformly inside a protocol
stack, where every message type is linked to a dedicated message handler
(similar to the reactor pattern [CS95]). Whenever a message is received,
a dispatcher will direct this message to the target handler for processing
through the uniform interface.

• Virtual Topology. Because the semantics of Mpi broadcast raw API does
not fit8 our algorithms, we redesigned the broadcast by asynchronous
point-to-point communication. Rather than the naive one-to-all message
sending, we allow the broadcast to make use of the topology information
of the cluster to reduce a lot of inter-node communication which will over-
load the cluster heavily when running on 256 cores or above as in Figure 7.
The key idea is creating a virtual hierarchy. The pre-assigned master core
on each node exchanges inter-node broadcast messages over the infiniband
network, and relays its received messages to other cores inside its residing
node by the much faster internal bus.

5.2 Distributed Trace Collection

Only reporting the span of a time optimal trace to the user is not sufficient.
A complete Uppaal trace should be generated so that engineers can either
visualize the trace in the Uppaal simulator or parse the trace into a usable
schedule. However as above mentioned, distributed reachability algorithms
raise a challenge for generating such trace, because it is divided into segments
in different workers. We developed the distributed trace collection algorithm
executed by Uppaal as a separate phase after the distributed reachability
algorithms terminate.

5.2.1 Trace Generation Pipeline

The Trace filter in the reachability pipeline (Figure 5 in Section 5.1.2) is re-
sponsible for storing traces. Rather than linking symbolic states (pointers),
Trace links action transitions (pointers) and store these actions inside a list
container. Symbolic states are volatile and may be deallocated due to inclu-
sion checking, pruning or being sent out. Action transitions in the model are

stable. For a finite symbolic trace that is time optimal π = S0
d1
; S′0

a1
;

S1
d2
; · · · dn

; S′n−1
an
; Sn, Trace practically links the actions of π back-

ward as the action trace η = a∅ ← a1 ← a2 ← · · · ← an−1 ← an, where
a∅ is a null head for all actions fired from S0 to link with. Each action in

8MPI_Bcast is a collective communication. It is called by all workers, and requires the rank
of the broadcast source specified in its arguments. Receivers must know the broadcast source
beforehand, which is not the case in our algorithms. MPI_Bcast is typically used to initialize the
input data for each worker of a cluster before computation.
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Fig. 8: Trace Generation Pipeline in Sequential Uppaal

η is accessible by a non-negative integer offset, such that η[0] = a∅ and
η[ik] = ak for every offset ik where k ∈ [1, n].

For outputting the symbolic trace, Uppaal feeds an action trace η into a
trace generation pipeline (Figure 8) dedicated for computing π. This pipeline
has Delay and Successor filters connected in a loop. Firstly η is transformed
into a forward sequence ω = (a1, a2, · · · , an−1, an). In every iteration, an ac-
tion transition is retrieved (by the pump) from ω in sequence, and inserted
into Successor together with the state processed by Delay for computing ev-
ery symbolic state in π. The loop stops when all actions in ω have been used.
Initial state S0 is put at the head of π, and inserted at the delay stage initially.

Let function TraceID(η) return the trace-id (offset of the last action trac-
tion) of a finite action trace η. Let |η| denote the length (number of actions) of
η excluding a∅. Given a trace-id, we can extract a unique finite action trace
by going through the links backward from the last action an to a∅.

Definition 20. Let function Trace(S0, TraceID(η)) describes the trace generation
pipeline, where S0 is the initial state and η is a finite action trace. The complete
finite symbolic trace π corresponding to η is built by concatenating the output of
Trace(S0, TraceID(η)) at the back of S0.

5.2.2 Design Choices

Assume when the sequential TOR algorithm (Algorithm 2 in Section 2.2.1)
terminates, a finite symbolic trace π = S0 ; S1 ; S2 ; S3 ; S4 ; S5 ;

S6 ; S7 ; S8 that is time optimal with the goal state of S8, exists in the
generated state-space. The Trace filter maintains an action trace η = a∅ ←
a1 ← a2 ← a3 ← a4 ← a5 ← a6 ← a7 ← a8 corresponding to π.

Figure 9-(a) shows an imaginary situation when the distributed memory
algorithm (Algorithm 3) running on three workers (with P0 as the root) ter-
minates. The state-space is partitioned, and the finite symbolic trace π is also
divided into four segments stored inside the three workers. Emigrant states
S2, S5 and S7 were deallocated (struck out in the figure) after being sent to
their owner processes. The Trace filter in each process kept an action segment
of η locally. Note that action a8 is dangling (no parent action to connect to) in
P1, because its previous action a7 is in P2. To generate the complete symbolic
trace π in this situation, there are two difficulties to solve: (1) how to find all
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segments of η among all workers and sort them in order; (2) how to run the
trace generation pipeline using segments of η.

For solving the first difficulty, trace-id of each action segment is sent to-
gether with the emigrant state in the reachability analysis phase, so that all
distributed action segments will maintain the ordered links between them.
An action segment can find out in which worker process its preceding seg-
ment is stored. When the state message extended with a trace-id is received,
three steps are performed at the receiver side: (1) the received state is inserted
into the PWList; (2) a new null head is appended to the action list in the Trace
filter to match this state, and all action transitions fired out from this state are
linked to the newly added null head; (3) the same null head also uses an
additional field p to store a pair (source, trace-id) as the backward reference
to the preceding action segment in a remote process. In this pair, source is

(b)

a∅ ← a1 ← a2
S0 ❀ S1 ❀ (��S2) S2 ❀ S3 ❀ S4 ❀ (��S5)

S5 ❀ S6 ❀ (��S7)
a∅ ← a6 ← a7

P0 P1

P2

(1) STATE 〈S2, i2〉

(3) STATE 〈S7, i7〉

(2) STATE 〈S5, i5〉

S7 ❀ S8
a∅ ← a3 ← a4 ← a5,
a′∅ ← a8

a′∅.p = (2, i7)a∅.p = (⊥,⊥)

a∅.p = (1, i5)

a∅.p = (0, i2)

(a)

a∅ ← a1 ← a2
S0 ❀ S1 ❀ (��S2) S2 ❀ S3 ❀ S4 ❀ (��S5)

S5 ❀ S6 ❀ (��S7)
a∅ ← a6 ← a7

P0 P1

P2

(1) STATE 〈S2〉

(3) STATE 〈S7〉

(2) STATE 〈S5〉

S7 ❀ S8
a∅ ← a3 ← a4 ← a5, a8

Fig. 9: Distributed Reachability Termination Status. (a) Sending Pure STATE Messages. (b)
Carrying the Backward Reference Information trace-id in STATE Messages
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ID of the source process sending the emigrant state, and trace-id, which is
sent together with the state, is the trace-id of the preceding action segment.

Figure 9-(b) shows when trace-ids are sent with emigrant states, the or-
dered link between action segments of η are maintained and stored in the
null heads as a∅.p. The initial null head at P0 uses a∅.p = (⊥,⊥) to indicate
it is the head of all action traces with no preceding trace segments. When P1
received message (1), a∅.p was assigned to (0, i2) meaning that the preceding
segment with its trace-id of i2 is at P0. The same rule applied to P2 receiv-
ing message (2). When P1 received message (3), a new null head a′∅ was
appended into the list container of Trace with its p field assigned to (2, i7),
before action a8 was linked to a′∅. We can also see a′∅ separates two action
segments a3 ← a4 ← a5 from a8 as a delimiter at P1.

For solving the second difficulty of running the trace generation pipeline
using action segments, there are two modes to follow: centralized or dis-
tributed. In the centralized mode, all distributed action segments of η are
sent to the root process for sorting and concatenating the complete action
trace η, which is fed to the trace generation pipeline at root. This method
looks straightforward and elegant, but it is practically challenging to imple-
ment, because the elements of the action segment are pointers to local mem-
ory which are not relocatable. An action is associated with a large amount
of static information about the model and may link to some dynamic infor-
mation of the symbolic state. In principle it is possible to extract the concrete
action information pointed to by an action pointer, send this information to
the root process and reconstruct this action. But it requires a very deep un-
derstanding and insight about Uppaal internals.

We choose the distributed mode where trace generation pipeline is run on
each worker process using the local action segments in each process as input.
The generated symbolic trace segments are sent to the root process for sorting
and concatenating. But according to function Trace in Definition 20, we also
need the head symbolic state for each action segment as the argument.

5.2.3 Distributed Trace Collection Procedure

The distributed trace collection algorithm (further detailed in Appendix A of
Part II) works through three phases:

Phase 1 Probe which worker reached the goal state. Command that worker
to start phase 2 backward propagation. Messages ASK, ACK and
GO are used in phase 1.

Phase 2 Backward propagate the action segments from the goal state to the
initial state using the backward reference information maintained
inside a∅.p. Meanwhile, transfer a backward reference linking two
adjacent action segments residing in two processes into the forward
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references. When the initial null head a∅.p = (⊥,⊥) preceding the
action a1 is reached at root, start phase 3 forward propagation. Mes-
sage GOB is used in phase 2.

Phase 3 Forward propagate the action segments in sequence based on the
forward references built in phase 2. Run the trace generation pipe-
lines on different workers to generate symbolic trace segments us-
ing all associated action segments. Send generated symbolic trace
segments to the root process for sorting and concatenating. Mes-
sages GOF and COLLECT are used in phase 3.

In phase 2 we build reverse indexes for the actions, because the length of
the complete action trace is not known in advance. That is, for an action trace
of length N, the reverse index for the last action is 0, and the reverse index
for the first action is N − 1. For example we can mark the reverse index of
each action in η in the superscript position as η = a∅ ← a7

1 ← a6
2 ← a5

3 ←
a4

4 ← a3
5 ← a2

6 ← a1
7 ← a0

8 as shown in Figure 10.
Forward reference is a key-value pair. The key is the reverse index of the

head action in an action segment η∗. The value is a triple (length, trace-id,
rank), where length is |η∗|, trace-id identifies η∗, and rank is the rank
ID of the Mpi process where η∗ resides. Forward references are maintained
in a forward reference table in each worker, which are consulted by the GOF
message in phase 3 to find out which process has the next adjacent action
trace segment. For example at P0 in Figure 10-(b), the forward reference of
a local action segment η∗1 = a∅ ← a7

1 ← a6
2 is [7 : (2, i2, 0)], where key 7 is

the reverse index of a1, the triple value has |η∗1 | = 2, TraceID(η∗1 ) = i2 and
rank = 0. The other forward reference [5 : (0, 0, 1)] refers to the next remote
action segment η∗2 = a∅ ← a5

3 ← a4
4 ← a3

5 with the head reverse index of 5 at
P1. We omit the length and trace-id (set to zero) in the forward reference
for a remote action segment, because they are stored in the local forward
reference inside the process identified by rank.

Figure 10 demonstrates how the distributed trace collection works after
the termination status of Figure 9-(b). Figure 10-(a) shows the probe phase 1.
(1) Root P0 broadcasts ASK to P1 and P2. (2) P1 replies ACK 〈true〉, because
P1 reached the goal state S8. P2 replies ACK 〈false〉 for it does not have a
goal state. (3) P0 sends GO to P1 to start the backward phase on P1.

Figure 10-(b) shows the backward phase 2. (1) P1 extracts a′∅ ← a0
8 by the

trace-id i8, inserts the corresponding local forward reference [0 : (1, i8, 1)] into
the forward travel table, determines from a′∅.p = (2, i7) that the preceding
action segment with trace-id i7 is at P2, then sends a message GOB 〈1, i7〉 to
P2 because the tail action of the preceding action segment should have the
reverse index of 1 and trace-id of i7. (2) Once P2 receives the GOB message,
it firstly inserts [0 : (0, 0, 1)] into the table as the forward reference for the
remote adjacent action segment a′∅ ← a0

8 at P1. After that it extracts a∅ ←
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(a)

a∅ ← a1 ← a2
S0 ❀ S1 ❀ (��S2)

S5 ❀ S6 ❀ (��S7)
a∅ ← a6 ← a7

P0 P1

P2

(3) GO

S2 ❀ S3 ❀ S4 ❀ (��S5)
S7 ❀ S8

a′∅ ← a8

a′∅.p = (2, i7)
a∅.p = (0, i2)

a∅.p = (⊥,⊥)

a∅.p = (1, i5)

a∅ ← a3 ← a4 ← a5,(1) ASK

(2) ACK 〈false〉
(1) ASK

(2) ACK 〈true〉

(b)

P0 P1

P2

(1) GOB 〈1, i7〉

a∅ ← a71 ← a62
a′∅ ← a08

a∅ ← a26 ← a17

(2) GOB 〈3, i5〉

(3) GOB 〈6, i2〉

[5 : (3, i5, 1)]
[2 : (0, 0, 2)]
[0 : (1, i8, 1)]

[7 : (2, i2, 0)]

[2 : (2, i7, 2)]
[0 : (0, 0, 1])

a′∅.p = (2, i7)
a∅.p = (0, i2)

a∅.p = (⊥,⊥)

a∅.p = (1, i5)

a∅ ← a53 ← a44 ← a35,

[5 : (0, 0, 1)]

(c)

P0 P1

P2

a∅ ← a71 ← a62 a∅ ← a53 ← a44 ← a35,
a′∅ ← a08

a∅ ← a26 ← a17

(1) GOF 〈5, S2〉

[5 : (3, i5, 1)]
[2 : (0, 0, 2)]
[0 : (1, i8, 1)]

[7 : (2, i2, 0)]
[5 : (0, 0, 1)]

[2 : (2, i7, 2)]
[0 : (0, 0, 1)]

(2) GOF 〈2, S5〉

a∅.p = (1, i5)

a′∅.p = (2, i7)
a∅.p = (0, i2)

(3) GOF 〈0, S7〉

COLLECT 〈Trace(S2, i5)〉
a∅.p = (⊥,⊥)

COLLECT 〈Trace(S7, i8)〉

COLLECT 〈Trace(S5, i7)〉

Fig. 10: Distributed Trace Collection in Three Phases: (a) Probe, (b) Backward, and (c) Forward.
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a2
6 ← a1

7 by the received trace-id i7, inserts the local forward reference [2 :
(2, i7, 2)], determines from a∅.p = (1, i5) that the preceding action segment
with trace-id i5 is at P1, then sends a message GOB 〈3, i5〉 to P1. (3) Once
P1 receives the GOB message, it inserts the remote forward reference [2 :
(0, 0, 2)], extracts a∅ ← a5

3 ← a4
4 ← a3

5 by the received trace-id i5, inserts
the local forward reference [5 : (3, i5, 1)], then send a message GOB 〈6, i2〉
to P0. (4) Once P0 receives the GOB message, it inserts the remote forward
reference [5 : (0, 0, 1)], extracts a∅ ← a7

1 ← a6
2, inserts the local forward

reference [7 : (2, i2, 0)], notices a∅.p = (⊥,⊥) and starts the forward phase.
Figure 10-(c) shows the forward phase 3. (1) P0 finds the local forward

reference [7 : (2, i2, 0)] by the reverse index 7 of a1, generates a symbolic
trace segment π∗ = Trace(S0, i2) =; S1 ; S2, assembles π = S0 ∪ π∗

locally, determines from the remote forward reference [5 : (0, 0, 1)] that the
next adjacent action segment has the head reverse index of 5 at P1, then
sends a message GOF 〈5, S2〉 to P1. (2) Once P1 receives the GOF message, it
finds the local forward reference [5 : (3, i5, 1)] by the received reverse index
5, generates a symbolic trace segment π∗ = Trace(S2, i5) =; S3 ; S4 ; S5,
sends a message COLLECT 〈π∗〉 to P0, then sends a message GOF 〈2, S5〉 to
P2 based on the remote forward reference [2 : (0, 0, 2)]. (3) Once P2 receives
the GOF message, it finds the local forward reference [2 : (2, i7, 2)] by the
received reverse index 2, generates π∗ = Trace(S5, i7) =; S6 ; S7, sends
a message COLLECT 〈π∗〉 to P0, then sends a message GOF 〈0, S7〉 to P1
based on the remote forward reference [0 : (0, 0, 1)]. Finally P1 receives the
GOF message, it finds the local forward reference [0 : (1, i8, 1)], generates
π∗ = Trace(S7, i8) =; S8, sends a message COLLECT 〈π∗〉 to P0, and stops
the forward phase because the tail action a8 (of reverse index 0) is reached.
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A Distributed Trace Collection Algorithm

Algorithms 4 and 5 show the distributed trace collection procedure. It works
through three phases: (1) probe processes having the goal state, (2) backward
propagate to build forward reference tables, and (3) forward propagate to
collect symbolic trace segments. Variable FTable is a forward reference table.
It is built in the backward phase and used in the forward phase. FTable maps
the head reverse index of an action segment η∗ to a triple (length, trace-id,
rank), where length is |η∗|, trace-id identifies η∗, and rank refers to the
worker η∗ resides. Variable gtid with the default value of -1 is set in the
reachability phase. If an action segment leads to a goal state with the optimal
cost, gtid is set to the trace-id of that action segment. Only the root process
has the symbolic trace container π for concatenating symbolic state segments.
Container π has the initial state S0 inserted initially. Six types of messages
are defined: ASK, ACK and GO for the probe phase 1; GOB for the backward
phase 2; GOF and COLLECT for the forward phase 3.

The root process executes RootMain to initiate and manage the distributed

Algorithm 4: Distributed Trace Collection Part I

(Local Variables)
FTable←− ∅, gtid (set in reachability analysis), π = S0 (p = Root)

(Message Types)
ASK, ACK, GO, GOB, GOF, COLLECT

Procedure RootMain()

1 if gtid 6= −1 then Backward(0, gtid)
2 else
3 Broadcast(ASK), Await(receive all ACK(v) responses)
4 if ∀ v = False then Stop cluster, report “Not Reachable.”
5 Select one worker j with v = True, Send(GO, j)

6 Await(receive all COLLECT(π∗) responses)
7 Sort and concatenate all π∗s into π.
8 Stop cluster, report “Reachable” and π.

(Message Processing Rules)
9 When receive ASK from Root: Send(ACK, (gtid 6= −1), Root)

10 When receive GO from Root: Backward(0, gtid).
11 When receive GOB(idx, tid) from worker j:
12 if idx 6= 0 then FTable.insert((idx− 1) : (0, 0, j))
13 Backward(idx, tid).
14 When receive GOF(idx, S): Forward(idx, S).
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trace collection procedure. Meanwhile all workers continuously handle re-
ceived messages according to the message processing rules until they get ter-
minated by root. Inside RootMain, root directly jumps to the backward phase
if it has found a goal state and hence gtid 6= −1 at line 1. The probe phase 1
ranges from lines 3 to 5. It broadcasts ASK messages to ask if any worker has
reached a goal state. If all ACK responses carry False, it means none worker
has reached a goal state. Otherwise, it selects one worker9 whose gtid 6= −1,
then sends a GO message to that worker to start the backward propagation.
Line 6 receives all symbolic trace segments π∗s in the forward phase. Finally,
it assembles all received π∗s into a complete symbolic trace π.

Let function Extract(tid) return the longest action segment η∗ referenced
by the given trace-id tid in the action list container of the Trace filter. For
example, in process P1 of Figure 10-(c) in Section 5.2.3, Extract(i8) = a′∅ ←
a0

8, and Extract(i5) = a∅ ← a5
3 ← a4

4 ← a3
5. Let function Tail(π∗) return the

tail symbolic state of a symbolic trace segment π∗.
In the backward phase, the GOB protocol backward propagates the adja-

cent action segments connecting the goal state to the initial state. The back-
ward reference information left in a∅.p during the reachability analysis plays

Algorithm 5: Distributed Trace Collection Part II

Procedure Backward(idx, tid)
1 η∗ = Extract(tid), a∅ ←− η∗[0], len←− |η∗|
2 if len > 0 then
3 idx←− idx + len− 1
4 FTable.insert(idx : (len, tid, p)), tid←− tid + 1
5 if a∅.p 6= (⊥,⊥) then
6 tid←− a∅.p.trace-id, src←− a∅.p.source
7 Send(GOB, idx, tid, src)
8 else Forward(idx− 1, S0)

Procedure Forward(idx, S)
9 (len, tid, pid)←− FTable.find(idx), π∗ ←− Trace(S, tid)

10 if p = Root then Sort and concatenate π∗ into π.
11 else Send(COLLECT, π∗, Root)
12 idx←− idx− len + 1
13 if idx > 0 then
14 idx←− idx− 1, S = Tail(π∗)
15 (len, tid, pid)←− FTable.find(idx)
16 Send(GOF, idx, S, pid)

9It is possible that more than one worker reach the goal state. Root will arbitrarily choose
one such worker to contact so that only one symbolic trace in generated.
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an important role here. The product of this phase is a forward reference
table containing the guiding information for the forward phase. Procedure
Backward takes two parameters: the reverse index idx and the trace-id tid of
an action segment η∗. It is called for the first time at either line 1 or line 10 in
Algorithm 4. Inside Backward, after the target action segment η∗ is extracted
given tid from the Trace filter, the null head and length of η∗ are obtained at
line 1. Line 3 computes the head reverse index of η∗. Line 4 insert into the
forward reference table a local forward reference corresponding to η∗. Then
tid is self-increased by one to match the tail action of the preceding action
segment at a remote worker. If the initial null head a∅.p = (⊥,⊥) is not
found in η∗ at line 5, the backward phase should continue. The backward
reference is obtained from a∅.p, and a GOB message is sent to the worker
which has the preceding action segment. Otherwise backward propagation
stops and the forward phase 3 starts at root at line 8. Note that tid has al-
ready been one beyond the reverse index of a0, thus it should minus one.
Separately, line 12 in Algorithm 4 inserts a remote forward reference for the
adjacent action segment at the source process j, from which a worker receives
a GOB message. The head reverse index of the next adjacent action segment
is idx− 1, because the received idx was already self-increased by one at line 4
in Backward at process j.

In the forward phase, the GOF protocol forward propagates action seg-
ments guided by the local and remote forward references. It invokes the
local trace generation pipeline on each worker to generate symbolic trace
segments, which are sent to root for assembling the complete symbolic trace.
Procedure Forward takes two parameters: the head reverse index of an ac-
tion segment η∗, and the head symbolic state that fires η∗. When Forward is
called for the first time at line 8 in Backward, tid is the reverse index of a0,
and S = S0. Line 9 obtains the triple referencing the local action segment
η∗ by tid. The symbolic trace segment π∗ corresponding to η∗ is generated
by the local trace generation pipeline (denoted by Trace as in Definition 20
of Section 5.2.1). Root will assemble its local π∗ into π locally. Other work-
ers send π∗s by the COLLECT messages to root. Line 12 computes the tail
reverse index of η∗ for checking if the tail action (with idx = 0) of the com-
plete action trace is reached at line 13. Otherwise, the forward phase should
continue. Line 14 computes the head reverse index of the following adjacent
action segment resides in a remote worker. The corresponding head sym-
bolic state is obtained at the tail of π∗. The rank ID of the remote worker is
obtained by looking up the remote forward reference by the newly calculated
idx at line 15. Finally a GOF message is sent to the target remote worker.
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1. Introduction

Abstract

Time optimal reachability analysis employs model-checking to compute goal states
that can be reached from an initial state with a minimal accumulated time dura-
tion. The model-checker may produce a corresponding diagnostic trace which can
be interpreted as a feasible schedule for many scheduling and planning problems,
response time optimization etc. We propose swarm verification to accelerate time op-
timal reachability using the real-time model-checker Uppaal. In swarm verification,
a large number of model checker instances execute in parallel on a computer clus-
ter using different, typically randomized search strategies. We develop four swarm
algorithms and evaluate them with four models in terms scalability, and time- and
memory consumption. Three of these cooperate by exchanging costs of intermediate
solutions to prune the search using a branch-and-bound approach. Our results show
that swarm algorithms work much faster than sequential algorithms, and especially
two using combinations of random-depth-first and breadth-first show very promising
performance.

1 Introduction

Time-optimal reachability (TOR) analysis is a novel approach for solving
scheduling and planning problems using model checking techniques. Given
the model of a system, a model checker can automatically and exhaustively
check whether this model satisfies a given specification. It may produce a
diagnostic trace (a.k.a. counterexample, or witness) if the model fails to sat-
isfy the specification. Around year 2000, researchers noticed that scheduling
problems of real-time systems can be reformulated to time optimal reacha-
bility problem on timed automata [1, 2]. A diagnostic trace to a goal state
offered by real-time model checkers such as Uppaal [3] and Kronos [4]
can be interpreted as a feasible schedule because the trace carries actions
of the model as well as timing information of these actions to the goal. Com-
pared with the classical numerical method for scheduling and planning such
as linear programming, dynamic programming etc, modeling describes the
real-time behavior, constrains and interactions of components in a natural
way. The other advantage is flexibility, because model checkers efficiently im-
plements well known search algorithms, such as breadth-first-search (BFS),
depth-first-search (DFS), random-depth-first-search (RDFS) etc, transparently
of the input models. Users can therefore update topological and timing con-
strains to the model easily without being forced to change the underlying
algorithms [5].

Related Work. Branch and Bound (B&B) is an algorithm paradigm widely
applied in optimization and planning algorithms on graphs. The purpose of
using B&B is to avoid enumeration the entire solution space. By a bounding
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function and the current best solution to the goal, B&B allows the algorithm
to effectively prune parts of the solution space that guarantee do not to lead
to an optimal solution [6]. Behrmann et al. presented a branch-and-bound
minimal-cost reachability algorithm on priced timed automata (PTA) in [7,
8]. Another way to restrict and guide the state-space exploration is adding
constrains on transitions [9].

As the number of components in the model increases, the size of the
state-space may grow exponentially – the state-space explosion problem. One
approach to push that barrier is to run a distributed model checker on a com-
puter cluster such as distributed Uppaal [10, 11], DiVinE [12], LTSmin [13],
etc. These tools work by partitioning the state-space and distributing the
parts among distributed CPU and memory resources using message passing.
Given sufficient memory and time, this paradigm can verify very large mod-
els. A different paradigm called swarm verification was proposed by Holz-
mann et al. in [14]. A number of Spin instances configured with diverse
search strategies and bitstate hashing run in parallel. Even though bitstate
hashing may lead to false positive results, swarm can give high quality re-
sult fast even under restricted time and memory. Another approach named
agent-based search was proposed by Rasmussen et al. in [15]. Various agents
with diverse search patterns can put (and get) tasks to (and from) a pool,
where tasks are sub-paths that lead to promising parts of the state-space.

Contribution. We design and implement swarm verification algorithms
for the Uppaal model-checker to solve the time optimal reachability problem.
The large number of random searches can explore different parts of the state-
space, thus finding different traces to the goal state in parallel and avoiding
local optimality. Therefore this approach enable users to get optimal (or near
optimal) results fast without exploring the full state-space. When time or
memory are limited, this approach can still give high quality near optimal
results. Because TOR typically involves the notations of cost and pruning, it
may be beneficial if the instances exchange the better cost by message pass-
ing. This cooperative feature among instances would lead to more efficient
pruning on all swarm instances, thus achieve less execution time the lower
memory consumption. We developed four swarm algorithms based on ran-
dom depth search:

P-RDFS is the basic swarm algorithm where all Uppaal instances do
RDFS independently in parallel with diverse random seeds. Local pruning
(avoid exploring states that have a cost worse than the so-far best solution)
within each instance is enabled. Any instance that completes first stops other
peers.

S-RDFS is a cooperative version of P-RDFS where all instance exchange
better costs by message passing.

S-Mix is a variant of S-RDFS where one instance runs BFS rather than
RDFS.
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S-Agent is an agent based version where one BFS Uppaal instance serve
as root node, while all other instances are agents running RDFS. The root
takes charge of termination. Only the root starts search from the initial state.
An agent requests a state as a task from the root to search from. When a
certain time limit is met, the agent will ask for a new state.

RDFS is good starting point because it is effective in finding sequences of
usable (not necessarily optimal) solutions in very large inexhaustible state-
spaces [8]. We compare S-RDFS with P-RDFS for evaluating the benefit of
sharing costs among swarm instances. The motivation for S-Mix and S-Agent
is, as also found by Behrmann in [10], that in Uppaal BFS often completes
much faster than DFS/RDFS because DFS/RDFS can cause higher degree of
fragmentation of the underlying symbolic state-space requiring many more
symbolic states. On the other hand, BFS has an inherent drawback that it typ-
ically only reports results late when it has searched nearly all states, making
it infeasible for very large state-spaces. S-Mix and S-Agent algorithms com-
bine advantages of BFS and RDFS such that RDFS can report usable solutions
fast and BFS may terminate fast.

We propose the following metrics to compare the algorithms:
Metric 1: time to find the optimal result (topt). The minimum run time for

any Uppaal instance to find the fastest trace (or schedule) to the goal. Users
wish to get the optimal result fast even before an algorithm terminates.

Metric 2: time to terminate and thus prove the optimal result (tprov). Users
prefer an algorithm to terminate fast.

Metric 3: time to progressively improving solutions (a.k.a. near optimal
solutions). It shows how fast results converge to the optimal as a function of
runtime. In scheduling problems, the absolute optimal solution is not always
required, but a sufficiently good one may suffice. Particularly when algo-
rithms cannot terminate due to time or memory constrains, faster converge
speed produces better near optimal results.

Metric 4: memory consumption when algorithms terminate normally or
due to timeout. A smaller memory consumption improves scalability by
enabling more parallel instances, or more available free memory to other
instances.

Organization. The rest of the paper is structured as follows. Section 2
defines the timed automata and sequential TOR algorithm. Section 3 shows
the swarm TOR algorithms. Section 4 compares the performance of sequen-
tial and swarm TOR algorithms using benchmark experiments on the cluster.
Section 5 concludes.

75



Paper A.

2 Sequential Time Optimal Reachability

This section recalls the basic theory of timed automata and the sequential
time-optimal reachability algorithm.

2.1 Timed Automata

Let X = {x, y, ...} be a finite set of clocks. We define B(X) as the set of
clock constraints over X generated by grammar: g, g1, g2 ::= x ./ n | x− y ./
n | g1 ∧ g2, where x, y ∈ X are clocks, n ∈N and ./∈ {≤,<,=,>,≥}.
Definition 1. A Timed Automaton (TA) [16] is a 6-tupleA = (L, `0, X, Σ, E, Inv)
where: L is a finite set of locations, `0 ∈ L is the initial location, X is a finite set of
non-negative real-valued clocks, Σ is a finite set of actions, E ⊆ L× B(X)× Σ×
2X × L is a finite set of edges, Inv : L→ B(X) sets an invariant for each location.

Definition 2. The semantics of a timed automaton A is a Timed Transition Sys-
tem (TTS) SA = (Q, Q0, Σ,→) where: Q = {(`, v) | (`, v) ∈ L×RX

≥0 andv |=
Inv(`)} are states, Q0 = (`0, 0) is the initial state, Σ is the finite set of actions,
→⊆ Q × (Σ ∪ R≥0) × Q is the transition relation defined separately for action
a ∈ Σ and delay d ∈ R≥0 as:
(i) (`, v) a−→ (`′, v′) if there is an edge (`

g,a,r−−→ `′) ∈ E such that v |= g,
v′ = v[r 7→ 0] and v′ |= Inv(`′),

(ii) (`, v) d−→ (`, v + d) such that v |= Inv(`) and v + d |= Inv(`).

Definition 3. A trace ρ of A can be expressed in SA as a sequence of alternative

delay and action transitions starting from the initial state: ρ = q0
d1−→ q′0

a1−→
q1

d2−→ q′1
a2−→ · · · dn−→ q′n−1

an−→ qn · · · , where ai ∈ Σ, di ∈ R≥0, qi is state
(`i, vi), and q′i is reached from qi after delay di+1. State q is reachable if there exists
a finite trace with the final state q. Let ExecA denotes the set of traces of A and
Exec f

A denotes the set of finite traces.

Definition 4. The span of a finite trace ρ ∈ Exec f
A is defined as the finite sum

Σn
i=1di. For a given state (`, v), the minimum span of reaching the state

MinSpan(`, v) is the infimum of the spans of finite traces ending in (`, v). For a
given location `, the minimum span of reaching the location MinSpan(`) is the
infimum of spans of finite traces ending in (`, v) for all possible v.

2.2 Sequential Time Optimal Reachability Algorithm

The semantics of TA will result in an infinite transition system. Real-time
model checkers therefore build a finite state abstraction of the transition sys-
tem. Uppaal works by exploring a finite symbolic reachability graph, where the
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nodes are symbolic states. A symbolic state is a pair (`, Z), where ` ∈ L is a
location, and Z = {v | v |= gz, gz ∈ B(X)} is a convex set of clock valua-
tions called zone [17], which is normally efficiently represented and stored in
memory as difference bound matrices (DBM) [18].

Definition 5. The cost function on a symbolic state (`, Z) is defined as
MinCost(`, Z) = inf(MinSpan(`, v)) where v ∈ Z. It is the span of a finite sym-
bolic trace ending in (`, Z).

The sequential TOR algorithm is shown in Algorithm 1. It is similar to
standard reachability algorithm but with B&B support. Waiting and Passed

lists maintain the states waiting to be explored and states already explored
respectively. Initially Passed is empty and Waiting holds the initial state.
Cost records the current best result that is infinity in the beginning; and
Order configures the search order. Until Waiting list becomes empty, pro-
cedure Main invokes the Search procedure in a loop. Inside Search, a state
is picked out of Waiting according to Order. If the state is a goal state with
a lower cost than the current Cost at line 6, Cost is updated. Meanwhile a
near optimal solution to the goal is found. If the state is not goal, it is subject
to symbolic state inclusion checking and B&B elimination rule at line 8. The
state is pruned (discarded here) if either it is included in Passed or its cost
function is no less than the current Cost. Otherwise, it is added to Passed

and its successors are added to Waiting.

Algorithm 1: Sequential Time Optimal Reachability

Passed←− ∅, Waiting←− {(`0, Z0)}, Cost←− ∞
Order ∈ {Dfs, Bfs, Rdfs}
Procedure Main()

1 while Waiting 6= ∅ do
2 Search()

3 return Cost

Procedure Search()

4 select (`, Z) from Waiting on Order

5 if (`, Z) |= Goal then
6 if MinCost(`, Z) < Cost then
7 Cost←− MinCost(`, Z)

8 else if (`, Z) 6∈ Passed and MinCost(`, Z) < Cost then
9 add (`, Z) to Passed

10 forall the (`′, Z′) such that (`, Z) ; (`′, Z′) do
11 add (`′, Z′) to Waiting
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3 Swarm Time Optimal Reachability

This section describes the four swarm algorithms which are extended from
the sequential TOR algorithm. In the basic version (P-RDFS), none swarm
instances exchange costs. In the cooperative versions (S-RDFS, S-Mix and S-
Agent), swarm instances will exchange the latest better costs they have found.

3.1 Basic Swarm RDFS Algorithm

Algorithm 2 shows the basic swarm RDFS TOR algorithm executed on all
computing nodes. It is in fact the sequential RDFS TOR algorithm (in Al-
gorithm 1) with different random seed run in parallel. Any instance that
finishes the state-space exploration first stops the other instances (at line 3)
whose Terminate flag will be set to true.

Algorithm 2: Basic Swarm RDFS Time Optimal Reachability (P-RDFS)

Passed←− ∅, Waiting←− {(`0, Z0)}, Cost←− ∞
Order←− Rdfs, terminate←− false

Procedure Main()

1 while Waiting 6= ∅ and ¬terminate do
2 Search()

3 stop other instances
4 return Cost

3.2 Cooperative Swarm RDFS Algorithm

Algorithm 3 shows the cooperative swarm RDFS TOR algorithm. All in-
stances do RDFS, meanwhile collaborate by exchanging better costs they have
found. This algorithm resembles Algorithm 2 in the data structures Passed,
Waiting, Cost, and the local search procedure Search at line 4. Therefore
Algorithm 3 mainly highlights the additional communication supplement.
A new variable Ecost maintains the external better cost received from the
network and is initialized to infinity. The UPDATE message carries a new
better cost. At the beginning of each iteration inside Main, Ecost compares
with Cost. When Ecost is smaller, a better cost has been found by another
instance, and Cost is updated to this. When Cost is smaller, the current in-
stance found a better cost, and Cost is assigned to Ecost by procedure Update
and broadcasted. Line 8 handles reception of a cost from the network, and
updates Ecost.
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Algorithm 3: Cooperative Swarm RDFS Time Optimal Reachability
(S-RDFS)

(Local Variables)
Passed←− ∅, Waiting←− {(`0, Z0)}
Cost←− ∞, Ecost←− ∞
Order←− Rdfs, terminate←− false

(Message Types)
UPDATE

Procedure Main()

1 while Waiting 6= ∅ and ¬terminate do
// lines 2,3 are called atomically

2 if Ecost < Cost then Cost←− Ecost

3 if Cost < Ecost then
Update(Cost), Broadcast(UPDATE, Cost)

4 Search()

5 stop other instances
6 return Cost

Procedure Update(NewCost) // called atomically

7 if NewCost < Ecost then Ecost←− NewCost

(Message Processing Rules)
8 When a node receives UPDATE〈Ncost〉, Update(Ncost).

Algorithm 4: Cooperative Swarm Mix Time Optimal Reachability
(S-Mix)

(Local Variables)

Order←−
{

BFS if p = 0,
RDFS otherwise.

The rest is the same as Algorithm 3

3.3 Cooperative Swarm Mix Algorithm

Algorithm 4 shows the cooperative swarm Mix TOR algorithm. It differs
from Algorithm 3 only in the search order configuration on one instance. If
the process id p equals 0, that instance will do BFS rather than RDFS.
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Algorithm 5: Cooperative Swarm Agent Time Optimal Reachability
(S-Agent)

(Local Variables)
Passed←− ∅, Cost←− ∞, Ecost←− ∞

Waiting←−
{ {(`0, Z0)} if p = root,

∅ otherwise.

Order←−
{

BFS if p = root,
RDFS otherwise.

(Message Types)
UPDATE, REQUEST, ISSUE

Procedure MainRoot()

1 while Waiting 6= ∅ do
same as lines 2 to 4 in Algorithm 3

2 stop all agents
3 return Cost

Procedure MainAgent()

4 Iteration←− 0, Limit ∈N, terminate←− false

5 while ¬terminate do
6 if Waiting = ∅ then

Send(REQUEST, Root), Recv(ISSUE)
// lines 7,8 are called atomically

7 if Ecost < Cost then Cost←− Ecost

8 if Cost < Ecost then
Update(Cost), Broadcast(UPDATE, Cost)

9 Search(), Iteration←− Iteration + 1
10 if Iteration ≥ Limit then
11 Send(REQUEST, Root), Recv(ISSUE), Iteration←− 0

(Message Processing Rules)
12 When a node receives UPDATE〈Ncost〉: Update(Ncost).
13 When root receives REQUEST from agent i: select (`′, Z′) from

Waiting, Send(ISSUE, (`′, Z′), i).
14 When an agent receives ISSUE〈(`∗, Z∗)〉 from root: Waiting←− ∅,

Passed←− ∅, Waiting←− {(`∗, Z∗)}.

3.4 Cooperative Swarm Agent Algorithm

Algorithm 5 shows the swarm agent TOR algorithm. Its main differences
from the two preceding algorithms are: (1) only the root starts search from
the initial state, an agent periodically requests a new state from root to
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search from; (2) only the root takes charge of termination. The root invokes
MainRoot doing BFS. Agents invoke MainAgent doing RDFS. The message
types are extended with (1) REQUEST for agents to ask states from the root,
and (2) ISSUE for root to send a state to an agent.

In MainAgent, Iteration is self-increased in every iteration, and is com-
pared with a threshold Limit at line 10 to decide if this agent should request
a new state from root. Because initially the Waiting list of an agent is empty,
it will request a state and wait to receive the issued state at line 6. This line
also ensures an agent never exit prematurely if it exhausts its Waiting list
too fast. Finally, the message handing rules are expanded for REQUEST and
ISSUE messages. Once receive a REQUEST message, the root selects an un-
explored waiting state, wraps it in an ISSUE message, and sends to a agent.
Once receive an ISSUE message, the agent clears its Passed and Waiting

lists, extracts the issued state from the message, and inserts this state into
Waiting.

4 Experiments

We developed a new version of Uppaal implementing the swarm algorithms
using the Mpi library. P-RDFS was relatively simple to implement because
Uppaal only needed to be modified to handle coordination of termination.
S-RDFS and S-Mix required a moderate amount of modification to also ex-
change cost. S-Agent was most involved as it also required communication of
symbolic states and careful interaction with Uppaal memory management.

We ran our experiments on a cluster with 9 computing nodes, each having
1 Tb memory (NUMA architecture) and 64 cores at the frequency of 2.3GHz
(4 AMD Opteron 6376 Processors each with 16 cores), a 1 SATA Tb disk and
Infiniband interconnection. Each sequential algorithm was executed 15 runs
on a single core. Swarm algorithms were executed 15 runs for every core
setting: 2, 4, 8, 16, 32, 64, 128, 256, 512.

4.1 Models

The first three Uppaal models are up-scaled versions of those in normal Up-
paal distribution. The fourth model is transformed from a task graph bench-
mark1.

Job-Shop-6 (jb-6). Six people want to read a single piece of four-section
newspaper. Each person has his own preferred reading sequence, and can
spend different time on each section. When one person is reading a section,
others who are also interested in it must wait. The objective is to find the
time optimal schedule for all six people to finish reading.

1http://www.kasahara.elec.waseda.ac.jp/schedule/stgarc_e.html
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Aircraft-Landing-15 (alp-15). 15 aircrafts need to land on two runways.
Each aircraft has a preferred target landing time. It can also speed up and
land earlier or stay longer in the air and land later if necessary. Furthermore,
aircrafts cannot land back to back on the same runway due to wake turbu-
lence by the previous aircraft. Thus there are certain minimum constraints
on the separation delay between aircrafts of different sizes. The objective is
to find the time optimal schedule for all aircrafts to land safely.

Viking-Bridge-15 (vik-15). 15 vikings want to cross a bridge in the dark-
ness. The bridge is damaged and can only carry two people at the same
time. To find the way over the bridge the vikings need to bring a torch, but
the group has only one torch to share. The 15 members of the group need
different time to cross the bridge (one-way), which for simplicity is classified
into four levels: 5, 10, 20 and 25 time units. The objective is to find the time
optimal schedule for those 15 vikings to cross the bridge safely.

Task-Graph-88 (task-88). A robot control program has 88 computational
tasks each of which has precedence constraints (predecessor tasks) among
[0,3] and processing time among [1,111]. A task can start only if all its pre-
decessor tasks complete. Now the control program is going to be assigned
to four processors at the speeds of [1,1,2,4]. The objective is to determine a
non-preemptive schedule that minimizes the time for all tasks to terminate.

4.2 Time to Find or Prove Optimal Result (Metric 1 & 2)

Tables A.1 to A.3 show for the first three models the median runtime to
reach optimal cost (topt corresponding to metric 1), and runtime to prove

Table A.1: Runtime (sec) of Job-Shop-6

#C
BFS DFS RDFS

topt tprov topt tprov topt tprov
1 108 108 7877 9899 650 2283

#C
P-RDFS S-RDFS S-Mix S-Agent

topt tprov topt tprov topt tprov topt tprov
2 535 1996 459 1821 102 102 39 99
4 310 1730 280 1683 102 102 25 98
8 176 1720 116 1653 101 102 17 97
16 100 1591 87 1506 99 101 14 97
32 65 1488 52 1494 64 99 13 96
64 32 1452 24 1385 24 98 16 95
128 4 1412 4 1367 4 98 29 95
256 2 1365 <1 1341 <1 98 28 95
512 <1 1337 <1 1263 <1 100 31 96
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Table A.2: Runtime (sec) of Aircraft-Landing-15

#C
BFS DFS RDFS

topt tprov topt tprov topt tprov
1 157 159 73 428 191 964

#C
P-RDFS S-RDFS S-Mix S-Agent

topt tprov topt tprov topt tprov topt tprov
2 87 845 93 873 91 91 66 90
4 42 737 35 729 46 90 21 91
8 22 712 16 727 17 89 25 88
16 17 676 11 699 11 89 6 86
32 2 638 1 633 2 89 12 86
64 <1 604 <1 582 <1 88 5 85
128 <1 597 <1 620 <1 88 2 84
256 <1 581 <0.1 565 <0.1 88 7 84
512 <1 585 <0.1 573 <0.1 117 5 86

optimal cost (tprov corresponding to metric 2). We want to know how swarm
algorithms scale as employing an increasing number of cores denoted by
#C (#C=1 for sequential algorithms). We set a 4-hour time bound for the
experiments, and use “-” to denote timeout.

Job-Shop-6. Comparing sequential algorithms, BFS is the fastest both to
reach and to prove optimal cost. DFS is slowest for both. RDFS is six times
slower than BFS in topt, and 21 times slower in tprov.

P-RDFS and S-RDFS steadily decrease in columns topt and tprove with in-
creasing number of cores. Above 16 cores they outperform BFS in topt. Below
64 cores S-RDFS works on average 20% faster than P-RDFS due to sharing
costs by messages but gradually saturates afterward. The proving time tprov
improves slower than topt. The reason is that swarm algorithms do not divide
its work load among cores (no data parallelism) so one instance must alone
complete the proof, and we cannot expect a big speed up. However, an im-
provement is still gained from the increase in probability that some instance
finds a low cost solution fast, resulting in more effective pruning.

Compared with S-RDFS, S-Mix has better topt at lower number of cores
(2 to 8), because the BFS node works fast and dominates. When more RDFS
nodes join, they search deep down via different paths to the goal in parallel
and report better costs more frequently. Above 16 cores, RDFS start to dom-
inate topt. The other notable improvement is that tprov drops dramatically
because the BFS node completes first and terminates the job. S-Agent has
the best topt from 2 to 32 cores, but superseded by other swarm algorithms
afterwards. This shows distributing states to agents can speed up topt when
agents do not overload the root.
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Table A.3: Runtime (sec) of Viking-Bridge-15

#C
BFS DFS RDFS

topt tprov topt tprov topt tprov
1 70 70 - - - -

#C
P-RDFS S-RDFS S-Mix S-Agent

topt tprov topt tprov topt tprov topt tprov
2 - - - - 96 96 75 75
4 - - - - 87 87 72 72
8 - - - - 96 96 72 72
16 - - - - 92 92 83 83
32 - - - - 100 100 94 94
64 - - - - 107 107 77 77
128 - - - - 112 112 74 74
256 - - - - 186 186 71 71
512 - - - - 215 215 73 73

“-”: denotes timeout.

Aircraft-Landing-15. Surprisingly for sequential algorithms, DFS has the
fastest topt, and RDFS has the slowest topt and tprov. All swarm algorithms
have faster topt than the sequential algorithms above 4 cores, and S-RDFS and
S-Mix are equally the best. Regarding tprov, S-Mix and S-Agent are equally
the best, and is even two times faster than BFS. This implies that the better
costs reported by the RDFS nodes help the BFS node in pruning.

Viking-Bridge-15. This model shows a unique behavior. It is good for BFS
but extremely bad for DFS/RDFS. BFS/S-Mix/S-Agent can complete within
5 minutes. But other algorithms are subject to the 4-hour timeout. As log files
show this model produce solutions with a very wide cost spectrum ranging
from 638195 to 220 with the decrement steps of just one. Consequently, the
RDFS nodes in S-Mix and S-Agent cannot help but disturb the BFS root by
reporting enormous messages containing only very fine-grained improved
costs, which will activate pruning at BFS root very frequently. Therefore S-
Mix and S-Agent perform worse than BFS in topt and tprov.

Task-Graph-88. The table for this model is absent because the model
is too large for all algorithms to complete within the 4-hour time bound.
However, we show how the near optimal solutions with costs converge as a
function of runtime in section 4.3.

Conclusions. (1) By comparing P-RDFS and S-RDFS, we conclude that
exchanging costs can in general speed up finding and proving optimal result,
especially show its usefulness at low core settings. (2) S-Mix and S-Agent can
combine the benefits of BFS and RDFS. Thus, they can report results and
terminate faster than other swarm algorithms. (3) Costs reported by RDFS
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nodes can help BFS root in pruning, but fine-grained improved costs may
backfire.

4.3 Results versus Time (Metric 3)

Figures A.1 and A.2 show how near optimal results improve with runtime for
models job-shop-6 and task-graph-88. We set the sample window to the first 2
minutes when runs start. For swarm algorithms, we look at the intermediate
core setting of 32.

Job-Shop-6. Among sequential algorithms, BFS does not report any result
until at 108 sec gives the optimal cost of 62. DFS reports no results within
the sample window, whereas RDFS reports solutions with costs from 72 to
68. The swarm algorithms report useful near optimal costs immediately after
start. S-Agent is the fastest in finding the optimal cost of 62 as early as 13 sec.
Other algorithms are equally good at finding near optimal costs; and they all
find the optimal cost faster than BFS.

Aircraft-Landing-15. Similar pattens as job-shop-6.
Viking-Bridge-15. BFS alone finds the optimal cost of 220 at 70 sec, while

DFS/RDFS/P-RDFS/S-RDFS find costs far exceeding 220 in the sample win-
dow. The BFS root of S-Mix and S-Agent finds the optimal cost 30% slower
than sequential BFS, then terminates all RDFS nodes. Clearly the BFS root
is loaded by the RDFS nodes reporting messages containing fine-grained im-
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proved costs, indicating a point for implementation optimization.
Task-Graph-88. BFS cannot give any result within the 4-hour time limit.

DFS and RDFS report some near optimal costs immediately after start. All
swarm algorithms find higher quality results than the sequential algorithms,
and they seem to perform equally well.

Conclusions. Swarm algorithms are generally faster than sequential al-
gorithms at finding near optimal results; and they work equally well.

4.4 Memory Consumption (Metric 4)

Table A.4 shows the average peak resident memory of a Uppaal instance
when it terminates normally (cells in roman font) or due to the 4-hour time-
out (cells in italic font). We likewise use the core setting of 32 for swarm
algorithms. The resident memory roughly reflects the number of symbolic
states explored and kept in the passed list.

For all four models, S-Agent has the smallest average memory footprint
overwhelmingly, because agents clear their state-spaces when receiving a
new state from the BFS root. It is followed by S-Mix in the first three mod-
els because within the same amount of runtime from the start to BFS root
terminates, a RDFS node typically uses less memory than the BFS root, thus
amortizes the average. Consider the task-88 model where all algorithms stop
at 4-hour limit; BFS has the largest memory consumption, around 1.4 times
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Table A.4: Resident Memory (MB) per Uppaal Instance

Models jb-6 alp-15 vik-15 task-88

BFS 152 124 408 5068
DFS 1754 127 13297 3060
RDFS 606 191 12790 3668
P-RDFS-c32 593 187 13555 3849
S-RDFS-c32 591 190 15303 3873
S-Mix-c32 63 51 230 3914
S-Agent-c32 21 13 100 1277
Italic font denotes termination due to timeout.

more.
Conclusions. S-Agent has the best average memory footprint per Uppaal

instance.

5 Conclusion

We proposed using swarm verification for time optimal reachability analysis.
We developed four swarm algorithms and performed four benchmark ex-
periments in terms of scalability, time- and memory consumption. Based on
the evaluation we conclude that this approach is very promising. In particu-
lar, swarm algorithms generally find optimal (or near optimal) results much
faster than sequential algorithms; S-Mix and S-Agent combines the benefits
of BFS and RDFS such that they can find results and terminate fast; S-Agent
has smaller memory footprint because agents do not keep the state-space;
exchanging costs is beneficial for speed up at lower core settings. For the
future work, we will develop the time optimal reachability algorithms that
partition the state-space among the compute nodes. We would also extend
swarm algorithms to more general priced time automata.
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1. Introduction

Abstract

Time optimal reachability analysis is a novel model based technique for solving
scheduling and planning problems. After modeling them as reachability problems
using timed automata, a real-time model checker can compute the fastest trace to the
goal states which constitutes a time optimal schedule. We propose distributed com-
puting to accelerate time optimal reachability analysis. We develop five distributed
state exploration algorithms, implement them in Uppaal enabling it to exploit the
compute resources of a dedicated model-checking cluster. We experimentally evaluate
the implemented algorithms with four models in terms of their ability to compute
near- or proven-optimal solutions, their scalability, time and memory consumption
and communication overhead. Our results show that distributed algorithms work
much faster than sequential algorithms and have good speedup in general.

1 Introduction

Time optimal reachability (TOR) analysis is a novel model based technique for
solving scheduling and planning problems [1, 2]. After modeling these prob-
lems using timed automata, a real-time model checker such as Uppaal [3]
and Kronos [4] can compute the fastest trace to the goal states which consti-
tutes a time optimal schedule, because the trace carries actions of the model
and timing information of these actions to the goal states. TOR allows natural
modeling of real-time behavior, constrains and interactions of components,
as well as flexible choices of efficiently implemented search algorithms inside
model checkers.

However the well-known state-space explosion problem may arise when
the number of components in the model is large. In [5] we developed swarm
algorithms to mitigate this problem and accelerate TOR. The core idea is em-
ploying a large number of parallel Uppaal instances or agents with random-
ized search strategies to search the state spaces independently, thus finding
different traces to the goal state in parallel and avoiding local optimality.
The advantages of this approach are: (1) easy to implement; (2) find optimal
(or near optimal) results fast without exploring the full state-space. A weak
point however is the lack of data parallelism nor sharing of the explored
state-space, thus the execution time is hardly reduced and memory is limited
to that of a single instance.

In this paper, we extend our previous work in [5] by developing dis-
tributed algorithms that may accelerate TOR in three ways. First, the state-
space is now partitioned and distributed among distributed CPU and mem-
ory resources so that multiple worker processes now share the state-space
exploration workload, thus the execution time may potentially be shortened
greatly. Second, more traces/state-space will be explored in parallel, thus the
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fastest trace will be potentially found even faster than the swarm algorithms.
Third, the disjoint parts of state-space are stored in the distributed memory,
allowing fully use the memory of a cluster and handle even larger models
than swarm algorithms.

Related Work. Because time optimal reachability involves the notion of
cost and optimality, branch and bound (B&B) is used for efficient state-space
exploration. By a bounding function and the current best solution to the
goal states, B&B can effectively prune parts of the state-space that guarantee
not to lead to an optimal solution [6] thus avoiding enumerating the en-
tire state-space. Behrmann et al. presented a branch-and-bound minimal-cost
reachability algorithm on the priced timed automata (PTA) in [7, 8].

The earliest and monumental distributed model checker is the parallel
Murϕ verifier proposed in 1997 [9]. Its design delineated the cornerstone
upon which other distributed model checkers were built thereafter such as
distributed Uppaal [10, 11], DiVinE [12], LTSmin [13], etc. Meanwhile, enor-
mous research efforts have been made to improve the state-space generation
algorithm, the partition algorithm, the state storage data structure, the com-
munication and control mechanism, as well as many other technical issues.
Since 2006 multi-core CPUs became pervasive inside PC, HPC and embedded
markets, DiVinE, LTSmin and Fdr3 [14] exploit multi-core shared memory
technique to achieve even better performance on the modern hardware ar-
chitecture. DiVinE also made fruitful attempts to accelerate model checking
using GPUs from 2009 [15].

Contribution. We developed five distributed TOR algorithms and imple-
mented them in the Uppaal model checker to accelerate TOR analysis. In
addition to sharing explored states, worker processes exchange computed
better costs to the goal states. This enables each worker to prune its local
state-space efficiently by B&B, hence need less execution time and memory
consumption.

D-BFS: distributed breath-first search. Each worker runs local BFS while
exchanging states with other workers.

D-BFSS: distributed strict order BFS (also named level synchronized BFS).
A synchronization protocol will ensure all workers completely explore states
on the same current BFS level before moving on to the next level.

D-DFS: distributed depth-first search. Same principle as D-BFS except
traversing depth-first.

D-DFSG: distributed greedy DFS. In addition to D-DFS, each worker al-
ways picks the successor state of the lowest cost in each iteration.

D-RDFS: distributed random depth-first search. Same principle as D-DFS
with a randomly picked successor state.

It is worth noting that in distributed BFS/DFS/DFSG/RDFS, their global
search orders only approximate BFS/DFS/DFSG/RDFS. Due to the varying
communication delay or workload on computing nodes, states are received in
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nondeterministic order from run to run. This influences the successor states
generation locally and changes the number of states explored [10]. Another
important observation is that in Uppaal BFS often completes explorations
much faster than DFS/RDFS because DFS/RDFS can cause higher degree of
fragmentation of the underlying symbolic state-space requiring many more
symbolic states. The motivation of D-BFSS is to keep this strong point of BFS.
However BFS has an inherent drawback that it typically only reports results
late when it has searched nearly all states, making it infeasible for very large
state-spaces.

We employ the following metrics to compare the algorithms:
Metric 1: time to find the optimal result (topt). The minimum runtime to

find the fastest trace (or schedule) to the goal states. Users wish to get the
optimal result fast even before an algorithm terminates.

Metric 2: time to completely explore the state-space and terminate thus
proving the optimal result (tprov). Users prefer an algorithm to terminate fast.

Metric 3: time to progressively improved solutions (a.k.a. near optimal
solutions). It shows how fast the results converge to the optimal as a function
of running time. In scheduling problems, the absolute optimal solution is
not always required, but a sufficiently good one may suffice. Particularly
when algorithms cannot terminate due to time or memory constrains, faster
converge speed produces better near optimal results that are closer to the
optimality.

Metric 4: memory consumption and communication overhead of algo-
rithms. Smaller memory consumption improves scalability by allowing big-
ger state-space. Smaller communication overhead improves computing speed.

Outline. The rest of the paper is organized as follows. Section 2 recalls
the definitions of timed automata and sequential TOR algorithm. Section 3
explains the distributed TOR algorithms. Section 4 shows benchmark exper-
iment results of the sequential and distributed TOR algorithms. Section ??
concludes.

2 Sequential Time Optimal Reachability

This section recalls timed automaton and the sequential time-optimal reacha-
bility algorithm. For brevity parallel composition of timed automata is omit-
ted.

2.1 Timed Automata

Let X = {x, y, ...} be a finite set of clocks. We define B(X) as the set of
clock constraints over X generated by grammar: g, g1, g2 ::= x ./ n | x− y ./
n | g1 ∧ g2, where x, y ∈ X are clocks, n ∈N and ./∈ {≤,<,=,>,≥}.
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Definition 1. A Timed Automaton (TA) [16] is a 6-tupleA = (L, `0, X, Σ, E, Inv)
where: L is a finite set of locations; `0 ∈ L is the initial location; X is a finite set of
non-negative real-valued clocks; Σ is a finite set of actions; E ⊆ L× B(X)× Σ×
2X × L is a finite set of edges, each of which contains a source location, a guard, an
action, a set of clocks to be reset and a target location; Inv : L → B(X) sets an
invariant for each location. For simplicity an edge (`, g, a, r, `′) ∈ E is written as
`

g,a,r−−→ `′.

Definition 2. The semantics of a timed automaton A is a Timed Transition Sys-
tem (TTS) SA = (Q, Q0, Σ,→) where: Q = {(`, v) | (`, v) ∈ L×RX

≥0 and v |=
Inv(`)} are states, Q0 = (`0, 0) is the initial state, Σ is the finite set of actions,
→⊆ Q × (Σ ∪ R≥0) × Q is the transition relation defined separately for action
a ∈ Σ and delay d ∈ R≥0 as:
(1) (`, v) a−→ (`′, v′) if there is an edge (`

g,a,r−−→ `′) ∈ E such that v |= g,
v′ = v[r 7→ 0] and v′ |= Inv(`′);

(2) (`, v) d−→ (`, v + d) such that v |= Inv(`) and v + d |= Inv(`).

Definition 3. A trace ρ of A can be expressed in SA as a sequence of alternative

delay and action transitions starting from the initial state: ρ = q0
d1−→ q′0

a1−→
q1

d2−→ q′1
a2−→ · · · dn−→ q′n−1

an−→ qn · · · , where ai ∈ Σ, di ∈ R≥0, qi is state
(`i, vi), and q′i is reached from qi after delay di+1. State q (or q′) is reachable if
there exists a finite trace with the final state of q (or q′). Let ExecA denotes the set of
traces of A and Exec f

A denotes the set of finite traces.

Definition 4. The span of a finite trace ρ ∈ Exec f
A is defined as the finite sum

Σn
i=1di. For a given state (`, v), the minimum span of reaching the state

MinSpan(`, v) is the infimum of the spans of finite traces ending in (`, v). For a
given location `, the minimum span of reaching the location MinSpan(`) is the
infimum of spans of finite traces ending in (`, v) for all possible v.

2.2 Sequential Time Optimal Reachability Algorithm

The real-time model checker Uppaal works by exploring a finite symbolic
reachability graph, where the nodes are symbolic states. A symbolic state is a
pair (`, Z), where ` ∈ L is a location, and Z = {v | v |= gz, gz ∈ B(X)} is a
convex set of clock valuations called zone [17], which is normally efficiently
represented and stored in memory as difference bound matrices (DBM) [18].
Besides, we denote the action and delay transitions between symbolic states
uniformly as ;.

Definition 5. The cost function on a symbolic state (`, Z) is defined as
MinCost(`, Z) = inf{MinSpan(`, v) | v ∈ Z}. It is the span of a finite symbolic
trace ending in (`, Z).
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Algorithm 1: Sequential Time Optimal Reachability

Waiting←− {(`0, Z0)}, Passed←− ∅, Cost←− ∞
Procedure Main()

1 while Waiting 6= ∅ do
2 select (`, Z) from Waiting

3 if (`, Z) |= Goal then
4 if MinCost(`, Z) < Cost then
5 Cost←− MinCost(`, Z)

6 else if (`, Z) 6∈ Passed and MinCost(`, Z) < Cost then
7 add (`, Z) to Passed

8 forall the (m, D) such that (`, Z) ; (m, D) do
9 add (m, D) to Waiting

10 return Cost

Uppaal keeps track of the trace span by including an implicit clock ψ in
addition to the original set of clocks X of the model. Clock ψ drifts as the
global elapsing time and remains unaffected from resets or guards or invari-
ants in the model. Thus the zone Z is now over X ∪ {ψ}; and MinCost(`, Z)
is calculated on-the-fly by evaluating the lower bound of ψ in Z.

Algorithm 1 shows the sequential TOR algorithm that computes the min-
imum span to reach the goal states satisfying the proposition Goal. Waiting

and Passed keep unexplored and explored symbolic states respectively; and
Waiting has the initial state. Cost maintains the current best result that is
infinity initially. Inside procedure Main, whenever Waiting is not empty, an
unexplored state is popped from Waiting in a loop. If the state is a goal
state, Cost is updated. This implies a near optimal schedule to the goal is
found. If the state is not goal state, it is subject to symbolic state inclusion
checking and B&B elimination rule at line 6. A symbolic state (`, Z) is in-
cluded in Passed and discarded if ∃(`, H) ∈ Passed s.t. Z ⊆ H [17, 18]. That
is, a previously explored state with the same location has an equal or larger
zone than the current state. The same state is pruned if its cost function is
no less than the current Cost. If the state gets through the two tests on line
6, it is added to Passed as already explored, and then its successor states are
generated and added to Waiting.

3 Distributed Time Optimal Reachability

This section describes the distributed time optimal reachability algorithms
that extends the sequential version with state-space partitioning and message
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passing. Each algorithm is uniform and executed by all worker processes in
a cluster.

3.1 Distributed Algorithm

Algorithm 2 shows the distributed algorithms: D-BFS, D-DFS, D-DFSG and
D-RDFS. A key activity of this algorithm is partitioning and distributing the
state-space. A partition function uniquely computes the ID of a process that
a symbolic state belongs to, hence divides the entire state-space into disjoint
subsets on all processes. We use a hash function to partition; and the hash
value is only calculated on the location `1. The reason is that the inclusion
checking of a symbolic state requires looking up all states with the same
location in Passed. Therefore, in distributed settings all states of the same
location will destine to the same process for deterministic and easy inclusion
checking. The other key work of this algorithm is message passing and han-
dling. We define two messages: (1) UPDATE carries better costs; (2) STATE
carries symbolic states.

Definition 6. Let N be the set of worker processes and p denote the local process
ID. The partition function is a total mapping: Hash : L → N from the set of
locations to the set of processes. Process p is the owner of a symbolic state (`, Z) if
Hash(`) = p. A symbolic state is a local state if it is generated on its owner process,
otherwise it is an emigrant state.

Definition 7. A process is active when doing local search or receiving messages.
Initially all processes are active. A process is idle when its waiting list is empty and
receiving no messages. Computation can terminate if all processes are idle and the
network has no message in transit.

Three new variables are used: Ecost maintains external better cost re-
ceived from the network, Active specifies process status (active or idle), and
Terminate controls the Main loop. At the beginning of each iteration, Ecost
compares with Cost. If Ecost is smaller, a better cost has been found by
another process, and Cost is updated. If Cost is smaller, the current process
finds a better cost, which is assigned to Ecost and then broadcasted. Line 5
marks process to idle according to Definition 7. The remaining lines inside
Main resembles the local search in the sequential algorithm, except at line 14
a successor state is hashed to compute its owner process ID and sent out if it
does not belong to the current process p. When the root process becomes idle,
it invokes the termination detection procedure CheckTerm based on the well-
known token-based Safra protocol [19]. Line 20 updates Ecost on reception
of a cost message. Line 21 adds a received emigrant state into Waiting.

1For real Uppaal models, the location is a vector of locations from each parallelly composed
timed automata and the values of all discrete variables in the model.
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Algorithm 2: Distributed Time Optimal Reachability for
D-BFS/D-DFS/D-DFSG/D-RDFS

(Local Variables)

Waiting←−
{ {(`0, Z0)} if p = Hash(`0),

∅ otherwise.
Passed←− ∅

Terminate←− False, Active←− True, Cost←− ∞, Ecost←− ∞

(Message Types)
UPDATE, STATE

Procedure Main()

1 while ¬Terminate do
2 if Ecost < Cost then Cost←− Ecost

3 if Cost < Ecost then UpdateE(Cost),
Broadcast(UPDATE, Cost)

4 if Waiting = ∅ then
5 if receive no message then Active←− False, CheckTerm()
6 continue

7 select (`, Z) from Waiting, Active←− True

8 if (`, Z) |= Goal then
9 if MinCost(`, Z) < Cost then

10 Cost←− MinCost(`, Z)

11 else if (`, Z) 6∈ Passed and MinCost(`, Z) < Cost then
12 add (`, Z) to Passed

13 forall the (m, D) such that (`, Z) ; (m, D) do
14 if (r ←− Hash(m)) 6= p then Send(STATE, (m, D), r)
15 else add (m, D) to Waiting

16 return Cost

Procedure UpdateE(NewCost)

17 if NewCost < Ecost then Ecost←− NewCost

Procedure CheckTerm() // Safra protocol [19]

18 if p = root and all processes are idle and no message in transit then
19 Terminate←− True on all processes

(Message Processing Rules)
20 When receive UPDATE〈Ncost〉: UpdateE(Ncost), Active←− True.
21 When receive STATE〈(n, F)〉: add (n, F) to Waiting, Active←− True.

The computation starts at the process p that owns the initial state s0 =
(`0, Z0) determined by Hash. Successor states s′i are generated by local search
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on s0, meanwhile Hash computes the owner process ID of s′i. If s′i belongs
to a different process r than p, it is sent to process r. Otherwise it is stored
locally for future exploration. Once process r receives a state, it stores it in
its Waiting and eventually starts to generate successors from it; and the par-
tition function works in a similar fashion. Gradually all processes start to
work. Finally the entire state-space is generated, and no unexplored succes-
sor states could be found. When all processes become idle and no message is
in transit, the computation can stop.

3.2 Distributed Algorithm for Strict BFS

Algorithm 3 highlights the changes on Algorithm 2 to make a distributed
strict BFS. Nlq stands for the next level queue that collects the states on the
next BFS level. Waiting keeps states on the current BFS level. Lines 2 to
5 explore states on one level and generate successor states for the next level,
which are either sent out or stored in Nlq. The emigrant states received from
the network are also stored in Nlq at line 13. After exhausting the states on
the current level in Waiting, all processes synchronize on the condition that
each process has completely harvested all STATE messages from the network
into Nlq. After line 8 Waiting contains the states for the next BFS level and
Nlq is empty.

Algorithm 3: Distributed Time Optimal Reachability for D-BFSS

Nlq←− ∅

Procedure Main()

1 while ¬Terminate do
2 while Waiting 6= ∅ do

same code as lines 2 to 3 and 7 to 12 in Algorithm 2
3 forall the (m, D) such that (`, Z) ; (m, D) do
4 if (r ←− Hash(m)) 6= p then Send(STATE, (m, D), r)
5 else add (m, D) to Nlq

6 Await(Synchronize(receive all STATE messages) or Terminate)

7 if Terminate then break
8 Swap(Waiting, Nlq)

9 if Waiting = ∅ and receive no message then
10 Active←− False, CheckTerm()

11 if Ecost < Cost then Cost←− Ecost

12 return Cost

13 When receive STATE〈(n, F)〉: add (n, F) to Nlq, Active←− True.
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4 Experiments

We developed a new version of Uppaal implementing the distributed al-
gorithms. The implementation involves three key tasks: (1) build a com-
munication module by the Mpi library; (2) interact with Uppaal’s internal
memory management to fetch send-out states or insert received states; (3)
implement the distributed search orders with the support from (1) and (2).
We applied several optimization techniques [20] to improve communication
such as: asynchronous communication, buffering states and sending them in
packets, and packet compression.

We ran benchmark experiments in a cluster with 9 computing nodes. Each
node has 1 Tb memory (NUMA architecture) and 64 cores at the frequency
of 2.3 GHz (4 AMD Opteron 6376 Processors each with 16 cores), a 1 TB
SATA disk and the Infiniband interconnection. All five distributed algorithms
were executed 10 runs for every core setting: 1, 2, 4, 8, 16, 32, 64, 128, 256,
512. These core settings follow an even mapping topology as the (nodes,
cores-per-node) pairs: 1 → (1, 1), 2 → (2, 1), 4 → (4, 1), 8 → (4, 2), 16 →
(4, 4), 32 → (4, 8), 64 → (4, 16), 128 → (4, 32), 256 → (4, 64), 512 → (8, 64).
For instance, 2 cores are mapped to 2 nodes with 1 core on each node; 32
cores are mapped to 4 nodes with 8 cores on each node.

4.1 Models

We use the same models as in [5]. The first three models are up-scaled ver-
sions of those in normal Uppaal distribution by adding more parallel com-
ponents. The last model is transformed from an industrial task graph bench-
mark2.

Job-Shop-6 (jb-6). Six people want to read a single piece of four-section
newspaper. Each person has his own preferred reading sequence, and can
spend different time on each section. When one person is reading a section,
others who are also interested in it must wait. The objective is to find the
time optimal schedule for all six people to finish reading.

Aircraft-Landing-15 (alp-15). 15 aircrafts need to land on two runways.
Each aircraft has a preferred target landing time. It can also speed up and
land earlier or stay longer in the air and land later if necessary. Furthermore,
aircrafts cannot land back to back on the same runway due to wake turbu-
lence by the previous aircraft. Thus there are certain minimum constraints
on the separation delay between aircrafts of different sizes. The objective is
to find the time optimal schedule for all aircrafts to land safely.

Viking-Bridge-15 (vik-15). 15 vikings want to cross a bridge in the dark-
ness. The bridge is damaged and can only carry two people at the same

2http://www.kasahara.elec.waseda.ac.jp/schedule/stgarc_e.html

101

http://www.kasahara.elec.waseda.ac.jp/schedule/stgarc_e.html


Paper B.

time. To find the way over the bridge the vikings need to bring a torch, but
the group has only one torch to share. The 15 members of the group need
different time to cross the bridge (one-way), which for simplicity is classified
into four levels: 5, 10, 20 and 25 time units. The objective is to find the time
optimal schedule for those 15 vikings to cross the bridge safely.

Task-Graph-88 (task-88). A robot control program has 88 computational
tasks each of which has precedence constraints (predecessor tasks) among
[0,3] and processing time among [1,111]. A task can start only if all its pre-
decessor tasks complete. Now the control program is going to be assigned to
four heterogeneous processors at the speeds of [1,1,2,4]. The objective is to
compute a non-preemptive schedule that minimizes the time for all tasks to
terminate.

4.2 Time to Find or Prove Optimal Result (Metric 1 & 2)

Tables B.1 to B.4 show for models Job-Shop-6, Job-Shop-8 and Viking-Bridge-
15 the median runtime to reach optimal cost (topt corresponding to metric 1),
and the median runtime to prove optimal cost (tprov corresponding to metric
2). We want to know how the distributed algorithms scale with an increasing
number of cores denoted by #C (#C=1 for sequential algorithms). We set the
4-hour time bound for the experiments; and “-” indicates timeout.

Job-Shop-6. For the sequential algorithms, DFSG has the best topt and BFS
has the best tprov. DFS is the slowest for both topt and tprov.

For the distributed algorithms, D-BFS runs slower than BFS at lower core
settings (2 to 8), and a speed-up requires more cores. D-BFSS is much more

Table B.1: Runtime (sec) of Job-Shop-6

#C
BFS DFS DFSG RDFS

topt tprov topt tprov topt tprov topt tprov
1 100 100 7411 9309 6 175 616 2125

#C
D-BFS D-BFSS D-DFS D-DFSG D-RDFS

topt tprov topt tprov topt tprov topt tprov topt tprov
2 246 246 153 153 467 1398 301 842 532 1505
4 346 390 88 88 53 419 15 311 23 401
8 98 129 33 33 1 199 1 158 2 187
16 58 73 23 23 1 116 1 88 1 112
32 28 38 16 16 1 62 1 63 1 60
64 18 31 14 14 1 34 1 32 1 34
128 12 15 16 16 1 17 1 21 1 17
256 8 11 38 39 2 11 1 9 2 11
512 6 10 70 72 2 17 1 10 2 19
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competitive. We note that Uppaal is highly optimized for single core execu-
tion, and therefore requires several cores to offset initialization and message
passing overhead. Further, the core mapping topology leads to high communi-
cation latency especially at 2 and 4 cores where each core is mapped to one
computing node using an (infiniband) network that is relatively slower than
the internal bus within a node. The intensive state exchange on the single
channel between 2 cores will also incur a communication channel congestion.
The congestion fades when using more cores. If we map 2 and 4 cores on
the same computing node as shown in table B.2, tprov is improved by 40% for
D-BFSS, and 15% for D-BFS.

Table B.2: Runtime (sec) for Cores on Same
Node

#C
D-BFS D-BFSS

topt tprov topt tprov
2 195 195 95 95
4 340 352 53 53
8 107 118 29 29

The difference between BFS (D-BFS)
and D-BFSS is caused by the symbolic
states. BFS is good at building larger
zones (see Section 1). But since D-
BFS only approximates BFS, it causes
more fragmentation at 2 and 4 cores
where workers consequently generate
and communicate more symbolic states.
Using more cores from 16 to 512 cores, D-BFS steadily reduces execution
time for topt and tprov. D-BFSS runs faster than D-BFS at core settings (2 to
64). Above 128 cores topt and tprov slow down indicating higher level synchro-
nization overhead.

Comparing the three remaining depth-first based distributed algorithms,
they all have a noticeable topt of merely 1 or 2 seconds above 8 cores. D-DFSG

seems overall to be a good choice, despite sligtly less speedup.
Job-Shop-8. This is an enlarged version of Job-Shop-6. This experiment

shows that when all sequential algorithms confront timeout, the distributed
algorithms can terminate normally and prove the optimal result. D-BFSS

can already terminates at 4 cores while other algorithms need more than 16
cores. It also has the best tprov; and shows a linear speedup from 4 to 128
cores. D-DFSG has extremely good topt.

Aircraft-Landing-15 All distributed algorithms show similar pattern as
Job-Shop-6. A difference is that D-BFS has much faster topt above 8 cores and
somewhat faster tprov than D-BFSS at higher core settings (in appendix A).

Viking-Bridge-15. This model is good for BFS, but extremely bad for DF-
S/RDFS that suffer timeout. We observed from the log files that this model
produces solutions with a wide cost spectrum from 638195 to 220 and decre-
ment step of just one. This explains why DFSG is also 30 times slower than
BFS because it gets trapped by the fine grained local optimal (as depicted in
fig B.2).

No distributed algorithms could beat BFS without using enough many
cores. D-BFS and D-BFSS show pool speedup. The good news is that D-DFS
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Table B.3: Runtime (sec) of Job-Shop-8

#C
BFS DFSG

topt tprov topt tprov
1 - - 849 -

#C
D-BFS D-BFSS D-DFSG

topt tprov topt tprov topt tprov
2 - - - - 6249 -
4 - - 9295 9295 366 -
8 - - 4900 4900 1 -
16 8881 13050 2568 2568 1 -
32 5390 7276 1315 1315 1 13293
64 3157 4623 693 663 2 7956
128 2052 2470 450 450 2 4406
256 1335 1495 260 260 4 2547
512 1012 1231 365 365 11 1773

“-”: denotes 4-hour timeout.

Table B.4: Runtime (sec) of Viking-Bridge-15

#C
BFS DFS DFSG RDFS

topt tprov topt tprov topt tprov topt tprov
1 66 66 - - 2016 2146 - -

#C
D-BFS D-BFSS D-DFS D-DFSG D-RDFS

topt tprov topt tprov topt tprov topt tprov topt tprov
2 533 559 125 125 - - - - - -
4 308 314 106 106 956 1058 - - 868 980
8 400 430 70 70 439 515 181 267 458 520
16 165 196 41 41 216 280 71 115 173 246
32 115 120 31 31 116 183 28 69 82 132
64 64 69 23 23 40 63 14 32 41 69
128 32 36 61 61 20 49 8 24 17 34
256 50 55 113 114 15 24 6 11 14 23
512 21 25 165 168 16 34 13 18 17 36

“-”: denotes 4-hour timeout.

and D-RDFS can complete in half an hour above 4 cores and present linear
speedup in topt and tprove until 128 cores. D-DFSG confronts heavy fragmen-
tation and timeout at 2 and 4 cores. But using enough many workers avoids
local optimal, and D-DFSG gains the best topt and tprov among all algorithms.

Task-Graph-88. The table for this model is absent because the model is
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too large for all algorithms to complete within the 4-hour time bound. But we
show how the near optimal results converge according to runtime in section
4.3.

Conclusions. (1) D-DFSG can find the optimal result very fast in general
followed by D-DFS/D-RDFS. (2) D-DFS/D-RDFS have good speedup on the
time to prove. (3) For larger models, distributed algorithms provide results
while the sequential algorithms cannot, with D-BFSS in many cases being the
fastest to terminate. (4) D-BFS/D-DFSG may be slower than the optimized
sequential BFS/DFSG at low core settings due to fragmentation. (5) The exact
performance may depend on the characteristics of the model.

4.3 Results versus Time (Metric 3)

Figures B.1 to B.3 show how near optimal results improve with running time
for Job-Shop-6, Viking-Bridge-15 and Task-Graph-88. The sample window is
2 minutes. For the distributed algorithms, we look at the intermediate core
setting of 32.

Job-Shop-6. For the sequential algorithms, DFSG is the fastest in finding
the optimal result of 62 at 6 sec. BFS reports 62 at 100 sec. DFS reports no
results within the sample window. RDFS only reports near optimal results
from 72 to 68. For the distributed algorithms, D-DFS/D-DFSG/D-RDFS reach
the optimal result immediately at 1 sec. D-BFS/D-BFSS reach the optimal
result at 28 sec and 16 sec respectively. Compared with the best of our swarm
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Fig. B.1: Cost vs. Runtime for Job-Shop-6
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algorithms (S-Agent) presented in [5], finding the optimal took 13 seconds.
Aircraft-Landing-15. It shows the similar pattern as Job-Shop-6.
Viking-Bridge-15. For the sequential algorithms, BFS finds the optimal

result of 220 at 66 sec. DFS/RDFS are omitted because they only report
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results far exceeding 220. DFSG gets trapped by the local optimal within the
cost range from 285 to 265. For the distributed algorithms, D-DFSG reports
the best quality near optimal results and reaches the optimal at 28 sec. D-
BFSS finds the optimal result at 31 sec. Both are faster than sequential BFS.
D-RDFS/D-DFS/D-BFS report near optimal results from high to low quality.

Task-Graph-88. BFS based algorithms BFS/D-BFS/D-BFSS are omitted
because they report no result even in 4 hours. Only DFS based algorithms can
report near optimal results. For the sequential algorithms, DFSG/RDFS/DFS
find results from high to low quality. For the distributed algorithms, D-
DFS is superior among all algorithms. Compared with the best of our swarm
algorithms (S-Agent, included in the plot) presented in [5], D-DFS finds better
solutions faster and reaches the highest quality result of 328 as early as 46 sec.

Conclusions. D-DFS/D-DFSG/D-RDFS are generally very fast at finding
near optimal results.

4.4 Memory and Communication (Metric 4)

Table B.5 shows statistics about memory consumption and communication
overhead. For each model, column M shows the total memory (in GB) con-
sumed by all Uppaal processes. Distributed algorithms will generate more
states than sequential algorithms, because emigrant states are generated by
multiple workers and then sent to the owner process. These emigrant states
contribute to the computation and communication overhead. Column R com-
pares the amount of emigrant states generated and transmitted against the
state-space size. Taking jb-6 as an example, D-BFS generates a large amount

Table B.5: Resident Memory (GB) and Communication Overhead

Models
jb-6 alp-15 vik-15
M M M

BFS 0.19 0.15 0.48
DFS 2.54 0.16 19.51
DFSG 0.22 0.12 2.57
RDFS 0.85 0.25 19.47

Models
jb-6 alp-15 vik-15

M R C% M R C% M R C%
D-BFS 1.71 14.7 26.3 1.17 14.7 23.5 3.25 15.4 63.3
D-BFSS 0.67 3.9 62.5 0.67 4.0 56.3 1.31 2.8 77.4
D-DFS 1.77 14.9 45.2 1.14 22.0 45.8 6.22 20.9 64.5
D-DFSG 1.82 14.6 27.6 1.33 23.1 44.7 3.93 10.8 58.0
D-RDFS 1.82 14.5 36.7 1.18 21.3 47.6 5.15 16.1 59.8

Distributed algorithms are at 32 cores. Italic font denotes 4-hour timeout.
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of emigrant states that is 14.7 times the state-space, but the factor is only 3.9
for D-BFSS.

Column C shows the portion of the communication time out of the total
execution time in percentage. Because a lot of emigrant states are transmitted,
the communication overhead of distributed algorithms is also high (up about
47% of the total execution time). For D-BFSS, this may be even higher due to
the level synchronization overhead.

Distributed algorithms normally consume more memory than their se-
quential counterparts. The average scale ratio is 5 times for the three models.
There are three reasons. First, when a Uppaal process initiates prior to local
search, it consumes about 13 MB memory for core data structures and li-
braries. Then 32 Uppaal processes will consume 416 MB that already double
the size of some sequential algorithms’ peak memory usage. Second, Mpi

allocates system buffers for message passing. Third, Uppaal’s internal mem-
ory management only marks obsolete memory slots for re-use to store newly
explored states rather than returning them to the operation system (quite
sensibly expecting to save time for repeated page (re-)allocation). When a
distributed algorithm is running however, more memory is used mainly be-
cause it receives and stores a large number of emigrant states from the net-
work as indicated by the R columns which approximate 14 times the size of
the state-space for most distributed algorithms.

Conclusions. The distributed algorithms have memory, computation and
communication overhead. There may be several ways to optimize memory
management and communication (e.g. caching more emigrant states locally).
However, we have currently decided against implementing these, in part be-
cause the performance is quite reasonable, and in part because we envision
that the most effective approach will be to incorporate multi-core shared
memory techniques that provides more fine-grained parallelism, better lo-
cality and lower communication and synchronization overhead. However,
implementing an efficient (lock-less or lock-free) multi-core and thread-safe
version of the internal exploration and optimized memory layout in Uppaal

requires great care.

5 Conclusions

We developed five distributed algorithms to accelerate timed optimal reacha-
bility analysis. We performed four benchmark experiments in terms of ability
to compute near- or proven-optimal solutions, scalability, time and memory
consumption and communication overhead. The experiment results are very
promising. Based on the evaluation we conclude: (1) D-BFSS can terminate
fast thus prove the optimal result for large models; (2) D-DFS/D-DFSG/D-
RDFS are good at finding (near-) optimal results. For the future work, we
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will develop parallel and distributed algorithms applying multi-core shared
memory as the significant optimization. We will develop hybrid algorithms
that combine the benefits as well as the state-of-the-art advances from dis-
tributed and swarm verification [5].
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A Results for Runtime

Table B.6: Runtime (sec) of Aircraft-Landing-15

#C
BFS DFS DFSG RDFS

topt tprov topt tprov topt tprov topt tprov
1 155 155 71 419 5 135 184 935

#C
D-BFS D-BFSS D-DFS D-DFSG D-RDFS

topt tprov topt tprov topt tprov topt tprov topt tprov
2 422 454 134 135 77 408 13 351 193 628
4 71 243 69 69 1 345 < 1 207 2 326
8 4 86 42 42 < 1 139 < 1 123 < 1 140
16 7 39 26 26 < 1 80 < 1 66 < 1 82
32 11 34 16 16 < 1 48 < 1 47 < 1 42
64 5 14 11 11 1 22 < 1 21 1 23
128 2 10 15 16 1 12 < 1 14 1 14
256 1 8 28 29 < 1 9 < 1 7 < 1 9
512 1 8 49 51 < 1 17 < 1 10 < 1 15
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1. Introduction

Abstract

We propose Pareto optimal reachability analysis to solve multi-objective scheduling
and planing problems using real-time model checking techniques. Not only the
makespan of a schedule, but also other objectives involving quantities like perfor-
mance, energy, risk, cost etc, can be optimized simultaneously in balance. We develop
the Pareto optimal reachability algorithm for Uppaal to explore the state-space and
compute the goal states on which all objectives will reach a Pareto optimum. After
that diagnostic traces are generated from the initial state to the goal states, and Pareto
optimal schedules are obtainable from those traces. We demonstrate the usefulness of
this new feature using two case studies.

1 Introduction

In reactive system design, engineers face the challenge of optimizing sched-
ules regarding a variety of quantitative objectives like the makespan of a
schedule, performance, energy consumption, resource intensiveness, risk as-
sessment etc. Because in most cases a subset of these objectives are conflict-
ing, there may not always exist any single solution that can simultaneously
optimize all objectives, but advisable trade-offs ought to be made by human
decision makers. This problem is generally called multi-objective optimization
(MOO) which is common in many academic fields. Vilfredo Pareto (1848–
1923) proposed the well-known concept of Pareto optimality as “the state of
allocating resources where it is impossible to make any one individual better
off without making at least one individual worse off.” A solution is called
Pareto optimal if none of the objectives can be improved in value without de-
grading some of the other objective values. Without additional preference
information, all Pareto optimal solutions are considered equally good.

Related Work. Pareto optimality concepts have been used to solve nu-
merical multi-objective scheduling problems in many fields, such as opera-
tion research [1], cloud services [2], networking [3], etc. In real-time system
design, mature model checkers like Uppaal [4] and Kronos [5] have been
successfully extended to do quantitative analysis. In particular, Uppaal-cora

aims at solving optimal scheduling and planning problems modeled by priced
timed automata (PTA) [6, 7]. PTA uses an additional observer clock to accumu-
late cost according to either discrete price annotations on transitions or price
rates on locations. The scheduling problem boils down to a cost-optimal
reachability problem. The reachability algorithm is also enhanced by branch
and bound (B&B), which can effectively prune parts of the state-space that
for sure will not to lead to an optimal solution, avoiding exploring the en-
tire state-space. In [8] the optimal reachability analysis on the multi-priced
timed automata (MPTA) was proved decidable. However, the model checking
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problem on MPTA was proven undecidable [9].
Contributions. Firstly we introduce simple priced timed automata (SPTA) to

model a subset of multi-objective scheduling problems. Particularly we only
allow discrete prices on transitions for multiple cost variables. The formalism
still proves to be very useful in practice, although price rate on locations are
not supported. For instance, if the span of a task is known in advance, its
overall energy consumption is (approximately) determined, or if a resource is
not affected at all by the task’s span. Secondly we provide the Pareto optimal
reachability (POR) algorithms to compute Pareto optimal costs when reaching
target goal states. Diagnostic traces are obtainable from the initial state to the
goal states, and Pareto optimal schedules are obtainable from those traces.
Thirdly we implement the semantics of SPTA and POR algorithms as a new
feature in Uppaal. Fourthly we demonstrate the usage of this feature using
two case studies: (1) time-optimal and power-aware scheduling of a task
graph; (2) power-aware scheduling of the GomX-3 nano satellite.

Outline. The rest of the paper is organized as follows. Section 2 defines
simple priced automata and Pareto optimality. Section 3 explains the Pareto
optimal reachability algorithms and implementation. Section 4 gives the ex-
periment results of two case studies. Section 5 concludes.

2 Preliminaries

This section gives the formal definitions for simple priced timed automata
(SPTA) and Pareto optimality. For brevity parallel composition of SPTA is
omitted.

2.1 Simple Priced Timed Automata

Let X = {x, y, . . . } be a finite set of clocks. We define B(X) as the set of
clock constraints over X generated by grammar: g, g1, g2 ::= x ./ n | x − y ./
n | g1 ∧ g2, where x, y ∈ X are clocks, n ∈N and ./∈ {≤,<,=,>,≥}.

Definition 1. A Timed Automaton (TA) [10] is a 6-tupleA = (L, `0, X, Σ, E, Inv),
where: L is a finite set of locations; `0 ∈ L is the initial location; X is a finite set of
non-negative real-valued clocks; Σ is a finite set of actions; E ⊆ L× B(X)× Σ×
2X × L is a finite set of edges, each of which contains a source location, a guard, an
action, a set of clocks to be reset and a target location; Inv : L → B(X) sets an
invariant for each location. For simplicity an edge (`, g, a, r, `′) ∈ E is written as
`

g,a,r−−→ `′.

Let p̄ = [p1, p2, . . . , pk] denote a finite vector of k prices, where pi ∈N.
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Definition 2. A Simple Priced Timed Automaton (SPTA) extends TA as a 7-
tuple S = (A, P), where: A is timed automaton, P : E → Nk assigns vectors of
prices p̄ to edges.

Definition 3. The semantics of a simple priced timed automaton S is a priced timed
transition system SS = (Q, Q0,
Σ,→), where: Q = {(`, v) | (`, v) ∈ L×RX

≥0 and v |= Inv(`)} are states, Q0 =
(`0, 0) is the initial state, Σ is the finite set of actions,→⊆ Q× (Σ ∪R≥0)×Q is
the transition relation defined separately for action a ∈ Σ and delay d ∈ R≥0 as:
(1) (`, v) a−→ p̄ (`′, v′) if there is an edge (`

g,a,r−−→ `′) ∈ E such that v |= g,

v′ = v[r 7→ 0], v′ |= Inv(`′), and p̄ = P(`
g,a,r−−→ `′) is the vector of prices for this

edge;

(2) (`, v) d−→0̄ (`, v + d) such that v |= Inv(`), v + d |= Inv(`), and 0̄ denotes the
zero-price vector for delay.

Definition 4. A trace (or run) ρ of S can be expressed in SS as a sequence of alter-

native delay and action transitions starting from the initial state: ρ = q0
d1−→0̄

q′0
a1−→ p̄1 q1

d2−→0̄ q′1
a2−→ p̄2 · · ·

dn−→0̄ q′n−1
an−→ p̄n qn · · · , where ai ∈ Σ,

di ∈ R≥0, qi is state (`i, vi), and q′i is reached from qi after delay di+1. State q
is reachable if there exists a finite trace with the final state of q.

Definition 5. The cost (or cost vector) of a finite trace ρ is defined as the finite
sum of all the prices along the trace Cost(ρ) = Σn

i=1 p̄i. For a given location `,
multi-objective scheduling on SPTA is to minimize Cost(ρ), where finite traces ρ
end in (`, v) for all possible v.

2.2 Pareto Optimality

Multi-objective scheduling (MOS) tries to minimize a vector of costs. We
resort to the concept of Pareto optimality to compute a set of Pareto optimal
result cost vectors that are mutually incomparable. Then human decision
makers can choose the most appropriate results that best fit and balance the
problem objectives.

Definition 6. Let c̄ = [c1, c2, . . . , ck] , b̄ = [b1, b2, . . . , bk] denote two cost vectors.
c̄ Pareto dominates b̄ (written as c̄ ≺ b̄), iff both the following conditions are true:
(1) ∀i ∈ {1, . . . , k} ci ≤ bi;
(2) ∃j ∈ {1, . . . , k} cj < bj.

Definition 7. A result cost vector c̄ is Pareto optimal if there does not exist another
cost vector b̄ such that b̄ ≺ c̄. The set of Pareto optimal results is called the Pareto
frontier.
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3 Pareto Optimal Reachability

The real-time model-checker Uppaal works by exploring a finite symbolic
reachability graph, where the nodes are symbolic states. A symbolic state of TA
is a pair (`, Z), where ` ∈ L is a location, and Z = {v | v |= gz, gz ∈ B(X)} is
a convex set of clock valuations called zone [11], which is normally efficiently
represented and stored in memory as difference bound matrices (DBM) [12].

The symbolic state of SPTA extends that of TA as (`, 〈Z, c̄〉), where c̄ is the
cost (or cost vector) of a finite trace ρ that ends in (`, v) and v ∈ Z. Therefore,
symbolic states in SPTA with the same ` and Z are discriminated by c̄. We
call 〈Z, c̄〉 the discrete priced zone of a symbolic state in SPTA. We further
define Pareto dominance between discrete priced zones as: 〈G, ū〉 � 〈Z, c̄〉 iff
Z ⊆ G ∧ (ū = c̄ ∨ ū ≺ c̄).

3.1 Pareto Optimum on Prices

Algorithm 1 shows the Pareto optimal reachability algorithm that computes
the Pareto optimal cost vector at goal states satisfying the proposition Goal.
Waiting and Passed keep unexplored and explored symbolic states respec-
tively; and Waiting has the initial state. Front maintains the Pareto frontier
consisting of current Pareto optimal costs at goal states. Inside procedure
Main, whenever Waiting is not empty, an unexplored state is popped from
Waiting in a loop. If the state is a goal state, the current cost c̄ is passed into
procedure Update to check for Pareto dominance with the elements inside
Front, and update Front if necessary. At line 10 all elements in Front that
are Pareto dominated by c̄ are discarded. At line 12 c̄ is added into Front, if
existing elements in Front do not Pareto dominate it.

If the state is not goal state, it is subject to both inclusion checking and
B&B elimination at line 5, and discarded if either test satisfies. Procedure
Included says that a state is included, if a previously explored state in Passed

with the same location has its discrete priced zone dominate that of the cur-
rent state (as 〈Z′, c̄′〉 � 〈Z, c̄〉). A state is eligible for pruning in procedure
Prune, if c̄ is Pareto dominated by an element in Front. If the state endures
the two tests at line 5, it is added to Passed as already explored, and then
its successor states are generated and added to Waiting. For simplicity we
denote the action and delay transitions between symbolic states uniformly as
;.

3.2 Pareto Optimum on Objective Functions

We propose three extensions to make Algorithm 1 more powerful and flexi-
ble: (1) support formatting multi-objectives as a vector of objective functions
F(c̄) = [ f1(c̄), f2(c̄), . . . , fn(c̄)] parameterized by the cost vector c̄; (2) support

118



3. Pareto Optimal Reachability

Algorithm 1: Pareto Optimal Reachability

Waiting←− {(`0, 〈Z0, 0̄〉)}, Passed←− ∅, Front←− ∅
Procedure Main()

1 while Waiting 6= ∅ do
2 select (`, 〈Z, c̄〉) from Waiting

3 if (`, 〈Z, c̄〉) |= Goal then
4 Update(c̄)
5 else if ¬Included((`, 〈Z, c̄〉)) and ¬Prune(c̄) then
6 add (`, 〈Z, c̄〉) to Passed

7 forall the (`′, 〈Z′, c̄′〉) such that (`, 〈Z, c̄〉) ; (`′, 〈Z′, c̄′〉) do
8 add (`′, 〈Z′, c̄′〉) to Waiting

9 return Front

Procedure Update(c̄)
10 Front←− Front \ {ϕ ∈ Front | c̄ ≺ ϕ}
11 if ∀ϕ ∈ Front s.t. c̄ 6≺ ϕ then
12 Front←− Front ∪ {c̄}

Procedure Included((`, 〈Z, c̄〉))
13 if ∃(`, 〈Z′, c̄′〉) ∈ Passed s.t. Z ⊆ Z′ ∧ (c̄′ = c̄ ∨ c̄′ ≺ c̄) then return

True

14 return False

Procedure Prune(c̄)
15 if ∃ϕ ∈ Front, ϕ ≺ c̄ then return True

16 return False

a global clock (let us call it now) as a singular objective function to mea-
sure the makespan (accumulated delay on a finite trace); (3) support negative
prices on action transitions. The first extension requires procedures Update

and Prune to evaluate F(c̄), and Front to contain Pareto optimal outcomes
of F(c̄) on goal states. We define monotonically increasing for f ∈ F(c̄) as:
c̄ ≺ c̄′ ⇒ f (c̄) < f (c̄′). These three extensions however, are applied under
specific additional conditions:

Cond 1 For extension 1, if ∃ f ∈ F(c̄) is not monotonically increasing, Prune
must be disabled, and the Pareto check of cost vectors c̄′ ≺ c̄ at line
13 in Included must be skipped.

Cond 2 For extension 2, clock now must not be reset nor tested in guards or
invariants.

Cond 3 For extension 3, (1) the state-space graph of the model must be
acyclic; (2) if ∀ f ∈ F(c̄) are monotonically increasing, Prune must
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be disabled; (3) if ∃ f ∈ F(c̄) is not monotonically increasing, do as in
Cond 1.

B&B pruning and Pareto inclusion checking are valid only if the costs
and evaluation results of objective functions are monotonically increasing.
Conditions 1 & 3 are of utmost importance to notice, otherwise there is a
risk to have incomplete results due to discarding some intermediate states
prematurely that may lead to better results on goal states. The consequence
of applying these two conditions is to explore the full state-space. Because
the Pareto inclusion checking decays to normal inclusion checking as in the
standard reachability algorithm, and the state-space is not pruned.

We extended Uppaal to compute Pareto optimum on prices and objective
functions of SPTA. The query to enable this new feature inside the verifier
follows the syntax of:

PO ( f1, f2, . . . , fk) [−(L1|L2)] : E <> Goal,

where PO is the keywords for Pareto optimum, fi (i ∈ [1, k]) are objective
functions or cost variables. Next comes the optional switch: [−L1] disables
pruning only, or [−L2] disables both pruning and Pareto inclusion checking
as in Cond 1. Following the colon is the normal reachability query. Goal

is the proposition to specify the target goal states. If an objective is to be
maximized, it is equivalent to put it in negative. But this typically turns
a monotonically increasing objective function into decreasing, then [−L2] is
necessary.

4 Experiment Results

4.1 Case Study 1: Task Graph Scheduling

A task graph consists of a number of computation tasks with precedence
constraints (predecessor tasks) such that a task can start only if all its pre-
decessor tasks have completed. In this case study, an embedded system has
16 tasks, whose precedence constraints are within [0,3] and processing time
are predictable and within the range of [1,66] clock cycles. Those jobs can
be scheduled on four processors with the speeds of [1,1,2,2] clock cycles per
time unit and the power consumptions at busy state of [10,10,40,40] micro
watts per time unit. We neglect the power for processors at idle state. The
objective is to synthesize a non-preemptive schedule that can minimize the
time for all tasks to terminate as well as the total power consumption by four
processors.

Figure C.1 depicts the dependency graph of 16 tasks. These precedence
constraints are coded as a dependency matrix in the Uppaal model. Figure
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Fig. C.1: Task dependency graph. Task Ids are in the center of nodes. Predicted clock cycles of
tasks are in blue italic font on the top right corner of nodes.

Fig. C.2: Templates for Task (left) and Processor (right)

C.2 shows the templates for task and processor. Task is scheduled if the guard
“dependsDone()” approves that all its predecessor tasks are completed. Once
a processor is available, the task is bound to that processor. The predefined
clock cycles for this task is also passed to that processor. Then the task starts
executing until it is notified for termination by signal “done[p]”. Processor
transforms from Free to InUse once it is scheduled to handle a task, mean-
while “CPUTime()” calculates the expected execution time D in time units
from clock cycles of a task and current processor speed. After delaying at
InUse for D time units, Processor moves back to Free and notifies the bind-
ing task. R_T[pid], which keeps the accumulated elapsing time at InUse for
each processor and acts as cost variables, is also increased by D. �
PO ( 1 0∗ ( R_T [ 0 ]+ R_T [ 1 ] ) +40∗(R_T [ 2 ] + R_T [ 3 ] ) , now) :
E<> f o r a l l ( i : TaskID ) Task ( i ) . Done && now<=65 	� �

The original goal to minimize makespan and energy consumption is ex-
pressed as the query above. The Pareto optimality section contains two objec-
tive functions: the total energy consumption expressed as the linear combi-
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Fig. C.3: Schedule for the 3rd outcome (4700, 59). Horizontal bar denotes tasks scheduled on a
processor. The segments inside each bar denote individual tasks with the task ids in the front of
each segment.

nation of power and processor in-use time, and a global clock now measuring
the makespan. The reachability proposition section specifies all tasks are to
complete and the makespan is equal to or less than 65 time units. Uppaal

reports seven Pareto optimal outcomes as follows with the corresponding
traces. Assuming we prefer the 3rd outcome (4700, 59) with the energy con-
sumption of 4700 micro joules and makespan of 59 time units, we can parse
the trace into a visualizable schedule as shown in Figure C.3. �
1 . ( 4 6 0 0 , 63) 3 . ( 4 7 0 0 , 59) 5 . ( 4 8 0 0 , 54) 7 . ( 4 5 6 0 , 65)
2 . ( 4 7 7 0 , 55) 4 . ( 4 8 5 0 , 51) 6 . ( 4 5 9 0 , 64) 	� �
4.2 Case Study 2: Nano Satellite Scheduling

The GomX-3 CubeSat is a 3 liter 3 kg nano satellite commissioned by the
European Space Agency (ESA). It was designed, delivered, and operated by
GomSpace in Aalborg Denmark, and was launched from Japan aboard the
HTV-5 cargo spacecraft on August 19th 2015. GomX-3 was successfully de-
ployed on October 5 2015. The satellite supports precise 3-axis rotation by gy-
roscopes and magnetorquers which enable the following main payloads: (1)
in-flight tracking of ADS-B beacons emitted by commercial aircrafts, (2) mon-
itoring signals from geostationary InmarSat satellites by L-Band receiver,
(3) high-speed downlinking collected data to stations in Toulouse (France)
or Kourou (French Guiana) by X-Band transmitter and UHF radio module,
(4) uplinking new instructions to and monitoring status of GomX-3 from
GomSpace by the UHF module.

The purposes of GomX-3 are tracking commercial aircrafts, testing X-Band
transmitters, and monitoring InmarSat satellites. ESA and GomSpace want
to maximize the amount of jobs (operations of payloads) without depleting
the on-board battery. Power is the most critical sparse resource for a satel-
lite in orbit. In particular when GomX-3 passes into eclipse, the battery is
the only source for it to draw power from. If battery voltage drops below

122



4. Experiment Results

14.4 volts, the satellite switches to the safe mode, where all non-essential
hardware components are switched off, preventing the satellite from being
productive. Since GomX-3 follows an equatorial orbit, insolation periods and
possible operation windows for different payloads are predictable over the
time horizon of a few days, hence the power budget of jobs can be predicted.

In [13] a PTA model of GomX-3 was analyzed by Uppaal-cora to generate
productive and power-aware schedules for GomX-3 to carry out jobs over 20
orbits (about 31 hours) around the earth. Three types of jobs were scheduled
in the model: data collection by payloads (2), data downlink by payload
(3), and satellite control by payload (4). The principle idea was to assign a
penalty price rate Ri to each skipped job Ji (i ∈ [0, 6]). The satellite control
jobs should always be scheduled whenever possible, and data downlink jobs
are given the highest penalty price rate. If a job Jk is skipped, the integral
of the Rk over the operation window Wk of this skipped job (equal Rk ×Wk)
contributes to the global penalty cost (or weighted sum of skipped jobs).
Then Uppaal-cora searches the entire state-space and finds the cost optimal
trace which has the smallest penalty cost.

In this paper we adapt the original PTA model in [13] into a SPTA model,
and use Pareto optimal reachability analysis to generate schedules that opti-
mize the productivity of payloads and energy consumption simultaneously
in a natural way. Instead of using penalty price rates, we directly record the
number of operated jobs for data collection, data downlink and satellite con-
trol. Not only to maximize the different kinds of operated jobs, but also the

Fig. C.4: Templates for Provider (top left), Battery (top right) and Experiment (bottom)
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data collection and downlink jobs are important to be kept in balance. We
wish the remaining battery level is high enough too.

There are six template automata in the model (detailed description in
[13]). Figure C.4 shows the three principle ones. (1) Provider takes care of
initiating and terminating jobs on each payload repeatedly. It waits at loca-
tion Idle for every predicted operation window to come, notifies Experiment
to start preheating and to start actual operation after preheating is completed,
then moves back to Idle. (2) Battery represents a linear battery model with
capacity. It can be charged/discharged with piecewise constant energy gain
from solar panels or energy drain by payloads. If the battery level is below
a threshold lb which is 40% of the maximum capacity, a deadlock state is
reached via the transition Check → Depletion. (3) Experiment models two
possible outcomes when it is notified of a job opportunity. A job can be
skipped because of low priority or resource constrains. Otherwise, the job
can execute by slewing to the predefined attitude, performing actual opera-
tion and slewing back to the normal attitude. We count the number of fully
executed jobs on each individual payloads as cost variables. The remaining
three templates are: (4) AttitudeControl for slewing GomX-3 to the prede-
termined attitude of each job, (5) Sun for switching on (off) energy harvesting
from solar panels based on the predicted insolation and eclipse time, and (6)
OrbitCounter for monitoring and counting the completed orbits of GomX-3.�
PO ( - g e t A l l J o b s ( ) , - g e t C o l l e c t J o b s ( ) , - getDownlinkJobs ( ) , - l ) [ - L2 ] :
E<> n==20 && l >89856000 && ac_lock ==0 && lastXband 	� �

Our goal to maximize the number of all executed jobs, data collection and
downlink jobs, and remaining battery level over 20 orbits is expressed as the
query above. Functions getAllJobs, getCollectJobs and getDownlinkJobs

count the number of executions for all jobs and data collection jobs and data
downlink jobs respectively, and l is the battery level. They are put in negative
form because we want to get their maximum values. Realizing that prices on
battery level l are negative1 when discharging, and the former three objective
functions are monotonically decreasing, switch [−L2] is turned on (sec ??).
The reachability proposition section specifies that the orbit count is to reach
20, the battery level2 is above 55% of capacity, and two additional conditions
proposed by GomSpace engineers.

Uppaal reports 15 Pareto optimal outcomes as follows with the corre-
sponding traces. Assuming we prefer the 12th outcome (-15, -4, -5, -97648603)
with 15 jobs in total, 4 data collection and 5 data downlink jobs, and remain-
ing battery level at 97648603 milli joules. We can parse the trace and obtain

1If negative prices are present, the state-space graph must be acyclic. This is guaranteed by
the finite time horizon over 20 oribts (about 31 hours).

2This level is larger than the threashold of 40% in the linear battery model so as to make the
satellite on-board battery that is non-linear work safer in the real situation.
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Fig. C.5: Schedule for the 12th outcome (-15, -4, -5, -97648603) consisting of battery level plot
(top) and payload operation plot (bottom). In the payload operation plot, L1 and L2 show 4 data
collection jobs, X shows 5 data downlink jobs, and UHF shows 6 satellite control jobs. Data
collection and downlink jobs are maximized and kept in balance.

the visualizable schedule as shown in Figure C.4. �
1 . ( - 1 1 , -4 , -1 , -124833863) 9 . ( - 1 4 , -3 , -5 , -118593763)
2 . ( - 1 1 , -3 , -2 , -138544388) 1 0 . ( - 1 4 , -4 , -4 , -104763388)
3 . ( - 1 2 , -3 , -3 , -133181973) 1 1 . ( - 1 4 , -2 , -6 , -131801398)
4 . ( - 1 2 , -4 , -2 , -118645643) 1 2 . ( - 1 5 , -4 , -5 , -97648603)
5 . ( - 1 2 , -5 , -1 , -100905253) 1 3 . ( - 1 5 , -3 , -6 , -110989688)
6 . ( - 1 3 , -4 , -3 , -112367463) 1 4 . ( - 1 5 , -2 , -7 , -123752127)
7 . ( - 1 3 , -3 , -4 , -126078388) 1 5 . ( - 1 6 , -3 , -7 , -102940417)
8 . ( - 1 3 , -5 , -2 , -96406878) 	� �
5 Conclusions

We introduced the Pareto optimal reachability analysis to solve multi-objective
scheduling and planing problems modeled by simple priced timed automata.
We developed the algorithms for Uppaal and performed two case studies.
The future work are in three directions: (1) support the price rate on delays
by merging the priced zone in Uppaal-cora into Uppaal; (2) develop effi-
cient data structures for the Pareto frontier; (3) solve more industrial case
studies.
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1. Introduction

Abstract

Controller synthesis techniques, based on timed games, derive strategies to ensure
a given control objective, e.g., time-bounded reachability. Model checking verifies
correctness properties of systems. Statistical model checking can be used to analyse
performance aspects of systems, e.g., energy consumption. In this work, we propose
to combine these three techniques. In particular, given a strategy synthesized for a
timed game and a given control objective, we want to make a deeper examination of
the consequences of adopting this strategy. Firstly, we want to apply model checking
to the timed game under the synthesized strategy in order to verify additional cor-
rectness properties. Secondly, we want to apply statistical model checking to evaluate
various performance aspects of the synthesized strategy. For this, the underlying
timed game is extended with relevant price and stochastic information. We first ex-
plain the principle of translating a strategy produced by Uppaal-tiga into a timed
automaton, thus enabling the deeper examination. However, our main contribution
is a new extension of Uppaal that automatically synthesizes a strategy of a timed
game for a given control objective, then verifies and evaluates this strategy with re-
spect to additional properties. We demonstrate the usefulness of this new branch of
Uppaal using two case-studies.

1 Introduction

Model checking (MC) of real-time systems [1] has been researched for over 20
years. Mature tools such as Uppaal [2] and Kronos [3] have been applied to
numerous industrial case studies. Nowadays, more interesting formal meth-
ods for real-time systems are inspired by or derived from model-checking.
Two remarkable ones are controller synthesis and statistical model check-
ing. Controller synthesis techniques [4], based on games, derive strategies
to ensure some given objective while handling uncertainties of the environ-
ment. Statistical model checking (SMC) [5], based on statistical analysis of
simulations, is used to analyse reliability and performance aspects of sys-
tems, e.g., energy consumption. In the Uppaal toolbox, efficient implemen-
tations of these new techniques are found in the branches Uppaal-tiga [6]
and Uppaal-smc [7].

We believe the three techniques can complement each other. Given a
timed game and a control objective, controller synthesis will generate a strat-
egy if the game is controllable. The strategy may ensure hard timing guar-
antees for a controller to win the game. We aim at verifying additional cor-
rectness properties by applying MC to the timed game under this strategy.
Similarly, SMC should allow to infer more refined performance consequences
(cost, energy consumption etc) of the synthesized strategy. For this, we ex-
tend the underlying timed game with prices and stochastic semantics.
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There have been a few previous attempts to combine modeling, synthesis,
verification and performance evaluation in a single paradigm. In [8] Franck
et al. presented a tool chain – Uppaal-tiga for synthesis, PHAVer for verifi-
cation, Simulink for simulation – to solve the energy consumption and wear
control problem of an industrial oil pump case-study. In [9] Uppaal-tiga was
combined with Matlab and Simulink to achieve synthesis, simulation and
executable code generation for the climate controller of a pig stable. These
tool chains are not integrated inside one tool and require translations to let
the different tools interact.

As the first contribution in this paper, we propose the principle of trans-
lating a synthesized strategy, as obtained from Uppaal-tiga, into a controller
timed automaton. One can build a closed system using the controller and
do model-checking in Uppaal or statistical model-checking in Uppaal-smc.
The second contribution is an extension of the semantics and algorithms of
MC and SMC to use a synthesized strategy when exploring the state space
(for MC) or generating random runs (for SMC). The third contribution is an
implementation of this extension based on Uppaal referred here as Control-
SMC, which allows users to synthesize a timed game strategy then verify
and evaluate this strategy automatically. It is worth noting that Uppaal-tiga

may not guarantee that the synthesized strategy is time optimal and here we
are interested in evaluating a given strategy w.r.t. a number of different cost
measures.

The rest of the paper is organized as follows. Section 2 defines timed
games and strategies. Section 3 provides the stochastic semantics of SMC.
Section 4 describes the translation of a strategy to a timed automaton. Section
5 presents the extended SMC semantics and implementation of Control-SMC.
Section 6 gives the experiment results on two case-studies using Control-
SMC. The paper concludes with the future work in Section 7.

2 Timed Game

This section recalls the basic theory of timed game and controller synthesis.
Controller synthesis aims at solving the following problem: Given a system
S and an objective φ, synthesize a controller C such that C can supervise
S to satisfy φ (C(S) |= φ) regardless how the environment behaves. The
problem can be formulated as a two-player game between the controller and
the environment.

2.1 Timed Game Automata

Let X = {x, y, ...} be a finite set of clocks. We define B(X) as the set of
clock constraints over X generated by grammar: g, g1, g2 ::= x ./ n | x− y ./
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n | g1 ∧ g2, where x, y ∈ X are clocks, n ∈N and ./∈ {≤,<,=,>,≥}.

Definition 1. A Timed Automaton (TA) [10] is a 6-tuple A = (L, `0, X, Σ, E,
Inv) where: L is a finite set of locations, `0 ∈ L is the initial location, X is a finite set
of non-negative real-valued clocks, Σ is a finite set of actions, E ⊆ L×B(X)× Σ×
2X × L is a finite set of edges, Inv : L→ B(X) sets an invariant for each location.

Definition 2. The semantics of a timed automaton A is a Timed Transition Sys-
tem (TTS) SA = (Q, Q0, Σ,→) where: Q = {(`, v) | (`, v) ∈ L×RX

≥0 and
v |= Inv(`)} are states, Q0 = (`0, 0) is the initial state, Σ is the finite set of actions,
→⊆ Q × (Σ ∪ R≥0) × Q is the transition relation defined separately for action
a ∈ Σ and delay d ∈ R≥0 as:
(i) (`, v) a−→ (`′, v′) if there is an edge (`

g,a,r−−→ `′) ∈ E such that v |= g,
v′ = v[r 7→ 0] and v′ |= Inv(`′),

(ii) (`, v) d−→ (`, v + d) such that v |= Inv(`) and v + d |= Inv(`).

A timed game automaton is an extension of a timed automaton whose
actions are partitioned into controllable actions for the controller and uncon-
trollable actions for the environment. Besides discrete actions, each player
can decide to wait in the current location. As soon as one player decides to
play one of his available actions, time will stop elapsing and the action will
be taken.

Definition 3. A Timed Game Automaton (TGA) [11] is a 7-tuple G = (L, `0, X,
Σc, Σu, E, Inv) where: Σc is the finite set of controllable actions, Σu is the finite set
of uncontrollable actions, Σc and Σu are disjoint, and (L, `0, X, Σc ∪ Σu, E, Inv) is a
timed automaton.

Let SG be the timed transition system of G. A run ρ of G can be expressed

in SG as a sequence of alternative delay and action transitions: ρ = q0
d1−→

q′0
a1−→ q1

d2−→ q′1
a2−→ · · · dn−→ q′n−1

an−→ qn · · · , where ai ∈ Σc ∪ Σu, di ∈ R≥0,
qi is state (`i, vi), and q′i is reached from qi after delay di+1. ExecG denotes the

set of runs of G and Exec f
G denotes the set of its finite runs.

Definition 4. Given a timed game automaton G and a set of states K ⊆ L×RX
≥0,

the control objective φ can be: (i) a reachability control problem if we want G
supervised by a strategy to reach K eventually, or (ii) a safety control problem if
we want G supervised by a strategy to avoid K constantly.

We can define a run ρ ∈ ExecG as winning in terms of its control objective.
For a reachability game, ρ is winning if ∃k ≥ 0, (`k, vk) ∈ K. For a safety
game, ρ is winning if ∀k ≥ 0, (`k, vk) 6∈ K.
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Definition 5. A strategy for a controller in the timed game G is a mapping s :
Exec f

G → Σc ∪ {λ} satisfying the following conditions: given a finite run ρ ending

in state q = last(ρ), if s(ρ) = a ∈ Σc, then there must exist a transition q a−→ q′

in SG , or if s(ρ) = λ, λ being the delay action, then there must exist a positive delay

d ∈ R>0 such that q d−→ q′ in SG .

When a strategy only depends on the current state of the game, that is
∀ρ, ρ′ ∈ ExecG , last(ρ) = last(ρ′) implies s(ρ) = s(ρ′), it is called a positional or
memoryless strategy. The strategies for reachability and safety games, as the
ones handled by Uppaal-tiga, are memoryless.

The analysis of TA and TGA is based on the exploration of a finite symbolic
reachability graph, where the nodes are symbolic states. A symbolic state S is a
pair (`, Z), where ` ∈ L, and Z = {v | v |= gz, gz ∈ B(X)} is a zone [1], which
is normally efficiently represented and stored in memory as difference bound
matrices (DBM) [12]. Uppaal-tiga uses efficient on-the-fly algorithms [4] that
manipulate zones to solve timed games. The winning strategy ŝ produced
by Uppaal-tiga is also represented using zones. More precisely, for each
location `, ŝ gives a finite set of pairs as ŝ(`) = {(Z1, a1), . . . , (Zn, an)}, where
ai ∈ Σc ∪ {λ}, Zi ∩ Zj = ∅ if i 6= j.

2.2 A Running Example

Fig. D.1 [4] shows a timed game automaton named Main which has one clock
x and two types of edges: controllable (solid) and uncontrollable (dashed).
The control objective is to find a strategy that can supervise Main to reach
goal, regardless of the environment’s behavior. The object is expressed as
control: A<> Main.goal. The game is controllable, and Uppaal-tiga pro-

Fig. D.1: TGA Main

State: ( Main.L1 )

While you are in (10<=Main.x && Main.x<20), wait.

When you are in (20<=Main.x), take transition

Main.L1->Main.goal { x >= 20, tau, 1 }

State: ( Main.L3 )

While you are in (Main.x<10), wait.

When you are in (Main.x==10), take transition

Main.L3->Main.L1 { x <= 10, tau, 1 }

State: ( Main.L0 )

When you are in (Main.x==10), take transition

Main.L0->Main.L1 { x <= 10, tau, 1 }

While you are in (Main.x<10), wait.

State: ( Main.L2 )

When you are in (Main.x<=10), take transition

Main.L2->Main.L3 { 1, tau, 1 }

State: ( Main.goal )

While you are in true, wait.

Fig. D.2: A Strategy for Main
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vides a strategy as shown in Fig. D.2 if running the command line version of
Uppaal-tiga– verifytga with the option -w0. The strategy is a list of (zone,
action) pairs indexed by locations. For example when Main is at L1, the action
is to wait if 10 ≤ x < 20, or to take the action to reach goal if x ≥ 20.

3 Stochastic Priced Timed Automata

In this section, we briefly recall the definition of priced timed automata and
stochastic semantics of SMC. We borrow the definitions from [13].

3.1 Priced Timed Automata

Priced timed automata are a generalization of timed automata where clocks
may have different rates in different locations. We note by R(`) : X → N

the rate vector assigning a rate to each clock of X at location `. For v ∈ RX
≥0

and d ∈ R≥0, we write v + R(`) · d to denote the clock valuation defined by
(v + R(`) · d)(x) = v(x) + R(`)(x) · d for any x ∈ X.

Definition 6. A Priced Timed Automaton (PTA) is a tuple P = (L, `0, X, Σ, E,
R, I) where: (i) L is a finite set of locations, (ii) `0 ∈ L is the initial location, (iii) X is
a finite set of clocks, (iv) Σ = Σi ] Σo is a finite set of actions partitioned into inputs
(Σi) and outputs (Σo), (v) E ⊆ L×B(X)× Σ× 2X × L is a finite set of edges, (vi)
R : L → NX assigns a rate vector to each location, and (vii) I : L → B(X) assigns
an invariant to each location.

3.2 Stochastic Semantics

Consider a closed network of PTAs A = (P1| . . . |Pn) with a state space
St = St1 × · · · × Stn. For a concrete global state q = (q1, . . . , qn) ∈ St and
a1a2 . . . ak ∈ Σ∗ we denote by π(q, a1a2 . . . ak) the set of all maximal runs
from q with a prefix t1a1t2a2 . . . tkak for some t1, . . . , t2 ∈ R≥0, that is, runs
where the i’th action ai has been output by the component Pc(ai)

. We give the
probability for getting such sets of runs as:

PA(π(q, a1a2 . . . ak)) =
∫

t≥0
µc

q(t) ·
(
∏
j 6=c

∫
τ>t

µ
j
q(τ)dτ

)
· γc

qt(a1)·

PA
(
π((qt)a1 , a2 . . . an)

)
dt

where c = c(ai) is the index of component taking a1, µc
q is the delay density

function for component c to choose a delay ti at q, and γc
qt is the output prob-

ability function for component c to choose an action ai after q is delayed by t.
The above nested integral reflects that the stochastic semantics of the network
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is defined based on race among components. All components are indepen-
dent in giving their delays which are decided by the given delay density
functions. The player component who offers the minimum delay is the win-
ner of the race, and takes the turn to make a transition and (probabilistically)
choosing the action to output.

PTA P2PTA P1

Fig. D.3: A Tiny Example

Fig. D.3 gives the intuition of the SMC
semantics. Two PTAs P1 and P2 race to reach
locations A or B. If P1 enters A, it blocks
P2 to enter B, and vice versa. Furthermore,
either PTA can delay uniformly within the
invariants from its initial state before firing
its output transition. We can use the SMC
semantics to calculate the probability for P1
to enter location A within 2 time units as:

P(π(q0, a)) =
∫ 1

x=0
1 ·
( ∫ 2

y=x

1
2

dy
)
dx =

1
2

∫ 1

x=0
(2− x)dx =

3
4

where q0 is the initial state of the network of P1 and P2, and the delay density
functions for P1 and P2 at q0 are 1 and 1

2 respectively. P1 can reach A only if
it takes its transition before P2.

4 Translating Strategies to Timed Automata

In this section, we provide a systematic way to translate a synthesized strat-
egy of a timed game G produced by Uppaal-tiga into a controller timed
automaton C. Once the controller is built, we can verify additional correct-
ness properties or evaluate performance aspects of the closed system C(G) in
Uppaal.

4.1 The Method

We recall from Section 2.1 that strategies have the form ŝ(`) = {(Z1, a1), . . . ,
(Zn, an)}. Given a concrete state q = (`, v), one can lookup which action ai
to take by finding Zi such that v ∈ Zi. Fig. D.4 illustrates how to translate
the strategy from a location ` with the schematic zone representation (left)
into a basic controller TA (right). The complete controller TA is obtained by
repeating the same translation procedure for all locations and connecting all
resulting basic controller TAs to the same initial state. The symbol “C” inside
states indicates committed states. Time does not elapse in committed states,
and the outgoing transitions are taken atomically. We use Z̄ to denote the
closure of the zone Z.

The small controller TA on the right is constructed as follows. For a given
discrete state (`) (location only), a transition from Init to a switch state SW
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C C

C

C

ŝ(ℓ) = {(Z1, a1), (Z2, a2), (Z3, λ), (Z4, λ)}, ℓ ∈ L

u?

Z2

Z4

Z3

ℓ
SW

a2!

a1!

Z1

CS1

CS2

CS3

CS4

Init u?

|Z̄4|
Z̄4 ∩ Z1

Z̄4 ∩ Z2

x

Z4

Z2

Z3

Z1

y

Z̄4 ∩ Z2

Z̄4 ∩ Z1

Fig. D.4: Translating the Strategy

is added with a guard encoding `. From there we add transitions guarded
by Zi for each (Zi, ai) entry of ŝ(`) to a choice state CSi. Then, we have tree
basic cases: Either (1) ai is a controllable action, (2) ai is an unbounded delay,
or (3) it is a bounded delay. In case (1), the controller takes ai immediately
with the synchronization ai! (e.g. from CS1 and CS2 in Fig. D.4). In case (2)
corresponding to ai = λ, the controller stays idle waiting for a move from the
environment with the synchronization u?. Finally, case (3) is similar to case
(2) except for the upper bound on the delay (encoded with an invariant) and
additional transitions to go back to SW whenever the upper bound is reached
and a controllable action is enabled.

4.2 The Running Example

We translate the strategy in Fig. D.2 into a controller TA C. Before translat-
ing, we need to synchronize C and G so that C can observe the state of G
and control it. To observe the locations, we assign unique IDs and use global
flags for each component to keep track of the current active location. Then
we rename the local clocks to be global to make them visible. To monitor
every uncontrollable transition in G, we use a unique channel u and the syn-
chronizations u! in G and u? in C. Similarly, to control G, controllable actions
ai use the corresponding channel synchronizations ai! in C and ai? in G.

In Fig. D.5, we define location IDs for Main.L0 – Main.L4 and Main.goal

from 0 to 5. Then we use the global location flag loc to keep track of the
current location of Main, and the global clock x to replace the local one, then
the broadcast channels u1, u2, a1 – a4 to synchronize Main and its controller
TA MyCon in Fig. D.6. In MyCon, by testing loc on the predefined location
IDs, transitions from Init lead to the switch states L0 – L3 and L5, which
correspond to the strategies at locations Main.L0 – Main.L3 and Main.goal.
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Fig. D.5: Decorated TGA Main Fig. D.6: Controller TA MyCon

Choice states M00, M10, M20 and M30 depict case (1) in Fig. D.4. Accept

corresponds to case (2). M01, M11 and M31 match case (3).
We also add price and a delay distribution to Main for performance eval-

uation in SMC. This essentially turns Main into a priced timed automaton.
We use an integer s to count the number of transitions to reach goal, and a
clock e to measure the energy consumption to reach goal. The rate of the
clock e is specified at all locations as e′ == n, n ∈ N except at L4 because
L4 is not reachable under the strategy. e′ is stopped at goal by setting to 0.
Besides, an exponential rate of 3 is defined for the delay density function at
L1. Now a closed system can be made from Main and MyCon. We can verify
correctness properties and evaluate performance aspects of this strategy as
shown in Table D.1.

Fig. D.7: Distribution on Time to Reach goal

Experiment 1 verifies the
original control objective that is
satisfied (Yes) for sure. Experi-
ment 2 verifies if the strategy en-
sures Main to reach goal within
20 time units, where time is
a global clock. The result is
not satisfied (No). We evaluate
reachability of goal within 30
time units under the strategy in
experiment 3. The probability
is [0.902606,1] with confidence

0.95 if the probability uncer-
tainty factor ε is 0.05. Besides, several kinds of statistical plots can be gen-
erated by Uppaal-smc such as probability distribution, probability density
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Table D.1: MC & SMC Experiments of the Running Example

# Queries Results

MC
1 A<> Main.goal Yes
2 A<> Main.goal and time<=20 No

SMC
3 Pr[<=30] (<> Main.goal) [0.902606,1]
4 E[<=30;200] (max: Main.s) 3.05
5 E[<=30;200] (max: Main.e) 27.5137

distribution, cumulative probability distribution, and frequency histogram.
Fig. D.7 shows the cumulative probability distribution of 36 runs. The curve
shows that over 55% of runs reach goal between 20.0 and 22.6 time units,
and almost 90% runs can reach goal within 29.1 time units. The last two
experiments report the expected number of steps and energy consumption to
reach goal for 200 simulated runs within 30 time units.

5 MC and SMC under Strategies

Control-SMC is a new extension of Uppaal. It automatically synthesizes a
strategy of a timed game, keeps the strategy in memory, then verifies and
evaluates the strategy on a number of SMC properties. We extended the
semantics and algorithms of MC and SMC to apply the synthesized strategy
when exploring the state space (for MC) and generating random runs (for
SMC).

5.1 Extended Stochastic Semantics

Let A = (P1| . . . |Pn) be a network of priced timed automata modelling an
environment to be controlled. That is A may be seen as a timed game with
global state space St = St1× · · ·× Stn, and with sets Σc and Σu of controllable
and uncontrollable actions, respectively. Now assume that – using Uppaal-
tiga– we have synthesized a strategy s : St→ (R× Σc)∪ {λ} for A ensuring
some desired reachability or safety objective. That is s(q) = (d, a) indicates
that the strategy s in state q proposes to perform controllable action a after
a delay of d; s(q) = λ indicates that the strategy will delay indefinitely until
the environment has performed an uncontrollable action. Now we may view
the extended network:

Ae = (P1| . . . |Pn|As)

as a closed stochastic network over Σu ∪ Σc, where the components P1, . . . ,Pn
have been given delay density functions µ1, . . . , µn and output probability
functions γ1, . . . , γn. Now As is a one-state component implementing the
strategy s. That is s has delay density function µs

q = δd, when s(q) = (d, a)
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and δd is the Dirac delta function with probability mass concentrated at time-
point d1. Moreover the output probability function γs

q for s is given by:

γs
q(b) =


1 ; s(q) = (0, a), a = b
0 ; s(q) = (0, a), a 6= b
⊥ ; s(q) = (d, a), d > 0
⊥ ; s(q) = λ

In this way Ae may be subject to statistical model checking provided. We
extend the capability of Uppaal-smc to generate random runs for networks
of environment components extended with control strategies.

5.2 Implementation

Fig. D.8 shows the work-flow of Control-SMC. The Uppaal-tiga engine re-
ceives the timed game model G and the control objective φ. It synthesizes
a strategy that is kept in memory if G is controllable. The strategy can be
printed out with the option -w0. If the option -X is used then subsequent MC
or SMC queries ρi are checked under this strategy. For the purpose of eval-
uating performance, the model G can be extended with costs to G ′. These
costs are modeled with clocks that must be declared as hybrid clock. They
are ignored for the purpose of symbolic model-checking (synthesis or MC)
and taken into account for SMC. Furthermore, floating-point variables can be
used in the same way. These additional variables may not be active for the
purpose of controlling the behavior.

Uppaal-tiga Uppaal-smc
Uppaal/G

φ Result

Strategy

G ′ ρi

Strategy

Fig. D.8: Workflow of Control-SMC

The exploration under a given strategy is similar to standard MC or SMC
when considering uncontrollable transitions since they are played by an op-
ponent. The opponent is stochastic for the purpose of SMC and when doing
MC, all possible successors are tried. However, only the controllable transi-
tions allowed by the strategy are allowed. In addition, delay is constrained by

1which should formally be treated as the limit of a sequence of delay density functions with
decreasing, non-zero support around d.
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the delays of the strategy, e.g., if a controllable transition is to be taken after
5 time units, Uppaal will not delay more. For SMC, this is resolved naturally
through the semantics with a race between components. For the symbolic
exploration, the strategy specifies how much delay is allowed and this con-
strains the standard delay operation. Furthermore, we have to add the upper
border of bounded delays to enable following transitions. More precisely
Uppaal-tiga maintains a partition so we could have the case to wait while
in x ∈ [0, 5[ and take a transition at x = 5, but x = 5 is then unreachable.
Therefor we have to wait while x ∈ [0, 5]. Finally, when an action follows a
delay it has an urgent semantics, i.e., the states in which such an action is
enabled are not allowed to delay.

5.3 The Running Example

We demonstrates how to use Control-SMC on the running example described
in Section 2.2 and 4.2 without the need to translate the strategy. We add prices
and stochastic information directly on the TGA Main as shown in Fig. D.9.
The clocks used for cost are declared as hybrid clock (e.g. e), while counters
for SMC evaluation are declared as double (e.g. s).

Fig. D.9: TGA Main with Prices

control: A<> Main.goal

A<> Main.goal

A<> Main.goal and time<=20

Pr[<=30] (<> Main.goal)

E[<=30;200] (max: Main.s)

E[<=30;200] (max: Main.e)

Fig. D.10: Combined Query File

Fig. D.10 shows the query file we use here. A control query that expresses
the control objective starts on the first line with a list of MC and SMC queries
on the following lines. For now, Control-SMC is available only from the
command line checker verifytga and is enabled with the option -X. Given
the model as in Fig. D.9 and the query file as in Fig. D.10 as inputs, it first
synthesizes a strategy for the control query, then processes the rest MC and
SMC queries in a batch fashion, and gives the same results as in Table D.1 in
Section 4.2.
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6 Experiments Results

We show the experiments of two case-studies by first using the Control-SMC
method of Section 5, then using the strategy translation method in Section
4 as a cross-check. The two methods gave the same results for MC and
SMC queries. We also measured the execution time of the queries for both
methods, because we want to know the runtime benefit of applying a strategy
in time and memory compared with using a translated controller from a
strategy. All models in the experiments are available on our SMC web-page2.

6.1 Case Study 1: Jobshop

The Jobshop problem is about scheduling a set of machines for a set of jobs,
where each job needs to use those machines in a particular order for a par-
ticular time limit. This case-study involves two professors Kim and Jan who
want to read a single piece of four-section newspaper. Each person has his
own preferred order on sections, and can spend different times on different
sections. The control objective, which is expressed as �
c o n t r o l : A<> Kim . Done and Jan . Done and time <= 80 	� �
is to find a strategy that guarantees both people finish reading within 80 time
units. Uppaal-tiga finds such a strategy. The full explanation about this
model can be found on web-page of examples [14]. The model is down-sized
for the purpose of the manual conversion to a controller automaton.

Fig. D.11 shows the TGA template with prices for each person for Control-
SMC. The availability of four sections are maintained by four global boolean
variables. During the initialization of Kim and Jan, the references to the
boolean variables are assigned to sec1 – sec4 according to each person’s
preferred order of reading. The strategy tells a person when to acquire a
section (controllable, solid edge), while a person can release a section at any
time within a time bound (uncontrollable, dashed edge). We add respectively
three stop-watches3 wt, rt and t to measure the accumulated time on waiting,
reading and finishing the newspaper respectively.

We obtain the same results when checking the MC and SMC queries in
Control-SMC and Uppaal. Thus in Table D.2 we use the single column Re-
sult to show the MC results (Yes for satisfied or No for not satisfied), and SMC
results (probabilities or evaluations). The T (CS) column shows the execution
time of a query in seconds by Control-SMC, while the T (M) column shows
that by using a manually translated controller. We do not compare the run-
time of MC queries because the size of this model is not big enough to make

2Section Control-SMC at http://people.cs.aau.dk/~adavid/smc/cases.html
3Stop-watches are clocks whose rates are reset to zero.
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Fig. D.11: Job Template with Prices

Table D.2: MC & SMC Experiments of Jobshop

# Queries Results
T T

(CS) (M)

MC
1 A[] Jan.Done imply Kim.Done Yes - -
2 E<> Kim.Done and Jan.Done and time<=45 Yes - -
3 E<> Kim.Done and Jan.Done and time<=44 No - -

SMC

4 Pr[<=80] (<> Kim.Done and Jan.Done) 1∗ 76.5 148.3
5 E[time<=80;2000000](max:Kim.wt) 5.40221 62.1 132.5
6 E[time<=80;2000000](max:Kim.rt) 22.7469 61.7 138.7
7 E[time<=80;2000000](max:Jan.wt) 11.5652 60.9 136.8
8 E[time<=80;2000000](max:Jan.rt) 47.3951 62.1 138.8

1∗ in [0.999998,1] with confidence 0.95.

the runtime distinguishable. But we compare the runtime of SMC queries,
because we can let the SMC engine to generate a large number of runs to
make the runtime difference noticeable.

Fig. D.12: Distribution on Time to Finish Reading for
Both People

Experiment 1 shows that
Kim always finishes reading be-
fore Jan. We get the shortest
time (= 45 time units) for both
to finish from experiments 2 and
3. Experiment 4 measures the
probability for Kim and Jan to
finish reading within 80 time
units if the probability uncer-
tainty ε = 0.000001. In Uppaal-
smc we can get the plot of prob-
ability distribution of this query
as shown in Fig. D.12. The plot
gives the mean value of around
59 time units. The remaining
SMC experiments show the expected time for Kim and Jan to wait and read
the newspaper individually. The strategy biases Kim because Kim waits less
than Jan. The runtime experiments of SMC queries were carried out on a PC
with Intel i7-2640M CPU @ 2.80GHz, 8GB main memory and Ubuntu 12.04
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x86_64 with the upcoming version 0.18 of Uppaal-tiga. Experiment 4 set
ε = 0.000001 to force the SMC engine to generate a large number of runs
(1844438 runs). In experiments 5 – 8, we set the number of runs to 2000000.
We can conclude that applying a strategy in memory improves the perfor-
mance of SMC engine inside Control-SMC by a factor of two. This is due to
the strategy look-up in a hash table instead of simulating it within the model.

6.2 Case Study 2: Train-Gate

Fig. D.13: Train Template with Prices

Train-Gate is a classical case-study for
real-time model checking. It is dis-
tributed with Uppaal with an detailed
explanation in [2]. Fig. D.13 shows
the game version of it with prices and
stochastic extensions. The control objec-
tive, which is expressed as �
c o n t r o l : A[] f o r a l l ( i : i d _ t )
f o r a l l ( j : i d _ t ) Train ( i ) . Cross
and Train ( j ) . Cross imply i == j 	� �
is finding a strategy to guarantee the ex-
clusive access to Cross by two trains.
If necessary, the strategy should stop a
train at Appr in time (x ≤ 10) by the con-
trollable solid edge to Stop, otherwise
the train goes to Cross directly by the

uncontrollable dashed edge. The train can resume at Stop by the other con-
trollable solid edge to Start. The exponential rate ((1+id):N*N) appears at
Safe for specifying the delay density function. A counter ncr records the
throughput at Cross. A hybrid clock e measures the energy consumption of a
train. The interesting point of this case-study is that we compare the behavior
and performance of the synthesized strategy with a manually programmed
queue-based controller available in the train-gate example provided in the
distribution of Uppaal.

Table D.3 shows the comparative experiments of the synthesized strat-
egy Syn and the queue-based controller Que. Experiment 1 shows Syn allows
Train(1) to approach Cross while Train(0) is still crossing. This is forbid-
den by Que. Experiment 2 measures the probability for Train(0) to reach
Cross within 100 time units with the probability uncertainty ε = 0.000001.
Experiment 3 shows that Syn gives a bigger throughput from Que, because
Syn allows different trains to approach Cross concurrently as witnessed by
experiment 1. Experiment 4 gives the expected energy consumption for
Train(0). We compare the execution time of SMC queries in seconds by
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Table D.3: MC & SMC Experiments of Train-Gate

# Queries
Result T T

Syn Que (CS) (M)
MC 1 E<>Train(0).Cross&&Train(1).Start Yes No - -

SMC
2 Pr[<=100](<>Train(0).Cross) 1∗ 1∗ 45.9 88.5
3 E[<=100;1000000](max:ncr) 8.0665 5.8065 72.3 173.3
4 E[<=100;1000000](max:Train(0).eng) 124.938 88.402 69.3 169.5

1∗ in [0.999998,1] with confidence 0.95.

Control-SMC in the T (CS) column with that using a manually translated
controller in the T (M) column. In experiment 2, we set ε = 0.000001 to force
the SMC engine to generate a large number of runs (1844438 runs). In exper-
iments 3 and 4, we set the number of runs to 1000000. We can conclude that
applying a strategy in memory improves the performance of SMC engine
inside Control-SMC by a factor of two.

7 Future Work

The future work are in three directions. Our first goal is to merge Uppaal and
Uppaal-tiga, which will enable Control-SMC from the graphical interface
with all its capabilities, in particular the plot composer. Next, we aim to make
the clocks for measuring prices in Control-SMC to become real hybrid as in
Uppaal-smc. The clock rates can be floating-point, negative, or in the form of
ordinary differential equations (ODE). The third direction is exploring more
potential use of the synthesized strategy in memory. We can try to refine or
optimize the strategy using machine learning methods.
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