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ENGLISH SUMMARY 

Stress-induced hyperglycaemia commonly occurs during critical illness and has 

been associated with increased morbidity and mortality. The results in the literature 

concerning glycaemic control and nutritional support are, to some extent, 

conflicting and do not provide consensus about optimal protocols for treatment. 

Concerning the control of blood glucose (BG), this thesis hypothesizes that 

mortality can be reduced by reducing BG and/or by reducing the frequency of 

hypoglycaemic events. It also hypothesizes that in clinical practice reduction of BG 

and hypoglycaemic events is best achieved by using model-based decision support 

systems. Concerning nutrition the thesis hypothesizes that nutrition should target 

the patient’s energy expenditure (EE), except for the first few days following the 

insult to the patient, where the caloric target should be below the patients EE. The 

thesis also hypothesizes that in clinical practise accurate estimation of EE cannot be 

done by predictive equations that use anthropometric data, but can be done by a 

novel method, CO2-based calorimetry.  

Evidence from the literature, including the four papers that are the basis of this 

thesis, will be used to examine each of the six hypotheses. 

 

Most of the controlled studies using intensive insulin therapy (IIT) to reduce BG 

have succeeded in lowering BG, but almost all of them resulted in increasing the 

number of patients with hypoglycaemic events. The studies have shown different 

results in terms of mortality, with about half of the studies having resulted in 

reduced mortality and the other half resulting in increased mortality. Lowered 

mortality was not associated with the reduction in BG (p=0.40), nor with the 

reduction in the percentage of patients with severe (BG < 2.2 mmol/l) 

hypoglycaemia (p=0.83). 

A two-dimensional regression analysis with changes in BG and hypoglycaemia as 

independent variables indicated that reduced mortality was associated with reduced 

BG (p=0.05) and reduced frequency of hypoglycaemic events (p=0.07). That 

supports the notion that hyperglycaemia should be reduced to normal BG 

concentrations while avoiding hypoglycaemic events. Clinical studies support the 

hypothesis that a safe reduction in BG is best achieved with the use of a model 

based decision support system. While there are many different systems to do so, 

both rule-based and model-based, the Glucosafe system (using the Glucosafe 

model) has, compared to other systems, shown either bigger or similar reduction in 

BG with no hypoglycaemic events. 

Glucosafe has two major components: the advice module and the model. The 

quality of these two components determines Glucosafe’s ability to safely lower BG. 

The model’s predictive accuracy can be tested and improved on retrospective data, 

but testing of the advice module in principle requires a clinical trial. To reduce the 

need for clinical trials, a method based on virtual patients was developed. The 
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virtual patients were based on insulin sensitivity profiles from real patients and 

were used to evaluate different settings of the penalty functions that govern 

Glucosafe’s treatment advice. An example showed how this method can be used to 

select settings of the penalty functions, likely to produce a desired outcome in terms 

of mean BG and frequency of hypoglycaemic events. Glucosafe with these 

modified settings may then be worthy of a new clinical trial.  

To improve the Glucosafe model’s ability to predict BG, a model of pancreatic 

insulin release was constructed. The pancreas model introduces a feedback loop in 

the Glucosafe model, which may produce instability. The model was found to be 

stable but also to produce damped oscillation after sudden changes in BG. An early 

version of the pancreas model showed a non-significant improvement in predictive 

accuracy, presumably because it was tested on critically ill patients with high BG 

and administration of large insulin doses. Further clinical testing is needed to 

investigate if the pancreas model improves predictive accuracy in patients who are 

recovering from critical illness. 

The literature on nutritional support for critically ill patients is still not in 

consensus. While there is support for not feeding the patient more than 100% of EE, 

as studies have shown this to have deleterious effects, some studies suggest 

targeting 100% of EE and some suggest targeting less. The hypothesis that the 

target should be 100% of EE stems from studies showing that a large caloric debt 

increases morbidity and/or mortality. Although there are studies advocating 

underfeeding patients, the American, European, and Canadian guidelines for the 

nutrition supports the hypothesis that nutritional support should target 100% of a 

patient’s EE to avoid or lessen caloric debt. With regards to restricting feeding in 

the first few days, there is no counter indication to the hypothesis that nutrition 

should be reduced in the first few days where the body catabolism provides the 

necessary substrates to cover energy needs. Regardless of the nutritional target 

being 100% of EE or less, an accurate estimation of a patient’s EE is needed. 

Predictive equations for estimating EE are not accurate and over- or underestimate 

patients’ EE compared to indirect calorimetry as shown in literature reviews and in 

the research presented in this thesis. VCO2-based calorimetry is the estimation of 

EE based on a patient’s VCO2, using a formula incorporating a Respiratory 

Quotient (RQ) value. The VCO2-based calorimetry results presented here show that 

VCO2-based calorimetry gives EE estimates significantly better than predictive 

equations. There are some problems in using only VCO2 as a measure for EE, as 

changes in ventilation which result in VCO2 not matching metabolically produced 

CO2, results in EE estimation errors lasting up to 20 min. due to the CO2 

equilibration time constant. Solutions to this is either the application of a running 

average of 5 min. or more to the measurements if the measurement period is short, 

or the use of the mean values from 24 hour measurements if possible. 

In conclusion there seems to be support for, or no direct evidence to oppose, the 6 

hypotheses stated.
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DANSK RESUME 

Stress induceret hyperglykæmi ses ofte i kritisk sygdom og er blevet associeret med 

øget morbiditet og mortalitet. Litteraturen om glykæmisk kontrol og ernæring er i et 

vist omfang modstridende, og der er ikke konsensus om optimale protokoller for 

behandling. Angående kontrol af blod glukose (BG) fremsætter denne afhandling 

hypoteser som siger at mortalitet kan reduceres ved at reducerer BG og/eller ved at 

reducerer frekvensen af hypoglykæmiske tilfælde. En yderligere hypotese er at i 

klinisk praksis er reduktionen af BG og hypoglykæmiske tilfælde bedst opnået ved 

brugen af model-baserede beslutningsstøtte systemer. Angående ernæring er det 

denne afhandlings hypotese, at der skal sigtes efter at administrere ernæring 

tilsvarende patientens energi forbrug (EE), undtagen i de første få dage efter skade, 

hvor der sigtes lavere end patientens EE. Afhandlingen hypoteserer også, at i 

klinisk praksis kan nøjagtig estimering af EE ikke udføres med prædikative 

ligninger, der anvender antropometriske data, men kan estimeres med en ny 

metode, CO2-baseret kalorimetri. Evidens fra litteratur, og de fire artikler som er 

basis for denne afhandling, bliver anvendt til at undersøge hver af de seks 

hypoteser. 

De fleste kontrollerede studies som anvender intensiv insulin terapi (IIT) har været 

succesfulde i at reducere BG men næsten alle resulterede i stigninger i antallet af 

patienter med hypoglykæmiske tilfælde. Studierne har vist forskellige resultater 

angående mortalitet, hvor ca. halvdelen af dem har resulteret i reduceret mortalitet 

og den anden halvdel har resulteret i øget mortalitet. Reduceret mortalitet var ikke 

associeret med reduktion i BG (p=0.40) eller med reduktion i procentdelen af 

patienter med alvorlig (BG > 2.2 mmol/l) hypoglykæmi (p=0.83). 

En todimensionel regressionsanalyse med ændringer i BG og hypoglykæmi som 

uafhængige variabler indikerede, at reduceret mortalitet var associeret med 

reduceret BG (p=0.05) og reduceret frekvens af hypoglykæmiske tilfælde (p=0.07). 

Dette støtter ideen, at hyperglykæmi burde reduceres, mens hypoglykæmiske 

tilfælde undgås. Kliniske studies understøtter hypotesen som siger at en reduktion 

af BG, uden hypoglykæmiske tilfælde, bedst opnås ved brugen af et model-baseret 

beslutningsstøttesystem. På trods af at der er mange forskellige sådanne systemer, 

både regel-baserede og model-baserede, har Glucosafe systemet (som anvender 

Glucosafe modellen), sammenlignet med andre systemer, vist enten større elle 

lignende reduktion i BG uden hypoglykæmiske tilfælde. 

Glucosafe har to overordnede komponenter: rådgivningsmodulet og modellen. 

Kvaliteten af disse to komponenter bestemmer Glucosafe’s evne til at sinke BG og 

undgå hypoglykæmi. Modellens prædiktive nøjagtighed kan testes og forbedres ved 

brug af retrospektiv data, men testning af rådgivningsmodulet kræver i princippet et 

klinisk studie. For at mindske nødvendigheden af kliniske studier blev en metode 

baseret på virtuelle patients udviklet. De virtuelle patienter var baseret på 

insulinsensitivitetsprofiler fra rigtige patients og blev anvendt til at evaluere 
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forskellige indstillinger af straffunktionerne, som styrer Glucosafe’s 

behandlingsrådgivning. Et eksempel viste, hvorledes denne metode kan anvendes til 

at vælge de indstillinger af straffefunktionerne, som sandsynligvis vil give et ønsket 

resultat, i form af gennemsnitlig BG og frekvens af hypoglykæmiske tilfælde. Med 

disse modificerede indstillinger vil det muligvis være fordelagtigt med et nyt klinisk 

studie af Glucosafe. 

For at kunne forbedre Glucosafemodellens evne til at prædiktere BG blev en model 

af insulinfrigivelse fra bugspytkirtlen konstrueret. Modellen introducerer et 

feedback-loop i Glucosafe modellen, hvilken kan give ustabilitet. Modellen fandtes 

at være stabil, men også at producere dæmpede oscillationer efter pludselige 

ændringer i BG. En tidlig udgave af bugspytkirtelmodellen viste en ikke signifikant 

forbedring i prædiktiv nøjagtighed, formentlig fordi den blev testet på kritisk syge 

patients med højt BG og indgift af store doser insulin. Ydereligere klinisk testning 

er nødvendigt for at undersøge om bugspytkirtelmodellen forbedre den prædiktive 

nøjagtighed hos patienter som er i bedring fra kritisk sygdom. 

Litteraturen om ernæring til kritisk syge er stadig ikke i konsensus. Mens der er 

støtte for ikke at ernære patienter mere en 100% af EE, da studier har vist, at det har 

en skadelig virkning, har nogle studier forslået at sigte efter 100% af EE og nogle 

har forslået at sigte lavere. Hypotesen om at målet skulle være 100% af EE stammer 

fra studier, der har vist at en større kaloriegæld øger morbiditet og/eller mortalitet. 

På trods af at der findes studier som advokerer for at underernære patienter, så 

støtter de amerikanske, europæiske, og canadiske retningslinjer for ernæring, 

hypotesen om at sigte efter 100% af EE for at undgå eller mindske kaloriegæld. 

Men hensyn til begrænset ernæring i de første dage er der ingen kontraindikation til 

hypotesen om at ernæring skal reduceres i de første dage, hvor kroppens 

katabolisme giver de nødvendige substrater til at dække kroppen energibehov. 

Uanset om ernæringsmålet er 100% af EE eller lavere, så er en nøjagtig estimering 

af patientens EE nødvendig. Prædiktive ligninger til at estimerer EE er ikke 

nøjagtige og over- eller undervurderer patienters EE sammenlignet med indirekte 

kalorimetri, som vist i litteraturgennemgange og i forskningsresultater præsenteret i 

denne afhandling. I VCO2-baseret kalorimetri er estimeringen af EE baseret på en 

patients VCO2, ved brug af en formel indeholdende en Respiratorisk Kvotient (RQ). 

Resultaterne viser at VCO2-baseret kalorimetri giver EE estimater signifikant bedre 

end prædiktive ligninger. Der er dog nogle problemer ved brugen af VCO2-baseret 

kalorimetri til estimering af EE, da ændringer i vejrtrækning kan resulterer i et 

VCO2 som ikke stemmer med den metaboliske producerede CO2, hvilket resulterer 

i EE estimationsfejl varende op til 20 min. grundet ligevægtstidskonstanten for 

CO2. Løsninger på dette er enten anvendelsen af et løbende gennemsnit på 5 min. 

eller mere, hvis måleperioden er kort, eller brugen af gennemsnitsværdier fra 24 

timers målinger, hvis det er muligt. 

Konklusionen er at der er støtte for, eller ingen beviser imod, de 6 fremsatte 

hypoteser.



 

IX 

ACKNOWLEDGEMENTS 

First of all I would like to thank my friends and family for their understanding and 

support during my time as a PhD-student. I would also like to thank the 

administrative staff at the Health Science and Technology group and of course my 

colleagues at the Center for Model-Based Medical Decision Support for welcoming 

me into their midst. I would also like to express my appreciation to the clinical staff 

I have collaborated with at the neuro-ortho-trauma intensive care unit (NOTIA), 

Aalborg University Hospital and especially to Jean-Charles Preiser from Erasme 

University Hospital in Brussels, Belgium, for his invaluable help in the area of 

nutritional support for the critically ill. A major thank you should also be said to my 

supervisors Steen Andreassen and Ulrike Pielmeier for their support, advice, and 

help in writing both this thesis and the papers supporting it. 

  



MODEL-BASED DECISION SUPPORT FOR NUTRITION AND INSULIN TREATMENT  
OF HYPERGLYCAEMIA IN THE ICU 

 

X 

LIST OF PAPERS 

This thesis is based primarily on the following four peer-reviewed journal papers. 

I. Pielmeier, Ulrike; Rousing, Mark Lillelund; Andreassen, Steen; Steenfeldt 

Nielsen, Birgitte; Christensen, Pernille Haure. 2012. Decision support for 

optimized blood glucose control and nutrition in a neurotrauma intensive 

care unit: preliminary results of clinical advice and prediction accuracy of 

the Glucosafe system. Journal of Clinical Monitoring and Computing, 

2012; 26(4): 319-328. 

II. Rousing, Mark Lillelund; Pielmeier, Ulrike; Andreassen, Steen. 2014. 

Evaluating modifications to the Glucosafe decision support system for 

tight glycemic control in the ICU using virtual patients. Biomedical Signal 

Processing and Control, 2014; 12: 54-61. 

III. Rousing, Mark Lillelund; Pielmeier, Ulrike; Andreassen, Steen. 2015. 

Stability of the insulin-glucose feedback loop in Glucosafe: a comparison 

of pancreas models.  Biomedical Signal Processing and Control, 2015; 22: 

155-160 

IV. Rousing, Mark Lillelund; Hahn-Pedersen, Mie Hviid; Andreassen, Steen; 

Pielmeier, Ulrike; Preiser, Jean-Charles. 2015. Energy expenditure in 

critically ill patients estimated by population-based equations, indirect 

calorimetry and CO2-based indirect calorimetry. Annals of Intensive Care, 

2016; 6(1): 1-11.



 

XI 

TABLE OF CONTENTS 

Chapter 1. Introduction ....................................................................................................... 1 

Chapter 2. The pathophysiology of critical illness ............................................................ 3 

2.1. The metabolic phases in critical illness .................................................... 3 

2.1.1. The acute phase ................................................................................ 3 

2.1.2. The catabolic phase .......................................................................... 4 

2.1.3. The anabolic phase ........................................................................... 5 

2.2. Treatment of stress hyperglycaemia ......................................................... 5 

2.2.1. Glycaemic control with insulin therapy ........................................... 5 

2.3. Ensuring adequate caloric intake .............................................................. 8 

Chapter 3. Decision support systems for glycaemic control ........................................... 11 

3.1. Types of decision support systems ......................................................... 11 

3.1.1. Rule based systems ........................................................................ 11 

3.1.2. Physiological models ..................................................................... 11 

3.1.3. Model predictive Control ............................................................... 13 

3.2. The Glucosafe Model ............................................................................. 14 

3.2.1. Validity of the Glucosafe model .................................................... 15 

3.3. The Glucosafe system ............................................................................. 16 

3.3.1. Treatment advice............................................................................ 17 

3.4. Performance of the Glucosafe system .................................................... 19 

Chapter 4. Evaluating modifications to the Glucosafe system ....................................... 23 

4.1. Virtual patients ....................................................................................... 24 

4.2. Virtual patients and the Glucosafe system .............................................. 24 

4.3. Evaluating modifications using virtual patients ...................................... 26 

4.4. Results .................................................................................................... 27 

Chapter 5. Modelling pancreatic insulin release ............................................................. 29 

5.1. Pancreatic insulin release ........................................................................ 29 

5.2. The Pancreas Model ............................................................................... 30 

5.3. Testing the Pancreas model .................................................................... 32 

5.3.1. Loop Gain ...................................................................................... 32 



MODEL-BASED DECISION SUPPORT FOR NUTRITION AND INSULIN TREATMENT  
OF HYPERGLYCAEMIA IN THE ICU 

 

XII 

5.3.2. Post-perturbation oscillations ......................................................... 33 

5.4. Results .................................................................................................... 33 

5.4.1. Fitted model parameters ................................................................. 33 

5.4.2. Loop Gain results ........................................................................... 34 

5.4.3. Post perturbation oscillations ......................................................... 35 

Chapter 6. Energy Expenditure in the ICU ..................................................................... 37 

6.1. Determination of energy expenditure ..................................................... 37 

6.2. Comparison of predictive equations, VCO2-based calorimetry, and 

Indirect Calorimetry ............................................................................................. 38 

6.2.1. Predictive equations and VCO2-based calorimetry ........................ 39 

6.2.2. Statistical analysis .......................................................................... 40 

6.2.3. Sensitivity analysis of RQ .............................................................. 41 

6.2.4. Qualitative analysis of dynamic errors ........................................... 41 

6.3. Results .................................................................................................... 42 

6.3.1. Qualitative analysis of dynamic errors ........................................... 43 

6.3.2. Quantitative analysis of dynamic errors ......................................... 45 

Chapter 7. Discussion and conclusion .............................................................................. 47 

7.1. Future work ............................................................................................ 49 

Literature list ...................................................................................................................... 51 

 

  



 

XIII 

TABLE OF FIGURES 

Figure 3-1 The Glucosafe model of insulin-glucose metabolism. ............................ 15 

Figure 3-2 The main control screen of the Glucosafe system. ................................. 17 

Figure 3-3 The four penalty functions used by the Glucosafe system to determine the 

treatments advice resulting in the lowest combined penalty. ................................... 19 

Figure 4-1 Example of a 14 hour insulin sensitivity profile from a patient. ............. 24 

Figure 4-2 Diagram of the Glucosafe system when used for advice generation with 

real patients and when used for testing with virtual patients. .................................. 25 

Figure 4-3 The penalty functions used in the Glucosafe system to find the treatment 

advice. ...................................................................................................................... 26 

Figure 5-1 The Glucosafe model of insulin-glucose metabolism, including the model 

of pancreatic insulin release. ................................................................................... 32 

Figure 5-2 The phase-2 response of the pancreas model, illustrating the sigmoid 

relationship between BG and insulin secretion. ....................................................... 32 

Figure 5-3. 24-hour profile of mean BG and mean plasma insulin concentrations 

from 14 healthy subjects receiving meals, and the plasma insulin concentrations 

simulated with the Glucosafe model using the optimized Phase 1+2 pancreas model.

 ................................................................................................................................. 34 

Figure 5-4 Calculated loop gain at different pairs of steady state blood glucose and 

insulin sensitivity. ..................................................................................................... 35 

Figure 5-5 Post-perturbation curves for blood glucose and endogenous insulin 

release for the Phase 1+2 pancreas model. ............................................................. 36 

Figure 6-1 Scatterplots for the predictive equations and the VCO2-based 

calorimetry, comparing them to IC. ......................................................................... 43 

Figure 6-2 Recorded values from patient 16 of VCO2, ET-CO2, VO2, and MV, 

EE(VCO2) and EE(IC) calculated from recorded VO2 and VCO2, including means of 

EE(VCO2) and EE(IC). Modified from ([109], Fig. 3). ............................................ 44 

 

 

  



MODEL-BASED DECISION SUPPORT FOR NUTRITION AND INSULIN TREATMENT  
OF HYPERGLYCAEMIA IN THE ICU 

 

XIV 

  



CHAPTER 1. INTRODUCTION 

 

1 

CHAPTER 1. INTRODUCTION 

Stress-induced hyperglycaemia commonly occurs during critical illness and has 

been associated with increased morbidity and mortality [1,2]. Treatment of 

hyperglycaemia by Intensive Insulin Therapy (IIT) has been shown to reduce 

mortality [3]. At the same time patients should receive adequate nutrition but both 

overfeeding and underfeeding with accumulation of large caloric debt has been 

shown to increase morbidity and or mortality [4,5].  

To some extent the results in the literature concerning glycaemic control and 

nutritional support are conflicting and do not provide consensus about optimal 

protocols neither for glycaemic control nor for nutrition. The six hypotheses 

formulated below reflect many of the issues currently discussed in the literature. In 

their actual formulation they also embed our view of what may be a reasonable 

interpretation of the literature.   

Concerning glycaemic control our hypotheses are that: 

G1: The mortality of the critically ill patient can be lowered by reducing average 

blood glucose (BG) to the upper end of the normal range  

G2: The mortality of the critically ill patient can be lowered by reducing the 

variability of BG and in particular reducing the incidence of hypoglycaemia 

G3: Reducing both BG and the incidence of hypoglycaemia is best achieved 

through the application of decision support systems based on physiological models 

Concerning nutritional support our hypotheses are that:  

N1: The nutritional support should target the patients’ Energy Expenditure (EE) 

without overfeeding  

N2: During the first few days of critical illness where catabolism dominates, the 

nutritional target should be less than the patient’s EE 

N3: The patient’s EE can be estimated with sufficient accuracy by a novel method, 

VCO2-based calorimetry, but not from predictive equations using anthropometric 

data. 

In the following chapters we seek to support the hypotheses through published 

literature and our own research. 

Chapter 2 provides an introduction to the physiology and pathophysiology of 

critical illness. The chapter also includes a review of the treatment of stress-induced 

hyperglycaemia and clinical studies of glycaemic control. The purpose is to provide 

a basis of knowledge for the rest of the thesis but also to support hypothesis G1, G2, 

N1, and N2. There have been studies which have shown reduced mortality when 

lowering hyperglycaemia towards normoglycaemia using insulin [3,6,7]. However 

some of these studies have resulted in increased hypoglycaemic events and have 

been criticized for this. 
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There have also been studies on how best to feed critically ill patients, however 

there is still some discussion as to the optimal nutritional strategy. In this chapter 

we examine the literature and seek to support our hypotheses on when and how 

much to feed the patients.  

Chapter 3 is based primarily on Paper I and introduces the concept of modelling. 

This includes a short review of different types of modelling, including physiological 

modelling, but primarily presents the Glucosafe model of insulin-glucose 

metabolism that is central to the work presented in this thesis. The purpose of this 

chapter is to show that decision support systems based on physiological models 

perform well compared to other forms of decision support, supporting hypothesis 

G3. This is done by examining some of the published models and decision support 

systems, evaluating how they preform, and comparing their performance with our 

own Glucosafe model and system. 

Chapter 4 is based primarily on Paper II and describes the development of a method 

to assess the likely treatment outcome of changes made to the advice module part of 

the Glucosafe system, without the need for a clinical trial. The chapter describes the 

use of virtual patients, based on real patients, to estimate treatment outcomes. If 

model-based decision support systems are to be the best tool to optimize treatment 

of critically ill patients then there needs to be a method of adapting the 

model/system to different patient cohorts. The purpose of this chapter is to present a 

method of adapting the Glucosafe system to offer optimal treatment advice for 

different patient cohorts or in line with different clinical guidelines. 

Chapter 5 is based primarily on Paper III and presents the work done to develop a 

model of pancreatic insulin release for the Glucosafe model. If the Glucosafe 

system is to prove hypothesis G3 correct it should be based on a model with 

physiologically correct assumptions. The Glucosafe model was initially not 

constructed to incorporate the variable insulin release from the pancreas, using 

instead a constant, fixed insulin release (as shown in chapter 3). The goal was to 

develop a model of pancreatic insulin release to improve the physiological 

correctness of the model and to possibly improve the model’s ability to predict BG 

and offer treatments advice.  

Chapter 6 is based primarily on Paper IV and presents work on optimizing patient 

nutrition in the ICU. In order to fulfil hypotheses N1 and N2 an accurate assessment 

of a patient’s nutritional needs is required as the question of how much to feed the 

patients is based on a patient’s EE, it becomes necessary to accurately estimate the 

EE. The work presented in chapter 6 is the work done to evaluate the accuracy with 

which a patient’s EE can be estimated and to support hypothesis N3, to present a 

simple and accurate method (VCO2-based calorimetry) to estimate EE using 

measurements of carbon dioxide production (VCO2). 
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CHAPTER 2. THE PATHOPHYSIOLOGY 

OF CRITICAL ILLNESS 

The human body controls the blood glucose balance using two negative feedback 

systems, insulin and glucagon. In the healthy person, if BG increases from 

normoglycaemia, the β-cells of the pancreas increase the release of insulin to the 

bloodstream to lower BG. If the BG concentration decreases from normoglycaemia, 

α-cells in the pancreas release glucagon in order to increase BG [8]. 

However in critical illness, the body’s response to injury results is, amongst others, 

the BG being increased despite the release of insulin. 

 

2.1. THE METABOLIC PHASES IN CRITICAL ILLNESS  

The body has a metabolic stress response to injury (be it from trauma, major 

surgery, burns, or sepsis). It involves a neuroendocrine and an immune component 

and includes increased catabolism and anabolism. Over time the body’s response to 

critical illness occurs in three phases: the acute phase and two more prolonged 

phases, the catabolic and the anabolic phases [9].  

 

2.1.1. THE ACUTE PHASE 

The first phase is the acute response, which often lasts <12 hours but in extreme 

cases up to 24 hours [9]. The patient develops the Systemic Inflammatory Response 

Syndrome (SIRS), which acutely is dominated by hemodynamic changes. Neurally 

mediated stress factors such as pain or hypovolemia activate the Hypothalamic-

Pituitary-Adrenal (HPA) axis. The hypothalamus releases corticotrophin-releasing 

hormone (CRH), which stimulates pituitary secretion of adrenocorticotropic 

hormone (ACTH).  Acutely, this results in increased adrenal secretion of 

epinephrine which in turn increases pancreatic glucagon production and suppresses 

the pancreatic insulin production when plasma epinephrine is above 2.2 nmol/l. 

This effect is powerful enough to inhibit insulin secretion despite hyperglycaemia 

[10,11]. In liver and muscles, the combination of high epinephrine and low insulin 

results in a rapid mobilization of the glycogen stores which in the liver is further 

enhanced by the elevated plasma glucagon concentration. This leads to elevated 

blood glucose, i.e. hyperglycaemia. 

In the muscles, the increased glycogenolysis (the breakdown of glycogen stores into 

glucose-6-P) increases the intracellular availability of glucose-6-P.  Oxidative 

metabolism is in the acute phase not elevated despite the availability of substrates. 

This is possibly due to lack of oxygen caused by reduced blood pressure [9]. 

Reduced blood pressure due to for instance hypovolemia is a common feature of 
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sepsis, severe burn and trauma. This means that glucose will be channelled through 

glycolysis and anaerobic lactic acid metabolism. The resulting lactate can diffuse 

out of the cell into the plasma, resulting in hyperlactatemia [9]. 

 

2.1.2. THE CATABOLIC PHASE 

The acute phase is followed by a catabolic phase, which, as the acute phase, is also 

dominated by SIRS, but with more metabolic than hemodynamic changes [12]. 

Through cytokines produced by immune cells [13] the HPA-axis is activated 

causing CRH-release from the hypothalamus which again stimulates pituitary 

ACTH secretion. In this phase, the hormonal response is different from the response 

in the acute phase as ACTH release leads to secretion of cortisol from the adrenal 

gland [14-17]. The plasma levels of epinephrine return to normal or near normal in 

the catabolic phase and only cortisol levels remain elevated throughout the 

catabolic phase [11]. The disappearance of the elevated epinephrine levels allows 

the pancreas to respond normally to hyperglycaemia, and therefore, due to the 

elevated blood glucose the patient enters a state of hyperinsulinaemia [11]. Insulin 

interacts with receptors in the cell membrane (primarily in skeletal muscles) 

triggering translocation of so-called GLUT-4 transporters to cell membranes, 

resulting in increased uptake of glucose. Insulin also induces the cells to store the 

glucose by converting it to glycogen and thus the increased glucose uptake and 

storage should result in the BG decreasing [18]. In general, the higher the BG the 

larger the insulin release, to a point where the pancreatic insulin release reaches a 

plateau. During times where BG is rising, the insulin release is also mediated by the 

rate of change in BG [8,19]. This physiological response is the basis of the 

modelling of a pancreatic insulin release model, shown in chapter 5.  

Both in the tissues and in the liver cortisol drives the catabolism. In the tissues, the 

catabolic effects of cortisol cause lysis of triglycerides into glycerol and free fatty 

acids (FFA). FFA can diffuse into the blood stream causing hyperlipidaemia [14]. 

In muscle tissues, cortisol also causes lysis of proteins into amino acids and hereby 

causes muscle wasting [20]. In both tissues and liver, cortisol causes 

glycogenolysis. Increased intracellular availability of glucose-6-P (from 

mobilization of the muscular glycogen stores due to cortisol and increased glucose 

uptake due to hyperinsulinaemia) results in hyperlactatemia as mitochondrial 

respiration cannot match the supply of glucose-6-P and therefore a large proportion 

may be metabolized anaerobically into lactate [10]. These catabolic effects 

counteract the anabolic effects of insulin, but during the catabolic phase it is 

apparent that the catabolism caused by cortisol is dominating: plasma levels of FFA 

rise [10], as do levels of amino acids [9,21]. BG also increases due to the increased 

concentration of glucagon and cortisol which return to normal 7-10 days after the 

initial injury [11,22]. Both glucagon and cortisol stimulates glycogenolysis, and 

gluconeogenesis (the synthesis of glucose from substrates such as fatty acids, 
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glycerol, lactate, and amino acids) [23]. The catabolism of proteins may cause 

substantial loss of muscle mass over the duration of the catabolic phase [24].  

 

2.1.3. THE ANABOLIC PHASE 

The catabolic phase overlaps with the anabolic phase and initially the elevated 

cortisol level keeps the catabolic response dominant. However as cortisol levels 

decrease so does the strength of the catabolic response. As the catabolic response 

lessens, the anabolic phase starts to dominate.  

The catabolic phase leaves the patient in a condition with an acute need for tissue 

repair due to the original insult and in addition a need for replenishing of the 

intracellular energy stores, which have been depleted by the catabolism. 

Presumably tissue repair has started already during the catabolic phase, such that 

there in reality is an overlap between the catabolic and anabolic phases – a situation 

where catabolism and anabolism coexist and the metabolism is increased. Thus 

tissue repair contributes to the duration of increased metabolism which typically 

lasts for a couple of weeks [25,26]. Often patients develop an energy debt during 

the first week of their stay in the intensive care unit due to slow progression to 

feeding target. The slow progression may be due to poor absorption by the patients 

of enteral nutrition, supplemented by fear of aspiration pneumonia or by cessations 

in feeding due to elective procedures [27]. This energy debt is mostly not 

compensated for during the latter part of the patient’s stay in the ICU and is 

correlated to worse clinical outcome [5,28].  

 

2.2. TREATMENT OF STRESS HYPERGLYCAEMIA 

As stated our hypotheses is that mortality can be lowered by reducing stress-

hyperglycaemia (G1) and by reducing hypoglycaemic events (G2). We also 

hypothesize that nutrition should target the patients’ EE (N1), except during the 

first few days of critical illness where the nutritional target should be less than the 

patient’s EE (N2). The support in the literature for G1 and G2 will be reviewed in 

section 2.2.1 and the support for N1 and N2 in section 2.2.2. 

 

2.2.1. GLYCAEMIC CONTROL WITH INSULIN THERAPY 

There have been several studies done using IIT to lower BG and investigating the 

effect on mortality. Studies have shown both reduced mortality and increased 

mortality, with most studies resulting in increased number of patients with 

hypoglycaemic events. This section reviews the studies and presents a regression 

analysis of the association between changes in mortality, BG and hypoglycaemia. 
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Studies with reduced mortality 

In 2001, in a landmark randomized controlled study (known as the Leuven study) of 

1548 critically ill patients (970 cardiac surgery patients and 578 non-cardiac 

surgery or trauma patients), Greet Van den Berghe et al. tested IIT to decrease 

hyperglycaemia in an attempt to reach normoglycaemia and reduce mortality. Using 

insulin infusions to target a BG concentration of 4.4 – 6.1 mmol/l, the study 

achieved a mean morning blood glucose of 5.7 mmol/l in the group receiving IIT, 

and 8.5 mmol/l in the conventionally treated control group. However the IIT 

resulted in 39 patients (5.1%) in the IIT group having severe hypoglycaemic events 

(BG < 2.2 mmol/l) compared to six patients (0.8%) in the control group. The 

reduction in hospital mortality was 9.5%, from 26.3% to 16.8%, a relative reduction 

in mortality of 45% [3].  

A second Leuven study in a medical ICU resulted in BG being lowered from 8.5 

mmol/l to 6.2 mmol/l but also a significant increase in patients with hypoglycaemic 

events (3.1% versus 18.7%) in the IIT group. The study showed no significant 

difference in mortality between the IIT group and the control group (28-day 

mortality of 29.9% versus 30.0%). 

There have been subsequent studies also showing reduced hospital mortality using 

IIT (see Table 2.1 for a summary of data from the studies).  

Krinsley et al. [6] showed a BG reduction from 8.5 mmol/l to 7.3 mmol/l with no 

significant increase in the percentage of patients with hypoglycaemic events 

(0.34%) compared to the historic controls (0.35%), and a 6.1% reduction in hospital 

mortality. 

Chase et al. [7] showed a reduction in BG (6.0 mmol/l in the intervention group and 

7.2 mmol/l in the retrospective comparison) with 5.2% of patients in the 

intervention group having hypoglycaemic events. The number of patients with 

hypoglycaemic events in the control group was not reported, but the study did show 

a modest but significant decrease in the number of hypoglycaemic measurements, 

from 0.2% of measurements in the control group to 0.1% in the intervention group. 

The study showed a 11.3% reduction in hospital mortality (in patients being in the 

ICU for 5 days or more) compared to historic controls. 

Arabi et al. showed a reduction in BG from 9.5 mmol/l to 6.4 mmol/l and despite a 

significant increase in patients with hypoglycaemic events (3.1% in the 

conventional treatment group versus 28.6% in the IIT group), showed a reduction in 

ICU mortality (17.1% in the conventional treatment group versus 13.5% in the IIT 

group). 

These studies indicate that lowering BG reduces hospital mortality, despite the 

failure in these studies to reduce hypoglycaemic events. This provides support for 

the G1 hypothesis. 

Studies with increased mortality 

However there have also been studies where IIT increased mortality: VISEP [29], 

NICE-SUGAR [30], Glucontrol [31], and a study by De La Rosa et al. [32]. All 
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resulted in lowered BG and increased number of patients with hypoglycaemic 

events, but increased mortality.  

The VISEP study was a multicentre, controlled two-by-two factorial trial, in 

patients with severe sepsis. The trial tested IIT versus conventional treatment and 

showed a reduction in BG from 8.4 mmol/l in the conventional treatment group to 

6.2 mmol/l in the IIT group. However the VISEP study was stopped early due to a 

large increase in the percentage of patients with hypoglycaemic events (17% vs. 

4.1%) and higher (10.9% vs. 5.2%) 90-day mortality in the IIT group.  

The NICE-SUGAR study randomized ICU patients into two groups, targeting a BG 

of 4.5 to 6.0 mmol/l in the intervention group and less than 10.0 mmol/l in the 

control group, resulting in a reduction in BG from 8.1 mmol/l to 6.6 mmol/l but an 

increase in patients with hypoglycaemic events (0.5% vs. 6.8%) and in 90-day 

mortality (24.9% vs. 27.5%). 

The Glucontrol study randomized ICU patients into two groups targeting a BG of 

either 4.4-6.1 mmol/l or 7.8-10-0 mmol/l and showed a BG reduction from 8.0 

mmol/l to 6.5 mmol/l but also an increase in patients with hypoglycaemic events 

(2.7% vs. 8.7%) and in 28-day mortality (15.3% vs. 18.7%). 

The De La Rosa study [32] reduced BG from 8.3 mmol/l to 6.7 mmol/l, but had an 

increase in patients with hypoglycaemic events (0.8% vs. 8.3%) and an increase in 

28-day mortality (32.4% vs. 36.6%). 

Regression analysis 

A linear regression analysis on how the reduction of BG (ΔBG) may reduce 

mortality (ΔMortality) shows no significant correlation (p=0.40). This shows that a 

conclusion on the effect of IIT on mortality cannot be drawn from the data on 

reduction of BG alone.  

A study by Preiser et al. [31] in a multi-centre trial with medical and surgical 

intensive care patients showed that the occurrence of hypoglycaemia coincided with 

a twofold increased risk of death independent of the blood glucose target range. 

Other studies [30,33] have also showed a similar association. These studies do not 

prove a causal connection between hypoglycaemic events and increased risk of 

death, but they are compatible with hypothesis G2: reducing hypoglycaemias 

reduces mortality. Table 2.1 shows that the studies with increases in mortality are 

also the studies with the largest increase in number of patients with hypoglycaemic 

events. A linear regression analysis between percentage of patients with severe (BG 

< 2.2 mmol/l) hypoglycaemia (ΔHypo) and mortality (ΔMortality) showed no 

significant correlation (p=0.83). 

To explore how a reduction in BG (ΔBG) and a reduction in the percentage of 

patients with severe (BG < 2.2 mmol/l) hypoglycaemia (ΔHypo) may reduce 

mortality (ΔMortality) a two-dimensional linear regression model was formulated: 

∆Mortality =  a ∙ ∆BG + b ∙ ∆Hypo Eq. 2.1 
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The regression was performed on the data in Table 2.1, which gave the resulting 

regression equation (SPSS, 23.0.0.0):  

∆Mortality =  3.2 ∙ ∆BG + 0.51 ∙ ∆Hypo Eq. 2.2 

with the p-values of a and b being 0.05 and 0.07, respectively. 

 

Table 2.1 Reduction in mortality, BG, and percentage of patients with severe 

hypoglycaemia (BG < 2.2 mmol/l) in the IIT group versus the control group. 

Study ΔBG 

(mmol/l) 

ΔHypo 

(BG<2.2 mmol/l) 

ΔMortality 

(%) 

Residuals 

Leuven 2.8 -4.3 9.5 -2.2 

Leuven-2 2.3 -15.6 0.1 -0.5 

Krinsley 1.2 0.0 6.1 -1.9 

SPRINT
a
 1.2 5.2 11.3 -4.3 

Arabi et al. 3.1 -25.5 3.6 -6.7 

VISEP 2.2 -12.9 -4.3 4.9 

NICE-SUGAR 1.6 -6.3 -2.6 4.6 

Glucontrol 1.5 -6.0 -3.4 5.2 

De La Rosa et al. 1.6 -7.5 -4.2 5.7 

Mean (SD) 1.9 (0.7) -8.1 (9.0) 1.8 (6.1) 0.6 (4.7) 
a
 The number of patients in the control group with hypoglycaemic events was not 

reported, but the percentage of hypoglycaemic measurements was twice that of the 

intervention group. For the purpose of this regression we therefore assumed that 

10.4% of patients in the control group had hypoglycaemic events, twice that of the 

intervention group. 

Despite the a and b values in the regression formula being a little less than 

significant, the regression does lend some support to both the G1 and G2 hypothesis 

that lowering stress-hyperglycaemia improves patient care in terms of lowering 

mortality, in so far as hypoglycaemic events are avoided or not increased to a large 

degree. G2 is further supported by studies [34,35] which have shown that BG 

variability is a strong predictor of hospital mortality. 

 

2.3. ENSURING ADEQUATE CALORIC INTAKE 

American, European, and Canadian guidelines for the nutrition of critically ill 

patients recommend eucaloric feeding, i.e. that the caloric intake should match the 

individual patient’s EE [36-38], based on studies which have shown that 

overfeeding by as little as 10% relative to EE can adversely affect organ function, 

leading to e.g. hypercapnia, metabolic acidosis, and fatty liver [4]. It has also been 

shown that in critically ill patients, a high caloric debt, calculated as the difference 

between caloric intake and the patient’s actual EE, is associated with an increased 
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rate of adverse outcome in terms of increased number of infections [5]. This 

supports our N1 hypothesis, that nutrition should target 100% of patient’s EE. 

Despite the negative effects of caloric debt, the guidelines are more flexible 

concerning underfeeding than overfeeding, by allowing delayed initiation of enteral 

feeding by 24 hours [37] or by 24-48 hours [36,38] and by recommending a seven 

day delay in initiation of parenteral feeding in case the nutritional target cannot be 

achieved by enteral feeding alone [36]. This acceptance of a delay of supplementary 

parenteral nutrition may be justified by the observation that early parenteral feeding 

increases the rate of infection [39] but contrasts with the desire to avoid a large 

caloric debt. 

There is still some disagreement on the subject of whether or not to underfeed the 

patients and whether to initiate early feeding or late feeding of the patients. Arabi et 

al. showed that hypocaloric feeding (approximately 60% of EE) may be associated 

with lower hospital mortality [40]. Artinian et al [41] and Khalid et al. [42] both 

showed that initiation of enteral nutrition within 48 hours of mechanical ventilation 

was associated with reduced ICU and hospital mortality. While the nutritional 

guidelines support our N1 hypothesis on eucaloric feeding and no overfeeding, 

there are studies [40,43] which suggest permissive underfeeding as optimal and that 

the early use of parenteral nutrition should be avoided. It is intuitively appealing to 

restrict caloric intake in the catabolic phase where plasma concentrations of 

glucose, lipids and amino acids is already high. It may be however that the 

detrimental effects of early parenteral nutrition does not reflect negatively on 

parenteral nutrition but on the fact that the early parenteral nutrition results in early 

eucaloric feeding which according to our hypothesis (N2) should be avoided, 

although more evidence from randomized trial is still needed to properly support 

the hypothesis. 
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CHAPTER 3. DECISION SUPPORT 

SYSTEMS FOR GLYCAEMIC CONTROL 

Decision support systems have been developed to assist medical staff with the 

management of stress induced hyperglycaemia, while avoiding hypoglycaemia, in 

critically ill patients. These decision support systems have ranged from rule-based 

systems and protocols, to complex physiological mathematical models. It is our 

hypothesis, G3, that the use of decision support systems based on physiological 

models is the best method for glycaemic control. 

This chapter is based primarily on Paper I which describes the Glucosafe decision 

support system. In addition this chapter contains descriptions of physiological 

models and decision support systems, including a comparison of systems. 

 

3.1. TYPES OF DECISION SUPPORT SYSTEMS 

3.1.1. RULE BASED SYSTEMS 

These systems are also known as expert systems as the rules used are often set by 

experts in the field [44]. A type of rule based protocol is the sliding scale system 

which administers a set a predetermined amount of insulin at different ranges of BG 

(e.g. 1U/h if BG is 6-8 mmol/l and 2U/h if BG is 8-9 mmol/l). Another type is the 

dynamic scale which adjusts the insulin dosage by a predetermined size of change 

depending on the range the BG is in (e.g. if BG is 6-8 mmol/l the insulin is 

increased by 1U/h, if BG is 8-9mmol/l the insulin is increased by 2U/h).  

Examples of rule based systems include the SPRINT system [7], which developed a 

set of rules based on simulations with a physiological model. Examples also include 

the eProtocol-insulin system which uses a set of rules to determine the rate of 

insulin infusion: For BG < 3.3mmol/l the rules state that the insulin infusion is 

discontinued. For BG ≥ 3.3mmol/l the insulin infusion rate is adjusted based on the 

difference between the BG target (set by clinicians) and the current BG, modulated 

by the rate of change in BG between the current and previous BG measurement. 

[45]. In section 3.4 the rule-based eProtocol-insulin system is compared to the 

Glucosafe system, which is based on a physiological model. 

 

3.1.2. PHYSIOLOGICAL MODELS  

In physiological models it is attempted to let the structure of the model reflect the 

physiology of the biological system being modelled. The majority of these systems 

have been based on compartmental models of insulin-glucose metabolism, using 

differential equations [44].  
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Perhaps the best known physiological model is the minimal model by Bergman et 

al. which was constructed with two compartments for insulin pharmacokinetics and 

an equation for insulin-glucose pharmacodynamics [46,47].  

dX

dt
= −p2X(t) + p3(I(t) − Ib) Eq. 3.1 

dG

dt
= −X(t)G(t) + p1(Gb − G(t)) + P(t) Eq. 3.2 

G(t) is the plasma glucose concentration at time t, I(t) is the plasma insulin 

concentration, and X(t) is the interstitial insulin. Gb is the basal plasma glucose 

concentration, P(t) is the appearance rate of glucose from exogenous input and Ib is 

the basal plasma insulin concentration. Patient specific parameters p1, p2 and p3 are 

transport rates between the various compartments with the ratio p3/p2 representing 

insulin sensitivity. 

The minimal model captures the three basics of models for glycaemic control; 1) 

insulin pharmacokinetics and distribution, 2) Glucose appearance, and 3) the effect 

of insulin on removal of plasma glucose.  

Most compartment models used for studies of glycaemic control have their basis in 

the minimal model, with compartments or equations added as necessary to improve 

the patient specific simulation and prediction of BG [48]. This has led to increases 

in physiological accuracy of the models [48]. 

A more complex model was developed by Hovorka et al [49] for the purpose of 

controlling type-1 diabetes. The model was multi-compartmental and included 

subsystems for insulin and glucose absorption, including subcutaneous insulin 

absorption, distribution, and disposal, as well as insulin action on glucose transport, 

disposal and endogenous insulin production. The model was designed to control 

insulin delivery in artificial pancreas systems. There are other models [50,51] 

developed for use in artificial pancreas systems [52]. 

Based on the minimal model but further incorporating saturation effect of plasma 

insulin disappearance and insulin-dependent glucose uptake a model was developed 

by Chase et al. and further developed into the Intensive Control Insulin-Nutrition-

Glucose (ICING) model [53]. Like the Hovorka et al. model, the ICING model 

incorporates insulin and glucose absorption, distribution, and disposal, as well as 

insulin action on glucose transport and endogenous insulin production. However the 

ICING model was constructed for use in the ICU with intravenous insulin delivery, 

not subcutaneous boluses. 

Prior to the development of the Hovorka et al. model and the ICING model, the 

Diabetes Insulin Advisory System (DIAS) model [54], was constructed to predict 

BG and advice on insulin dosing to manage type-1 diabetes. The DIAS model was 

constructed to model the uptake of glucose from the intestines, facilitated diffusion 

of glucose mediated by glucose transporters (GLUT-1, GLUT-3, and GLUT-4), and 

renal clearance of glucose. The DIAS model was constructed to incorporate insulin 
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saturation effects and included a patient specific parameter to model the effects of 

insulin sensitivity [55]. The DIAS model parameters were optimized using 

literature data on hepatic and endogenous glucose balance. From the DIAS model a 

multi-compartment model of insulin-glucose metabolism was constructed, the 

Glucosafe model [56]. The Glucosafe model is similar to the DIAS model but uses 

a more explicit compartment model of plasma and peripheral insulin concentrations 

and removal. And like DIAS the Glucosafe model incorporates the modelling of the 

non-linear effect of insulin on glucose uptake, but also models reduced gastric 

uptake of glucose and (as shown in chapter 5) now includes a model of pancreatic 

insulin secretion. 

The chosen focus of this thesis is the Glucosafe model and the Glucosafe system 

incorporating the model. 

 

3.1.3. MODEL PREDICTIVE CONTROL 

Decision support systems for insulin therapy based on physiological mathematical 

models can be used to predict the outcome of a treatment. By simulating several 

treatments, the treatment resulting in the optimal outcome can be recommended to 

the decision maker. In the context of glycaemic control, the simulations are 

performed using a model of the insulin-glucose metabolism with the input 

parameters being current and previous insulin treatment, nutritional status, and BG 

measurements.  

There are several methods to evaluate model output and adjust input where the 

model is used to generate an output, based on an input. One method is the 

proportional-integral-derivative (PID) control where the output is compared to a 

predetermined target output and the input is changed based on the difference 

between output and target. However PID control has several limitations to its use. 

The use of PID control presupposes linearity and, as the input is adjusted based on 

the output, has only a single input and a single output. Less restrictive is the Model 

Predictive Control (MPC) [44], where the output is compared to a predetermined 

target output and the input is adjusted stepwise until the model output matches the 

target. An example would be adjusting the insulin infusion rate until the resulting 

BG matches a predetermined target.  However MCP is limited by only being able to 

evaluate the outputs of the model relative to a set target and then optimize the 

output by changing the input. MCP however is not capable of optimizing both 

inputs and outputs or compromising between several targets. 

One method to manage multiple inputs and outputs (such as both insulin and 

nutrition inputs influencing the simulated BG) or having multiple objectives to 

resolve (such as wanting to lower BG to a specific target while also targeting a 

certain nutritional goal, for example  100% of a patients energy expenditure), is the 

use of utilities. Utilities can take the form of a set of equations used to evaluate both 

input and output and finding the best compromise between multiple objectives. 
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The Glucosafe system, incorporating the Glucosafe model, uses (negative) utilities 

in the form of a set of penalty functions to control the generation of treatment 

advice [57]. The penalty functions balance the administration of insulin and 

nutrition in an attempt to compromise between achieving normoglycaemia while 

neither starving nor overfeeding the patient.  

 
3.2. THE GLUCOSAFE MODEL 

The Glucosafe decision support system is based on the Glucosafe model [56] of 

insulin-glucose metabolism. The model and equations are shown in Fig. 3-1.  

The Glucosafe model uses a two-compartment insulin kinetics model to simulate 

plasma insulin (I) and peripheral insulin (Q) concentrations. This is based on the 

endogenous production (U) and exogenous infusions (P) of insulin and the removal 

of insulin by the kidneys and by insulin degradation in the liver and peripheral 

tissue. In Glucosafe the pancreatic insulin release is a constant rate, unless the 

patient is a type-1 diabetic in which case the insulin release is zero. 

The insulin sensitivity (s) scales the effect of insulin (a) on hepatic removal and 

peripheral absorption of glucose. The insulin sensitivity is a dimensionless 

normalized parameter so a value of one indicates normal insulin sensitivity and 

values below one indicate insulin resistance. In the model the estimated insulin 

sensitivity is assumed to be a time-varying, patient-specific parameter, which is 

independent of the treatment the patient is receiving.  

The Glucosafe model takes patient height, weight, age, and gender into account to 

determine patient-specific parameters such as distribution volumes. Following the 

initial determination of patient-specific parameters, the variables gut content, 

plasma and interstitial insulin concentrations, and BG are continually modelled 

based on user specified inputs (i.e. BG measurements, insulin dosing, and amount 

and composition of nutrition), however the only parameter used to fit the model to 

the data (i.e. BG measurements) is the insulin sensitivity which is re-estimated 

every time a new BG measurement is input to the system, thus making it the only 

patient specific parameter allowed to vary over time. 

The simulated BG concentration is a model variable that depends on insulin-

mediated and insulin-independent glucose clearance from plasma and glucose 

uptake from intravenous infusions and carbohydrate uptake from nutrition. The 

insulin-mediated glucose clearance is affected by the non-linear insulin saturation 

function [56], and the uptake of bioavailable glucose from nutrition is scaled by a 

carbohydrate absorption factor (mgut) to model reduced nutrient absorption in 

critical illness. The C-peptide/insulin kinetics parameters; k1, ABSA, VP, and VQ are 

calculated using the method presented by Van Cauter et al. [58] and the moving 

average function, f(.), for renal clearance is taken from Rave et al. [59]. Further 

information on parameters, variables, and values can be found in [56]. 
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Figure 3-1 The Glucosafe model of insulin-glucose metabolism. Solid lines indicate 

flows and dashed lines indicate effects of variables or parameters on other 

variables. 

 

3.2.1. VALIDITY OF THE GLUCOSAFE MODEL 

To determine the validity of the model it can be tested for the ability to predict 

future BG concentration. This is done retrospectively using data on nutrition, 

insulin, and BG from patient, by having the model predict BG from one real 
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measurement to the next, for all measurements and all patients used. The predictive 

accuracy is then calculated. The relative error, e(Δtik), is calculated as: 

e(Δtik) = |
m(ti + Δtik) − G(ti; Δtik)

m(ti + Δtik)
| Eq. 3.3 

Δtik =  ti+k − ti Eq. 3.4 

∀i|1 ≤ i ≤ N − 1 Eq. 3.5 

∀k|Δtik < PH Eq. 3.6 

N is the total number of BG measurements for the patient, PH is the prediction 

horizon (i.e. the maximum forward prediction time the prediction error is to be 

calculated for), Δtik is the time between two BG measurements (ti and ti+k), G(ti;Δtik) 

is the model-predicted blood glucose from time point ti and Δtik forward, and m(ti + 

Δtik) is the measured BG value at Δtik time from ti. Note that the prediction error is 

expected to increase with longer prediction times. Thus, the individual errors are 

sorted by Δtik in ascending order, and the absolute mean prediction error is 

calculated for two intervals of t: (1) 1 min ≤ Δtik ≤ 90 min; (2) 91min ≤ Δtik ≤ 

180min. 

The result of testing the predictive accuracy on a cohort of 12 critically ill patients 

in a neuro-ortho-trauma intensive care unit (NOTIA) at Aalborg University 

Hospital in Denmark [60] was a mean prediction error of 8.7% (1-90 min.) and 

13.9% (91-180 min.). The total mean prediction error (0-180 min.) was 11.9%.  

 

The Glucosafe model had its predictive accuracy tested and compared to a paper-

based protocol from Christchurch, New Zealand [61]. Both were tested on 

retrospective patient data from two cohorts, one from Denmark and one from New 

Zealand. 

The results showed very similar predictive accuracy, with the Christchurch protocol 

more accurately predicting the New Zealand patients and the Glucosafe model more 

accurately predicting the patients from Denmark. 

 

3.3. THE GLUCOSAFE SYSTEM 

The Glucosafe system uses the Glucosafe model to simulate a patient and from 

there, predict the patient’s future BG. The main control window of the Glucosafe 

system is shown in Fig. 3-2. 
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Figure 3-2 The main control screen of the Glucosafe system with a window on the 

left hand side displaying measured and predicted BG, current and previous insulin 

infusions and nutrition. On the right hand side of the screen is information on the 

patients and the current treatment and several boxes for inputting changes to the 

current and previous treatment and BG measurements. At the bottom of the right 

hand side are buttons for requesting treatment advice and accepting, modifying, or 

rejecting the advice. 

 

3.3.1. TREATMENT ADVICE 

Advice is shown upon user request, typically after a new blood glucose 

measurement. Upon a request for advice, the model predicts the blood glucose 

trajectory for different treatments consisting of a continuous insulin infusion rate 

(or insulin infusion rate and bolus size if the BG is above ten mmol/l) and either an 

enteral feed rate, an intravenous feed rate, or a combination of the two feed types. A 

penalty score rates the tested treatments and the treatment with the lowest penalty 

score is deemed the optimal treatment and is shown to the user. Users can either 

accept or reject the advice, or modify it (Fig. 3-2). In case of a modification the user 

overrules the advice manually, setting one or both of the recommended feed rates 

(enteral and intravenous) and asking for new advice based on these settings. If both 

feed rates have been manually set by the user, Glucosafe adjusts only the insulin to 

minimize the penalty score, and recommends only insulin along with the user 

specified nutrition. 
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As previously mentioned, Glucosafe uses a set of four penalty functions which 

evaluate the treatment objectives to determine the optimal treatment advice. Fig. 3-

3 shows plots of the penalty functions used in the Glucosafe system. 

Glycaemic Penalty – The penalty increases for treatments which result in the 

predicted BG above or below the target. The penalty increases more rapidly for BG 

concentrations that are below the target, in order to minimize the occurrence of 

hypoglycaemia. The BG target (G0) can be set by the user. The penalty (Fig. 3-3A) 

is defined as:  

fG(G) =  (ln (
G

G0

))
2

× PG Eq. 3.7 

where G is the predicted BG, G0is the specific BG where the penalty is zero [62] 

(standard setting is 5.5 mmol/l), and  PG = 22. 6 is a dimensionless scaling factor. 

The BG penalty used is the mean of penalties calculated from the predicted BG at 

one, two, three, and four hours. 

Insulin Consumption Penalty – To decrease the use of excessive insulin, the use is 

penalized with the following function (Fig 3-3B): 

fI(P) =  (
(P × C + Km)2

Km
2 − 1) × PI Eq. 3.8 

where P is the insulin infusion rate (mU/(kg×min.), C = 98.1 kg/min.×L is a factor 

for converting insulin infusion rate to steady state plasma concentrations [55], 

Km = 28 mU/L is a Michaelis-Menten saturation constant [63], and PI = 0.00916 is 

a dimensionless scaling factor. 

Mucosal Damage Penalty – To maintain functional intestinal mucosa, the amount of 

nutrition administered enterally is maximized using the following function (Fig. 3-

3C): 

fD = (Nenteral − 1)2 × PD Eq. 3.9 

where Nenteral is the fraction of the EE that is administered enterally and PD = 1 is 

a dimensionless scaling factor. EE is the caloric intake needed to cover 100% of the 

patient’s energy expenditure.  

Nourishment Penalty – In Glucosafe the EE of the patient is estimated using the 

Mifflin St Jeor equation based on height, weight, age, and gender, multiplied by a 

user selected Stress Factor (SF) to accommodate the hypermetabolism usually seen 

in the critically ill. The following function (Fig. 3-3D) is used to penalize under- or 

over-feeding relative to the estimated EE: 

fC(Ntotal) = (Ntotal − 1)2 × PN Eq. 3.10 

where Ntotal is the total nutrition administered, as a percentage of EE, and PN = 1 is 

a dimensionless scaling factor. The values of the scaling factors shown here are 

different from those previously published [57], though the ratio between them are 

the same. This is because the values here have been normalized so that PD and PN 

are equal to one. 
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The dimensionless scaling factors used in the four equations were derived by a 

simulation of steady state BG from combinations of insulin and nutrition, over a 

range on insulin sensitivities. From there a treatment target was set for each insulin 

sensitivity and then minimizing the sum of squares of the difference between 

Glucosafe advice and the set advice targets [57]. 

A grid search of the possible treatment combinations of insulin and nutrition is used 

to minimize the sum of these penalties and the treatment advice on nutrition and 

insulin resulting in the lowest combined penalty is shown to the user.  

Figure 3-3 The four penalty functions used by the Glucosafe system to determine the 

treatments advice resulting in the lowest combined penalty. 

 

3.4. PERFORMANCE OF THE GLUCOSAFE SYSTEM 

To examine if our hypothesis (G3) that decision support systems based on 

physiological models is the best method to lower hyperglycaemia while avoiding 

hypoglycaemic events the Glucosafe system has been tested in three different 

clinical studies (including Paper I of this thesis, which this chapter is based upon) 

and compared to other models and systems. Glucosafe is compared to both other 

computer based systems and paper based systems, some of which are model-based 

and some of which are not. 

As seen from Table 3.1, the Glucosafe system has, in all three clinical trials, been 

able to lower BG without any hypoglycaemic events.  
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Table 3.1. Comparison of glucose control trials. Above the thick line are 

trials using computer-based decision support, below the line are paper 

based trials. 

 BG (mmol/l) 

Mean (SD) 

Median (IQR) 

Patients with hypoglycaemia 

Mild (BG < 3.3 mmol/l)
 

Severe (BG < 2.2 mmol/l) 

Trial Intervention Control Intervention Control 

Glucosafe 1 [60] 7.0 (± 1.2) 

7.1 (6.3-7.9) 

8.0 (± 1.2) 

8.0 (7.0-9.1) 

0.0% 

0.0% 

0.0% 

0.0% 

Glucosafe 2 [62] 7.0 (± 1.1) 

7.2 (6.6-8.2)
a
 

8.6 (± 2.4) 

8.0 (6.9-6.9)
a
 

0.0% 

0.0% 

0.0% 

0.0% 

Glucosafe 3 [64] 5.8 (± 1.0)
a
 

5.6 (5.0-6.6) 

7.8 (± 1.8)
a
 

7.8 (6.6-8.7)
a
 

0.0% 

0.0% 

0.0% 

0.0% 

LOGIC-1 [65] 5.9 (± 0.5) -- 14.1% 

0.0% 

17.9% 

3.3% 

STAR-Liege 2 

[66] 

-- 

7.4 (6.5-8.4) 

-- 

8.6 (6.9-9.5) 

0.0% 

0.0% 

0.0% 

0.0% 

Leuven 1 [3] 5.7 (±1.0) 

-- 

8.5 (± 1.8) 

-- 

-- 

5.1% 

-- 

0.8% 

SPRINT [7] 6.0 (±1.5) 

-- 

7.2 (± 2.4) 

-- 

-- 

5.2% 

-- 

-- 

Glucontrol [31] -- 

6.5 (6.0-7.2) 

-- 

8.0 (7.1–9.0) 

-- 

8.7% 

-- 

2.7% 

NICE-SUGAR 

[30] 

6.6 (± 1.4) 

-- 

-- 

-- 

74.2% 

6.8% 

15.8% 

0.5% 

Krinsley [6] 7.3 (±3.1) 

6.6 (5.5-8.2) 

 1.02% 

0.34% 

 

a
 Unpublished data 

Table 3.1 shows a comparison of Glucosafe and two other trials using computer 

based systems, the LOGIC-1 trial and the STAR-liege 2 trial. While the LOGIC-1 

trial achieved lower BG than two of the Glucosafe trials it also had 14.1% of 

patients experiencing mild hypoglycaemic events (defined as BG < 3.3 mmol/l). 

The STAR-Liege-2 trial avoided hypoglycaemic events but was inferior to 

Glucosafe in terms of lowering BG. This indicates that Glucosafe performs better 

than the other computer-based systems in terms of lowering BG while avoiding 

hypoglycaemic events. 

With reference to hypothesis G3, that model-based systems are better able to lower 

hyperglycaemia while avoiding hypoglycaemia, Table 3.1 clearly indicates this, as 

all the trials using paper-based systems show the occurrence of hypoglycaemic 

events. Further support to the hypothesis is a direct comparison of Glucosafe and 

the rule-based eProtocol-insulin system [45]. The Glucosafe system consistently 

provided more favourable recommendations on insulin use based on data from 408 
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critically ill patients treated using the eProtocol-insulin system, supporting 

hypothesis G3. 

Overall Glucosafe has shown the ability to lower BG while avoiding any 

hypoglycaemic events. The Glucosafe 3 study was the most successful in lowering 

BG, reaching BG concentrations similar to the Leuven 1 study (5.7 mmol/l), but 

where the Leuven study had 5.1% of patients with hypoglycaemic events, the 

Glucosafe 3 study had no hypoglycaemic events. That the third Glucosafe study 

achieved lower BG than the previous two Glucosafe studies is most likely because 

the patients were fed very little, some only receiving intravenous glucose, and as 

Glucosafe was not allowed to advise on nutrition the patients continued to receive 

little nutrition when treated with Glucosafe. 

These studies evaluating the Glucosafe system, and the comparison to other studies, 

supports our hypothesis (G3) that the use of physiological models and decision 

support systems can be beneficial in glycaemic control and a better tool than non-

model based systems. However if model-based decision support systems are to be 

the best tool to optimize treatment of critically ill patients then there needs to be a 

method of adapting the model/system to different patient cohorts. 
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CHAPTER 4. EVALUATING 

MODIFICATIONS TO THE GLUCOSAFE 

SYSTEM 

Glucosafe has two major components: the model and the advice module. As 

previously mentioned the Glucosafe model can be (and has been) evaluated by 

determining its predictive accuracy, i.e. its ability to minimize the distance between 

predicted and measured blood glucose concentrations. This can be done from 

retrospectively collected data and the effects of modifications to the model can 

conveniently be tested by evaluating the modified model on the same retrospective 

data. Evaluation of the Glucosafe system’s ability to control BG (i.e. how good is 

the advice offered by Glucosafe) is more complicated. This is (and has been) done 

by conducting a clinical trial, where the Glucosafe system is allowed to recommend 

insulin and nutrition to a patient cohort and then determining the performance of the 

system on this cohort in terms of the clinical goals for blood glucose, nutrition, and 

insulin. 

As stated in chapter 2, hyperglycaemia is treated using insulin to lower the BG. 

While Glucosafe has been shown to reduce hyperglycaemia in clinical trials 

[60,62], in two of those studies the goal of reducing the mean BG into the target 

band of 4.4 – 6.1 mmol/l was not achieved, even though  G0 in the glucose penalty 

function was set to 5.5 mmol/l (section 3.3.1, Eq. 3.7). This happens because the 

Glucosafe advice minimizes the sum of all four penalty functions, which 

necessitates compromises in each of the four penalty functions. For example, 

increasing the insulin dosing will lower the BG, thus simultaneous reducing the BG 

penalty and increasing the insulin consumption penalty. If the user of Glucosafe 

actually prefers to reduce BG, even at the expense of a higher insulin consumption 

penalty, this can practically be achieved by changing the balance between the two 

penalties, for example by scaling down the insulin consumption penalty. Since there 

are four interacting penalty functions, finding out which modifications to make to 

the penalty functions to achieve a specific treatment target, in order to optimize the 

treatment of a patient cohort or to best accommodate department guidelines, could 

be problematic as this would require further clinical trials which are expensive and 

time consuming. The purpose of this chapter is to describe a method for adjusting 

the relative scaling of the penalty functions without clinical trials. The chapter is 

primarily based on Paper II, though with some results omitted for brevity. 
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4.1. VIRTUAL PATIENTS 

It is possible to test and compare the outcome of changes to the advice generator 

using virtual patients constructed from actual patients treated by Glucosafe.  

Virtual patients have been used in the design and testing of IIT protocols [67,68]. 

Others have developed them for evaluating type-1 diabetes treatments [69,70] and 

in critical care [71].  

As previously mentioned a study using Glucosafe in an ICU achieved a 

significantly lower BG compared to the control group (see Table 3.1, Glucosafe 1). 

However the study failed to achieve the targeted 4.4 – 6.1 mmol/l BG range [60]. 

As an example of how the virtual patients can be used to select settings of the 

penalty functions likely to produce a desired outcome in terms of mean BG and 

frequency of hypoglycaemic events, several modifications to the penalty functions 

were tested to find the settings resulting in a mean BG in the 4.4 – 6.1 mmol/l 

range. The virtual patients were constructed from six patients treated according to 

Glucosafe advice (intervention group) and six control subjects from the previously 

mentioned study [60]. The virtual patients were constructed with the same model 

and penalty functions as used during the clinical study.  

 

4.2. VIRTUAL PATIENTS AND THE GLUCOSAFE SYSTEM 

The virtual patients are based on insulin sensitivity profiles from patients previously 

treated using Glucosafe. The profiles are generated from the insulin sensitivity 

estimated for every BG measurement entered into the Glucosafe system. As the 

insulin sensitivity is assumed to be independent of the treatment the patient is 

receiving it can be used to describe a specific patient’s insulin responsiveness over 

time. An example of an insulin sensitivity profile is given in Fig. 4-1, where insulin 

sensitivity is recalculated whenever a new blood glucose measurement is entered 

into the Glucosafe system. 

Figure 4-1 Example of a 14 hour insulin sensitivity profile from a patient.  
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Figure 4-2 Diagram of the 

Glucosafe system when used 

for advice generation with real 

patients and when used for 

testing with virtual patients. 

Insulin sensitivity is estimated 

by Glucosafe during real-time 

use, based on the patient’s 

measured BG and the amount 

of nutrition and insulin the 

patient has been receiving. 

The insulin sensitivity 

estimated during real patient 

use is then forced upon the 

system during virtual patient 

generation. 

Fig. 4-2 shows a diagram of Glucosafe when used in real-time with patients and 

when using virtual patients. In real-time, an amount of insulin and nutrition is given 

to the patient with a resulting measured BG. The measured BG and administered 

insulin and nutrition amounts are used by the Glucosafe model to estimate the 

insulin sensitivity at that specific time. As previously mentioned, a grid search of 

the possible treatment combinations of insulin and nutrition, and the resulting 

predicted BG four hours ahead, is input into the penalty functions, to generate an 

advice for new insulin and nutrition amounts.  

In the virtual patient the insulin sensitivity profile previously estimated from the 

real patient is used by the Glucosafe model to simulate BG during subsequent 

testing. With the insulin sensitivities read from the insulin sensitivity profile, a 

single BG measurement from the patient is used as a starting point and Glucosafe is 

asked for an advice on insulin and nutrition. The advice is followed and at the time-

point for the next BG measurement, the BG predicted by the model is used instead 

of the measured BG. Using the predicted BG as a starting point the insulin 

sensitivity is read from the insulin sensitivity profile, and a new advice is requested.  

This method results in a cohort of virtual patients, based on real patients, where 

model predicted BG is used in lieu of measured BG, and as the insulin sensitivity 

profile is meant as a profile of patient behaviour independent of treatment, the 

treatment advice given by Glucosafe is what determines the patients BG over time. 

This means that different settings for the penalty function governing advice 

generation can be compared by analysing the outcome of the virtual patient cohort, 

e.g. the mean BG, or which settings result in a desired treatment outcome.  
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4.3. EVALUATING MODIFICATIONS USING VIRTUAL 
PATIENTS 

A patient cohort was managed with Glucosafe [60] with the penalty function 

settings listed in section 3.3.1, (G0 = 5.5 mmol/l) seeking to reduce the cohort mean 

BG to between 4.4 and 6.1 mmol/l. A mean BG of 7.0 mmol/l was achieved. 

Several different modifications were made to the penalty functions which govern 

treatment advice and then the modifications were tested for their influence on 

glycaemic control on the set of virtual patients derived from the cohort. The 

purpose of testing several modifications was to determine which set of 

modifications was required to achieve a mean BG between 4.4 and 6.1 mmol/l in 

the cohort of virtual patients. 

The following modifications were tested: 

Glycaemic Penalty – The BG where the penalty is zero (G0), was lowered from 5.5 

mmol/L to 5.25 mmol/L, which is the middle of the 4.4 – 6.1 mmol/l band. This 

results in higher penalties for BG above the target (Fig. 4-3A). 

 

Figure 4-3 The penalty functions used in the Glucosafe system to find the treatment 

advice. The solid lines are the original penalty functions. The dashed lines are the 

modified penalty functions. 

Insulin Consumption Penalty – Two different changes were made to the insulin 

dose penalty function by lowering PI (section 3.3.1, Eq. 3.8) with a factor of two 

and ten (Fig. 4-3B).  

Mucosal Damage Penalty – The function was modified to be raised to the sixth 

power instead of the second power: 

fD = (Nenteral − 1)6 × PD Eq. 4.1 



CHAPTER 4. EVALUATING MODIFICATIONS TO THE GLUCOSAFE SYSTEM 

27 

This changes the shape and overall lowers the Mucosal Damage Penalty (Fig. 4-

3C). 

Nourishment penalty – PN (section 3.3.1, Eq. 3.10) was reduced by a factor of two 

which lowers the penalty for over and underfeeding the patient (Fig. 4-3D). 

 

4.4. RESULTS 

As the use of virtual patients rests on the assumption that the underlying model is 

sufficiently accurate in predicting BG, first the real and virtual patients were 

compared in order to validate the virtual patients. This was done by determining if 

virtual patients, using the same treatment advice setting as used on the real patients, 

would result in a similar outcome in terms of BG, insulin use, and nutrition. There 

were some deviations between the virtual patients and the real patients, primarily 

due to the real patients having cessations of insulin and nutrition administration that 

the virtual patients did not replicate. Despite this there were no significant 

differences between the real and the virtual patients in insulin use or nutrition nor in 

the log-normally distributed BG. As such, all 12 virtual patients were deemed 

usable to evaluate modifications. The virtual patient cohort had a mean BG of 6.5 

mmol/l before any modifications were tested. Modifying the penalty functions gave 

the results: 

 Lowering G0 to 5.25 mmol/l reduced BG to 6.3 mmol/l. 

 Reducing the insulin dose penalty by a factor of 2 had no impact on BG; 

reducing the insulin dose penalty by a factor 10 lowered BG to 6.4 mmol/l.  

 Reducing the mucosal damage penalty lowered BG to 6.3 mmol/l. 

 Reducing the nourishment penalty lowered BG to 6.4 mmol/l. 

As none of the modifications tested resulted in decreasing the BG for the cohort 

into the 4.4-6.1 mmol/l band, combinations of modifications were tested.  

The full results of the accuracy testing and the results of the individual 

modifications can be found in Paper II. 

The modifications of the penalty functions were evaluated by comparing results 

from the 12 virtual patients before and after the modifications. The biggest effects 

on mean BG were seen by lowering the glycaemic target and by lowering the 

mucosal damage and nourishment penalties. Combining these three modifications 

resulted in a mean BG of 5.9 mmol/l for the cohort with 54% of BG measurements 

in the target BG band, compared to 39% without any modifications. The 

consequence was a lowering of the administered nutrition (from 79% to 60% of 

estimated EE) and a 0.6 U/h decrease in insulin usage, from 5.4 U/h to 4.8 U/h. The 

combined modifications resulted in a mean BG of 5.9 mmol/l, which is within the 

4.4-6.1 mmol/l band, with seven of the twelve virtual patients having a mean BG in 

the band.  
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This compares well with the Leuven study [3] which achieved a mean BG of 5.7 

mmol/l, considering that the study reported only morning BG which has been 

shown to be lower than BG measured later in the day [72]. 

The lowest BG in the virtual patient cohort was 3.6 mmol/l reduced to 3.3 mmol/l 

with the combined modifications. Using the definitions of hypoglycaemia from 

Table 3.1, this measurement touches the limit of mild hypoglycaemia. There were 

no events of severe hypoglycaemia compared to the 5% of patients (39 out of 765 

patients) in the Leuven study which experienced hypoglycaemic events. 

The results show that the use of virtual patients as a tool, is suited to optimize 

treatment in a clinical study after an initial pilot study or as a tool to continually 

optimize treatment in a clinical setting, although it will remain necessary to verify 

in a new set of real patients that the proposed modifications of the advice algorithm 

produce similar results in real patients as in virtual patients.  
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CHAPTER 5. MODELLING 

PANCREATIC INSULIN RELEASE 

The Glucosafe model has previously been tested for accuracy and performed well, 

both in clinical trial and while testing the accuracy of the virtual patients. However 

as mentioned, the cornerstone of the usability of virtual patients is the predictive 

accuracy of the underlying model and while Glucosafe may perform well in its 

current configuration, it does not model pancreatic insulin release other than as a 

constant release. 

The body’s own method of managing hyperglycaemia is by releasing variable 

amounts of insulin from the pancreas, and the relationship between BG and 

pancreatic insulin secretion is complex. In the Glucosafe model the pancreatic 

insulin release was modelled as a constant release regardless of the patient’s BG 

concentration [56]. This was not a problem as the patients treated with Glucosafe 

had high BG’s resulting in a high and almost constant endogenous insulin release. 

However if Glucosafe is to model patients during their recovery phase, where they 

may have lower BG, a model of BG dependent insulin release must be included. To 

do this a model of pancreatic insulin release was constructed. This chapter gives the 

results from Paper III, with some results omitted for brevity. 

 

5.1. PANCREATIC INSULIN RELEASE 

The pancreas model was based partly on previous studies and models of pancreatic 

insulin release. Cerasi and Luft [19] found a dual-phase insulin release (i.e. a phase-

1 and phase-2 response) in healthy humans during glucose infusion tests and Porte 

and Pupo [73] found evidence of a two-pool insulin system. 

Their findings indicate that pancreatic insulin release is a dual-compartment, dual-

phase process, with the phase-1 insulin response being dependent on the rate of rise 

of BG (dBG/dt) and the phase-2 response being dependent on the BG 

concentration, in a sigmoidal relationship. 

There have previously been constructed models of insulin secretion; Grodsky [74] 

built a model of pancreatic insulin secretion with two insulin compartments. The 

compartments were modelled with a larger stable compartment containing 98% of 

the stored insulin and a smaller labile compartment containing 2% of the stored 

insulin. Transport between the compartments was governed by the BG with insulin 

secretion occurring from the labile compartment only. Hovorka et al. [75] also 

constructed (as part of a model of glucose regulation) a model of insulin secretion. 

Like the Grodsky model, the model by Hovorka et al. only modelled the phase-2 

response, using a linear relationship between BG and endogenous insulin release.  

Inclusion of a pancreatic model with insulin release being dependent on BG, creates 

a negative feedback loop. In any system, a feedback loop with an absolute value of 
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the loop gain (|LG|) larger than one has the potential to make the system unstable, 

resulting in oscillations or damped oscillations. While neither the Grodsky nor the 

Hovorka model was tested for stability, Steil et al. [76] performed stability tests 

with models of insulin secretion by combining them with a one-compartment 

insulin kinetics model and a minimal model of glucose kinetics [47].  

Previous Glucosafe simulations with a pancreas model with only a phase-2 

response, showed that if the BG of a person with normal insulin sensitivity was 

perturbed by a glucose injection over a 10 min. period, then BG and insulin release 

responded by a damped oscillation [77].  

If a pancreas model is to be included in the Glucosafe model, then it needs to be 

stable before any testing of prediction accuracy can be performed. Thus further 

testing was performed on the inclusion of a pancreas model in the Glucosafe 

system, evaluating the stability of Glucosafe with a dual-phase, dual compartment, 

pancreas model including both a phase-1 and phase-2 response (the Phase 1+2 

model). 

 

5.2. THE PANCREAS MODEL 

The new pancreas Phase 1+2 model, incorporated into the Glucosafe model, is 

shown in Fig. 5-1, with the pancreas model highlighted in red.  

The total endogenous insulin release is both the phase-1 (P1) and phase-2 (P2) 

response with the exception of type-1 diabetes patients, where endogenous insulin 

production is assumed to be zero. 

The phase-1 response is proportional to the rate of change of BG, and to the amount 

of insulin in insulin reservoir 2 (R2). K2 is a constant. 

The phase-2 response is a sigmoid curve that describes the rate of endogenous 

insulin release as a non-linear dependency on the BG concentration, BG(t). The 

sigmoid relationship between BG and insulin secretion has been shown 

experimentally by Henquin et al. [78].  

The curve was fitted to the data shown in Fig. 5-3. The negative insulin release 

modelled at low BG concentrations is not indicative of negative insulin release, but 

can be seen as a glucagon release as this has the effect of increasing BG. R1max and 

R2max are the maximum contents of the respective reservoirs and Rtotal is the 

maximum amount of stored insulin. As in the Grodsky model [74], R1max and R2max 

limits the maximum content of compartments R1 and R2 to 98% and 2% of Rtotal, 

respectively. 

With this model the endogenous insulin production is dependent on the BG through 

a negative feedback loop. An increase in BG results in increasing endogenous 

insulin production that counteracts the rise in BG. 
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Figure 5-1 The Glucosafe model of insulin-glucose metabolism, including the model 

of pancreatic insulin release (marked in red). Solid lines indicate flows and dashed 

lines indicate effects of variables or parameters on other variables. The model 

differs from the model in Fig. 3-1 with the addition of the pancreas model which 

changes the insulin release (U) from a constant to being determined by P1 and P2 

as shown (i.e. dependent on BG concentration and rate of change in BG). 

 

 

 

 

Figure 5-2 The phase-2 

response of the pancreas 

model, illustrating the sigmoid 

relationship between BG and 

insulin secretion. The equation 

for the phase-2 response curve 

is shown in Fig. 5-1 (P2) 

where epmin and epmax are 

asymptotes to P2(t) and 

together with S, determine the 

slope at BGhalf.  Parameter 

values are shown in Table 5.1. 

 

 

5.3. TESTING THE PANCREAS MODEL 

The pancreas model was fitted to BG and plasma insulin data from 14 healthy 

adults (mean age 38.5 ±3.7, mean weight 70.1 kg), using a grid search programmed 

in Matlab. The subjects received three meals over the course of one day, and 

Polonsky et al. [79,80] collected 58 BG and plasma insulin measurements from 

each subject over a 24 hour period. The mean values of the BG and plasma insulin 

measurements from the 14 subjects were used to optimize the shape of the sigmoid 

curve (phase-2), the magnitude of the phase-1 response (K2), the dependence of 

insulin movement from R1 to R2 on BG (K1), and Rtotal. Using the BG changes from 

the data, the resulting plasma insulin calculated by Glucosafe was compared to the 

mean values from the patient data and the model was fitted to minimize the Root 

Mean Square Error (RMSE) between the 58 measured and modelled plasma insulin 

concentrations. 

 

5.3.1. LOOP GAIN 

The steady-state loop gain of Glucosafe with each of the two pancreas models was 

calculated in the following manner: 
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(1) Using either insulin infusions or intravenous glucose infusions a specific 

steady-state BG0 was obtained and the steady-state endogenous insulin 

production U0 was noted. 

(2) A new steady-state endogenous production rate (U0 + ε) with ε = U0/10 

was set as a fixed insulin release and the steady-state BG and the resulting 

endogenous insulin production (U0 + δ) was simulated. 

(3) The loop gain was then calculated as: LG = |δ/ε|. 

 

5.3.2. POST-PERTURBATION OSCILLATIONS 

At the BG resulting in the largest loop gain, and thus where the model is potentially 

the least stable, the model was tested for the occurrence of oscillations in BG and 

insulin secretion following an initial perturbation of BG (post-perturbation 

oscillations). The post-perturbation oscillations were examined for two insulin 

sensitivities representing the “insulin-resistant” state and the “insulin-normal” state. 

For the “insulin-resistant” state a reduced insulin sensitivity of 0.3 was chosen as is 

often seen in critically ill patients [77]. For the “insulin-normal” state a value of 1.0 

for insulin sensitivity was chosen. The perturbation was an intravenous glucose 

infusion over ten min. resulting in a one mmol/l increase in BG. The subsequent 

oscillations in BG and endogenous insulin production were simulated by the 

Glucosafe model and described by the period and the time constant (τ) for the decay 

of the oscillations. 

 

5.4. RESULTS 

5.4.1. FITTED MODEL PARAMETERS 

The plasma insulin data from the healthy subjects and the fitted pancreas model can 

be seen in Fig. 5-3.  

The fitting of the pancreas model to plasma insulin data resulted in parameter 

values as shown in Table 5.1. 

Table 5.1. Fitted parameter values for the Phase 2 and 

Phase 1+2 models 

Parameter Value Unit 

Phase 1+2 model 

epmin -3.9 mU/min. 

epmax 42 mU/min. 

BGhalf 6.1 mmol/l 

S 1.3 mU/min.∙(mmol/l)
-1

 

K1 0.0009 l∙mmol
-1

∙min.
-1

 

K2 0.57 l∙mmol
-1

 

Rtotal 16800 mU 
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Figure 5-3. 24-hour profile of mean BG and mean plasma insulin concentrations 

from 14 healthy subjects receiving meals [79], and the plasma insulin 

concentrations simulated with the Glucosafe model using the optimized Phase 1+2 

pancreas model. Figure adapted from [81]. 

 

5.4.2. LOOP GAIN RESULTS 

The loop gain of the phase 1+2 model was calculated for steady state BG 

concentrations of 3.0 mmol/l to 10 mmol/l, for the two different levels of insulin 

sensitivity. The maximal LG with an insulin sensitivity of 0.3 was 4.0 at a BG of 

6.3 mmol/l and with an insulin sensitivity of 1.0 the maximal loop gain was 6.6 at a 

BG of 6.0 mmol/l. Fig. 5-4 shows the change in loop gain for the model. 
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Figure 5-4 Calculated loop gain at different pairs of steady state blood glucose and 

insulin sensitivity. Figure adapted from [81]. 

 

5.4.3. POST PERTURBATION OSCILLATIONS 

As the maximal loop gain (i.e. where the model is potentially most unstable) was 

observed at a steady state BG of 6.0 mmol/l and an insulin sensitivity of 1.0, the 

model was tested for post perturbation oscillations from that steady state BG. The 

result was an occurrence of damped oscillations. Fig. 5-5 shows a comparison of 

the post-perturbations oscillations in BG and insulin release for the model (with an 

insulin sensitivity of 1.0 and 0.3). 

The damping of post-perturbation BG oscillations was described by fitting an 

exponential function to the envelope of the first two oscillations. Using the 

following equation:  

E(t) = −1.30 mmol/l ∙ exp
−t

40 min.⁄ + 6.0 mmol/l Eq. 5.1 

The time constant τ of the envelope was 40 min. for the pancreas model, at a normal 

insulin sensitivity of 1.0. The envelope is plotted along with the post perturbation 

BG oscillations in Fig. 5-5. 

As seen in Fig. 5-5, the BG perturbation resulted in damped oscillations, but despite 

a loop gain greater than one, the pancreas model proved stable with a time-constant 

of the damping of 40 min.  In Paper III the model shown here was compared to a 

model with only a phase-2 response. The Phase 2 model resulted in longer lasting 

oscillations compared to the Phase 1+2 model shown here and had an envelope time 

constant of 92 min.  
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Figure 5-5 Post-perturbation curves for blood glucose (A with insulin sensitivity of 

1.0 and C with insulin sensitivity of 0.3) and (B) endogenous insulin release for the 

Phase 1+2 pancreas model with insulin sensitivity of 1.0. The thinner line (A) is the 

envelope fitted to the first two oscillations. The initial perturbation was a one 

mmol/l increase in BG over ten min., from a steady state BG of 6.0 mmol/l. Figure 

adapted from [81]. 

What remains to be investigated is to which extent the Phase-1+2 model improves 

the accuracy of BG predictions. In Paper I [60] an early version of the Phase 2 

model was tested for improvement in predictive accuracy compared to a constant 

insulin release. The result was only a marginal improvement, likely because the 

patient cohort was critically ill and over 60% had a BG above 7 mmol/l and thus 

there was little difference between the constant release and the phase-2 release. As 

stated in the beginning of this chapter the Phase 1+2 model is expected to improve 

predictive accuracy of the Glucosafe system in patients with lower BG. 
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CHAPTER 6. ENERGY EXPENDITURE 

IN THE ICU 

Glucosafe has thus far been constructed to offer advice on insulin and nutrition in 

order to achieve normoglycaemia in critically ill patients. The system has been 

tested for its ability to lower BG and has proven that capability and using virtual 

patients has shown the possibility of achieving normoglycaemia in a patient cohort, 

through increased insulin usage and a decrease in the amount of nutrition 

administered. As stated previously, Glucosafe estimates the EE of the patient using 

the Mifflin St Jeor equation, multiplied by a user selected SF. However if Glucosafe 

is to offer advice on nutrition then the estimation of EE should be accurate. With 

regard to hypothesis N1 and N2 of this thesis, studies have shown that overfeeding 

by as little as 10% relative to actual EE can adversely affect organ function, leading 

to e.g. hypercapnia, metabolic acidosis, and fatty liver [4] and conversely a high 

caloric debt, calculated as the difference between caloric intake and the patient’s 

actual EE, has been associated with a high rate of complications and adverse 

outcome [5]. If the goal is not to overfeed the patient (N1) and in the first day of 

critical illness not to feed the patient 100% of EE (N2), then the EE needs to be 

accurately determined. The N3 hypothesis states that predictive equations cannot 

accurately determine EE but that VCO2-based calorimetry can. To test this 

hypothesis some commonly used predictive equations and the VCO2-based 

calorimetry is compared to indirect calorimetry (IC) measurements and the results 

compared to other results from literature.   

 

6.1. DETERMINATION OF ENERGY EXPENDITURE 

The determination of a patient’s EE can aid clinicians when they prescribe nutrition 

as caloric needs differ from person to person and with type (sepsis, trauma/surgery, 

burns) of insult [25,26,82]. The reference method to determine EE is IC [83], which 

estimates EE using measurements of oxygen consumption (VO2) and VCO2. 

However, the use of IC is limited both by cost of equipment and by demand on 

resources (e.g. time, equipment and staff) [84,85].  

The use of a caloric intake based on EE determined by predictive equations is 

recommended when IC cannot be used. However reviews by Tatucu-Babet et al. 

[86] and Frankenfield et al. [87] of the extensive body of literature, which compares 

various predictive equations to IC, conclude that predictive equations are often 

inaccurate. Both reviews found that 12% of the reviewed predictive equations 

overestimated EE by more than 10% and underestimation was even more frequent 

with 38% of the equations underestimating EE by more than 10%. Most of the 

studies evaluating the Harris-Benedict equation use an SF ranging from 1.13 to 1.6. 
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This large range of SF may partially be due to interindividual differences, but also 

to systematic variations of SF due to the severity and type (sepsis, trauma/surgery, 

burns) of insult [25,26,82] as well as the time elapsed since the insult [25,26].  

Hence, there is a need for an accurate and easy method to estimate EE, as it can 

help clinicians prescribe caloric intake during the late phase of critical illness [88]. 

A possible suitable option is the calculation of EE from VCO2 alone, “VCO2-based 

calorimetry”, routinely measured by capnometers connected to the ventilatory 

circuit in mechanically ventilated patients [89]. VCO2-based calorimetry has 

previously been tested using a modified Weir equation [90], to make the EE 

estimation dependent on VCO2 and the Respiratory quotient (RQ) and then 

individualized by estimating the patient RQ from nutritional intake [91,92]. 

As there is evidence that both over- and under-feeding is harmful, accurate 

determination of EE becomes vital, if Glucosafe is to offer nutritional advice. 

However the predictive equation Glucosafe uses may not be accurate in estimating 

EE. As such there are two questions relevant to hypothesis N3:  

1) Can the poor performance of predictive EE equations be confirmed in our cohort 

of patients?  

2) Can the estimation of EE be based on VCO2? 

 

6.2. COMPARISON OF PREDICTIVE EQUATIONS, VCO2-
BASED CALORIMETRY, AND INDIRECT 

CALORIMETRY 

As IC is considered the reference method for estimating EE, the predictive 

equations and the VCO2-based calorimetry, were compared to IC measurements. 

Both IC and VCO2-based calorimetry rely on the assumption that the rates of 

ventilated O2 and CO2 reflect the rate of O2 consumption and CO2 production, 

respectively. However, EE(IC) and EE(VCO2) calculated from instantaneous values 

of VO2 and VCO2 may be erroneous in situations where respiratory VO2 and VCO2 

are not equal to the metabolically consumed O2 or produced CO2, respectively. 

Therefore VCO2-based calorimetry and IC was assessed for possible sources of 

error in EE estimation, both qualitatively and quantitatively, and as VCO2-based 

calorimetry is based on the choice of an RQ value, a sensitivity analysis was 

performed. 

The comparison was performed using measurements from patients at a mixed 

medical/post-surgical ICU at Erasme University Hospital of Brussels, Belgium. 

Eighteen mechanically ventilated patients, 18 years or older, were included as soon 

as possible after ICU admission. Height, gender, body mass, temperature, diagnosis, 

mode of ventilation, APACHE 2 score at admission [93], and mode of sedation 

were recorded. VO2, VCO2, End Tidal CO2 (ET-CO2), Fraction of inspired O2 

(FiO2), Minute Volume (MV), and RQ were measured over a 30-min. period. The 

metabolic monitor used was a Compact Airway Module, E-CAiOVX mounted in a 
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Compact Anaesthesia Monitor (GE Healthcare, Little Chalfont, Buckinghamshire, 

UK), which offers breath-by-breath VCO2 and VO2 measurements [94]. The 

Compact Airway Module determines VCO2 and VO2 within ±10% when FiO2 < 

65% [95].  

EE was determined, using the Weir equation (3): 

EE(IC)=(5.5 min/ml ∙ VO2 + 1.76 min/ml ∙ VCO2 − 1.99 day/g ∙ N) kcal/day Eq. 6.1 

with a standard setting of N = 13 g/day [95], as ureic nitrogen was not measured in 

the study, yielding: 

EE(IC) = (5.5 min/ml ∙ VO2 + 1.76 min/ml ∙ VCO2 − 26) kcal/day Eq. 6.2 

In this study this was used as the reference method, against which other EE 

estimates were compared.  

 

6.2.1. PREDICTIVE EQUATIONS AND VCO2-BASED 
CALORIMETRY 

The equation for estimating EE based on VCO2 was constructed from Eq. 6.2, with 

VO2 substituted by: 

VO2 = VCO2 RQ⁄  Eq. 6.3 

This gives the modified Weir equation: 

EE(VCO2) = ((5.5 min ml⁄ ∙ RQ−1 + 1.76 min ml⁄ ) ∙ VCO2 − 26)kcal/day Eq. 6.4 

VCO2 measurements used in the EE(IC) and EE(VCO2) estimations are both 

derived from the metabolic monitor. Differences between EE(IC) and EE(VCO2) 

must either be due to an incorrect assumption about RQ or due to variations in 

ventilation. Variations in ventilation will cause different variations in EE(IC) and 

EE(VCO2) because the time constant for VCO2 equilibration is much longer (10-20 

min.) [96,97] than the time constant for VO2 equilibration (2-3 min.) [98]. 

The accuracy of the EE(VCO2) estimates and of some commonly used predictive 

equations (Table 6.1) were compared to EE(IC).  

The value of SF, used for the cohort with the Harris-Benedict equation (b, Table 

6.1) was calculated using the following equation: 

SF = mean EE(IC) / mean EE(HB) Eq. 6.5 

The SF for methods c and d (Table 6.1) were similarly determined using their 

respective mean EE. The result is that the mean EE for the 18 patients determined 

by each method equals the mean EE(IC) determined by Eq. 6.2 (the reference 

method).  

The ideal body mass (IBM) was calculated from the Hamwi equations [99]: 

Men: IBM = 48.0 kg + 2.7 kg  (height – 1.524 m) / 0,0254 m Eq. 6.6 

Women: IBM = 45.5 kg + 2.2 kg  (height – 1.524 m) / 0.0254 m Eq. 6.7 
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Table 6.1: Predictive equations for estimation of EE 

 Method Equation 

a ACCP 
The ACCP equation [36-38] using BM as the only variable 

EE(ACCP) = 25 kcal/kg/day · BM 

b 

Harris-

Benedict 

 

The Harris-Benedict equation from 1919 [100] multiplied by a SF 

Men: EE(HB) = (66.5 + 13.75 kg
-1

 · BM + 5.003 cm
-1

 · height - 6.775 

yr
-1

  · age) kcal/day · SF 

Women: EE(HB) = (655.1 + 9.563 kg
-1

 · BM + 1.85 cm
-1

 · height - 

4.676 yr
-1

  · age) kcal/day · SF 

c 

Harris-

Benedict 

IBM   

The Harris-Benedict equation with ideal body mass (IBM) multiplied 

by a SF 

Men: EE(HBI) = (66.5 + 13.75 kg
-1

 · IBM + 5.003 cm
-1

 · height - 

6.775 yr
-1

  · age) kcal/day · SF 

Women: EE(HBI) = (655.1 + 9.563 kg
-1

 · IBM + 1.85 cm
-1

 · height - 

4.676 yr
-1

  · age) kcal/day · SF  

d 
Mifflin 

St Jeor  

The Mifflin St Jeor equation [101] multiplied by a SF 

Men: EE(MSJ) = (9.99 kg
-1

  BM + 6.25 cm
-1

  height - 4.92 yr
-1

  age 

+ 166) kcal/day · SF 

Women: EE(MSJ) = (9.99 kg
-1

  BM + 6.25 cm
-1

  height - 4.92 yr
-1

   

age – 161) kcal/day · SF 

e 
Penn 

State 1 

The original Penn State equation from 1998 [102] 

EE(PS1) = 1.1·HB + (32 min·l
-1

· MV + 140 C
-1

·TMax – 5340) 

kcal/day 

f 
Penn 

State 2 

Version 2 of the Penn State equation from 2003 [103] 

EE(PS2) = 0.85·HB + (33 min·l
-1

·MV + 175 C
-1

·TMax – 6433) 

kcal/day 

g 
Penn 

State 3 

Version 3 of the Penn State equation from 2003 [103] 

EE(PS3) = 0.96·MSJ + (31 min·l
-1

·MV + 167 C
-1

·TMax – 6212) 

kcal/day 

ACCP: American College of Chest Physicians, TMax: Maximum body temperature 

in 24 hours [°C]. 

 

6.2.2. STATISTICAL ANALYSIS 

To assess the bias of each method (the predictive equations and EE(VCO2)), the 

difference in percent between mean EE for the method and mean EE(IC) was 

calculated. The significance was tested by a two-tailed paired t-test. The assumption 

of normal distribution of tested variables was assessed with the Shapiro-Wilk test. 

RMSE was used to describe the quality of the predictions for each method. A 

comparison of EE(VCO2) and each predictive equation was performed by an F-test 

over the prediction errors relative to EE(IC). 
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To determine the how often the methods resulted in accurate predictions of EE, the 

number of patients with accurate predictions was compared between EE(VCO2) and 

each predictive equation, with per-patient EE estimates defined as accurate if the 

estimate was within ±10% of the IC measurement. Testing for significant 

differences was performed using Fisher’s exact test. Significance level for all tests 

was p < 0.05.  

 

6.2.3. SENSITIVITY ANALYSIS OF RQ 

The practical use of VCO2-based calorimetry relies on a choice of RQ. A sensitivity 

study of the effect of the choice of RQ was conducted. In six studies [82,103-108] 

the average reported cohort values for RQ ranged from 0.76 to 0.89. These 

minimum and maximum values and the extreme range of the physiological range 

(0.7 to 1.0) [92] were used in the sensitivity analysis.   

 

6.2.4. QUALITATIVE ANALYSIS OF DYNAMIC ERRORS 

As mentioned both IC and VCO2-based calorimetry rely on the assumption that the 

rate of ventilated O2 and CO2 is reflecting the rate of O2 consumption and CO2 

production, respectively. A mismatch however may occur when the patient’s 

metabolism changes rapidly, or due to changes in the patient’s ventilation. The 

VCO2-based calorimetry should only be used if the patients EE is constant over the 

measurement period. To determine if a patient had constant EE, the trend line for 

the VO2 recording was compared with the average VO2 over the recording period. 

If the absolute difference between the trend line and the average was less than 10% 

of the average VO2, the patient was considered to have constant EE throughout the 

recording period.  

From the patients with constant EE, an example patient was selected and a 

descriptive analysis of the reasons for errors was performed by inspection of the 30 

min. recordings of MV, VCO2, VO2, and ET-CO2 and comparing these to the 

changes in EE(IC), and EE(VCO2). 

Quantitative analysis of dynamic errors  

As the EE(IC) and EE(VCO2) estimation may be affected by changes in ventilation, 

the two methods’ vulnerability to changes in ventilation was analyzed and 

compared. For each patient the maximum deviation of EE from the mean EE was 

calculated for both EE(IC) and EE(VCO2). The effect of a five min. moving 

average on the calculated EE was explored by comparing the maximum EE 

deviations from mean EE, for both EE(IC) and EE(VCO2), before and after its 

application. 
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6.3. RESULTS 

The 18 patients included had a mean age 61±17 years, five were women. Average 

VO2 for the 18 patients was 343±77 ml/min. and average VCO2 was 273±63 

ml/min, giving an average RQ of 0.81. The mean FiO2 was 42% with no patient 

exceeding 50%. All patients received intravenous glucose during the measurement 

period and patients 1, 2, 3, 14, 17, and 18 received enteral nutrition. The mean RQ 

for the patients receiving enteral nutrition (0.86) was significantly higher (p<0.05; t-

test, unpaired, two-tailed) than the mean RQ (0.79) for the patients not receiving 

enteral nutrition.  Individual patient specifics can be found in Paper IV upon which 

this chapter is based [109]. 

Table 6.2. Comparison of EE estimates to IC including sensitivity of 

EE(VCO2) reliance on RQ. 

The bias in percent is relative to the mean EE(IC). The range of estimation 

differences is the maximum and minimum difference between the equations and 

individual mean EE(IC). The RMSE of EE difference is the root mean square error 

of EE difference between the equations and the IC measurements. Accurate EE 

estimates are defined as per-patient EE within ±10% of EE(IC). 

Equation Mean EE  

(Bias) 

kcal/day 

Range of 

estimation 

differences 

RMSE of 

EE 

difference 

# of patients with 

accurate EE 

estimates (%) 

ACCP 1889 (-20%)* [-49 %; 22 %] 28 %† 6 (33 %)‡ 

Harris-Benedict 2347 (0%) [-20 %; 61 %] 16 %† 9 (50%)‡ 

Harris-Benedict, IBM 2347 (0%) [-23 %; 76 %] 18 %† 8 (35 %)‡ 

Mifflin St Jeor  2347 (0%) [-18 %; 68 %] 15 %† 9 (50 %)‡ 

Penn State 1 1782 (-24%)* [-41 %; 0 %] 27 %† 1 (6 %)‡ 

Penn State 2 1572 (-33%)* [-49 %; -10%] 35 %† 1 (6 %)‡ 

Penn State 3 1637 (-30%)* [-43 %; -9%] 32 %† 1 (6 %)‡ 

EE(VCO2) RQ=0,81 2332 (-1%) [-13 %; 14 %] 7 % 16 (89 %) 

EE(IC) 2347 (0%) - - - 

Sensitivity analysis of RQ 

EE(VCO2) RQ=0,70 2626 (12%)* [-2 %; 30 %] 12 % 9 (50 %)‡ 

EE(VCO2) RQ=0,76 2455 (5%)* [-8 %; 20 %] 8 % 14 (78 %) 

EE(VCO2) RQ=0,85 2244 (-4%) [-16 %; 10 %] 6 % 16 (89 %) 

EE(VCO2) RQ=0,89 2163 (-8%)* [-19 %; 6 %] 10 % 10 (56 %) 

EE(VCO2) RQ=1,00 1976 (-16%)* [-26 %; -3 %] 17 % 4 (22 %)‡ 

* Significantly different from mean EE(IC).  

† Significantly greater variance than EE(VCO2) RQ=0.81.  

‡ Significantly different from EE(VCO2) RQ=0.81. 

All predictive equations, a through g, largely over- and underestimated the 

reference EE value (see Fig. 6-1). The Penn State equation and the ACCP equation 

had the largest bias, while the ranges of estimation difference were largest for the 

ACCP, Harris-Benedict, and Mifflin St Jeor equations (Table 6.2). The SF values 
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used in the Harris-Benedict (1.55 for actual body mass, 1.67 for IBM) and Mifflin 

St Jeor (1.59) equations resulted in these equations having no bias, but the quality 

of prediction was poor for all predictive equations, as shown by a 15% or greater 

RMSE. The accuracy was also poor for all predictive equations with all of them 

having 50% or less of patients with accurate EE estimates.  

The EE(VCO2) was significantly better than the predictive equations. The mean 

EE(VCO2), with an RQ value of 0.81, was not significantly different from mean 

EE(IC) and the EE(VCO2) had a lower RMSE compared to the other predictive 

equations. The EE(VCO2) had accurate estimates in 89% of the patients, 

significantly better than the predictive equations. 

The sensitivity analysis showed that as long as the RQ is chosen within the range of 

published cohort values, 0.76 to 0.89, the VCO2-based calorimetry performs better 

than the predictive equations. 

 
Figure 6-1 Scatterplots for the predictive equations and the VCO2-based 

calorimetry, comparing them to IC. 

 

6.3.1. QUALITATIVE ANALYSIS OF DYNAMIC ERRORS 

Of all 18 patients, 17 were found to have constant EE during the recording period. 

Fig. 6-2 shows ten min. of data from an example patient with constant EE during 

the 30 min. recording period (patient 16). In the figure a change in ventilation is 

clearly visible. The MV is a steady state until 7.5 min. when the MV is lowered and 
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the measurement fluctuates until 10.5 min. when the MV reaches a lower steady 

state (fig 6-2A). The measurements of VCO2 and VO2 also fluctuate leading to 

changes in estimated EE for both the IC and the VCO2-based calorimetry (Fig. 6-

2B), however there is no reason to suspect that the patient’s EE changes during this 

period, so the fluctuations of EE(IC) and EE(VCO2) must be ascribed to the 

fluctuations of MV. In the 7.5 min. to 10.5 min. period, MV increases to 36% 

higher than the steady-state value at 7.5 min. This results in increases in VO2 and 

VCO2 of 22% and 34%, respectively and similar increases in EE(IC) and 

EE(VCO2) of 24% and 35%, respectively. 

  
Figure 6-2 A: Recorded values from patient 16 of VCO2, ET-CO2, VO2, and MV. B: 

EE(VCO2) and EE(IC) calculated from recorded VO2 and VCO2, including means 

of EE(VCO2) and EE(IC). Modified from ([109], Fig. 3). 

From 10.5 min. until 13.5 min. VO2 returns to the steady state value seen before the 

change in ventilation, and similarly the EE(IC) returns almost the steady state in the 
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same timeframe. However VCO2 does not return to steady state due to the 10-20 

min. equilibration time constant and as such the EE(VCO2) does not return to its 

original steady state value either. This shows that changes in MV results in similar 

changes in EE(IC) and EE(VCO2) but EE(VCO2) takes 10-20 min. or more to 

recover. 

 

6.3.2. QUANTITATIVE ANALYSIS OF DYNAMIC ERRORS  

The effects of changes in ventilation were determined for each patient with stable 

EE in the recording period. Individual values can be found in Paper IV upon which 

this chapter is based. 

Both EE(IC) and EE(VCO2) are vulnerable to changes of ventilation with a 

maximum deviation of up to 42% for instantaneous values of EE(IC) and 46% for 

instantaneous values of EE(VCO2). Both methods are equally vulnerable with no 

significant differences (t-test) between the mean of the max values for the two 

methods. This implies that instantaneous values of EE(IC) and EE(VCO2) cannot 

safely be used to assess EE. 

However the application of a five min. running average to the calculated EE(IC) 

reduced the max deviation to 18% and the Standard Deviation (SD) of the mean to 

7.5%. For EE(VCO2) the max deviation was reduced to 14% and the SD of the 

mean to 7.3%. 

Thus the introduction of a five min. running average reduced the dynamic error of 

the EE(VCO2) to a size comparable to the RMSE of EE difference. 

If practical another solution is the use of mean values from 24 hour measurements 

as this will smooth out short term errors. 

The results seem to confirm hypothesis N3: The predictive EE equations tested here 

(including the Mifflin St. Jeor equation used in Glucosafe) were all inaccurate (± 

10%) compared to IC measurements in more than 50% of the patients. In contrast 

VCO2-based calorimetry was accurate in 89% of the patients, though some caution 

should be taken when using short measurement periods. 
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CHAPTER 7. DISCUSSION AND 

CONCLUSION 

The pathophysiology of critical illness is complex and often results in stress-

hyperglycaemia which can be treated using IIT to reduce the BG to normal (or near-

normal) levels, though at the risk of hypoglycaemic events. 

In the introduction of this thesis a set of hypotheses regarding the treatments of 

stress-hyperglycaemia (hypotheses G1, G2, and G3) and nutritional support 

(hypotheses N1, N2, and N3) for the critically ill patient was formulated. Evidence 

concerning these hypotheses in published literature and the research presented in 

this thesis was examined. 

With regards to hypothesis G1 and G2, stating that reducing hyperglycaemia while 

avoiding hypoglycaemia is beneficial to critically ill patients, there is some 

literature support. All studies using IIT have shown reduced BG, but some have 

resulted in reduced mortality and some in increased mortality. In the studies 

showing increased mortality, it is likely due to the negative effect of substantially 

increased frequency of patients with hypoglycaemic events, overshadowing the 

positive effects of lowering the BG. A regression analysis of the studies, while not 

significant, indicates support for hypothesis G1 and G2, that reducing 

hyperglycaemia correlates with reduced mortality and that hypoglycaemia should 

be avoided as this increases mortality. 

Hypothesis G3 states that the best way to lower BG while avoiding hypoglycaemia 

is the use of a model-based decision support system. Several studies using decision 

support systems were compared and in all studies the group treated using decision 

support had lower BG, although some had increased numbers of hypoglycaemic 

events. Comparison of model-based systems and rule-based systems showed the 

model-based system to have better results, with Glucosafe showing the best results 

with lowered BG and no hypoglycaemic events, lending support to the G3 

hypothesis. In addition, clinical testing of Glucosafe has showed it to reduce 

variability of BG compared to departmental guidelines.  

Glucosafe has two major components, the model and the advice module. The 

model’s predictive accuracy can be tested and improved on retrospective data, but 

testing of the advice module in principle requires a clinical trial.  To reduce the 

need for clinical trials, a method based on virtual patients was developed. The 

virtual patients were based on insulin sensitivity profiles from real patients and 

were used to evaluate different settings of the penalty functions that govern 

Glucosafe’s treatment advice. As an example of how this method can be used 

several different modification to the penalty functions was evaluated to find the 

settings, likely to produce a desired outcome in terms of mean BG and frequency of 
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hypoglycaemic events. Glucosafe with these modified settings may then be worthy 

of a new clinical trial.  

A pancreas model of endogenous insulin release was developed for the purpose of 

improving Glucosafe’s ability to predict BG and thus improving the support for the 

G3 hypothesis. As the pancreas model introduced a feedback loop into the 

Glucosafe model it was tested for stability and found to produce damped oscillation 

after sudden changes in BG. An early version of the pancreas model, the results of 

which can be found in Paper I, showed no improvement in predictive accuracy, but 

was tested on critically ill patients with high BG and with administration of large 

insulin doses. Further clinical testing is needed to investigate if the pancreas model 

improves predictive accuracy in patients who are recovering from critical illness. 

The hypotheses stated that nutritional support should target 100% of the patient’s 

EE (N1) without overfeeding, to avoid or lessen caloric debt, except in the first few 

days (N2) where the body catabolism provides the necessary substrates to cover 

energy needs. There is support for not overfeeding patients as this has been shown 

this to have deleterious effects and although there are studies advocating 

underfeeding patients, the American, European, and Canadian guidelines for 

nutrition support the N1 hypothesis that nutritional support should target 100% of a 

patient’s EE to avoid or lessen caloric debt. With regards to restricting feeding in 

the first few days, there is no counter indication to the N2 hypothesis that nutrition 

should be reduced in the first few days where the body catabolism provides the 

necessary substrates to cover energy needs. 

However, regardless of the nutritional target being 100% of EE of less, an accurate 

estimation of a patient’s EE is needed.  

Both literature reviews of predictive equations and the results shown in Paper IV 

shows that predictive equations are often inaccurate and over- or underestimate 

patients’ EE compared to IC, which is considered the golden standard of estimating 

EE. The VCO2-based calorimetry results presented here shows that VCO2-based 

calorimetry gives EE estimates significantly better than predictive equations. A 

sensitivity analysis showed that as long as the RQ value used in the equation for 

VCO2-based calorimetry is within the published range of average cohort values, 

0.76 to 0.89, the VCO2-based calorimetry performs better than the predictive 

equations. There are some problems in using only VCO2 as a measure for EE, as 

changes in ventilation which result in VCO2 not matching metabolically produced 

CO2, results in EE estimation errors lasting up to 20 min. due the CO2 equilibration 

time constant. Solutions to this is either the application of a running average of five 

min. or more to the measurements if the measurement period is short, or the use of 

the mean values from 24 hour measurements if possible. 

The use of VCO2-based calorimetry has been shown in other studies to work in 

children [110] and adults [91] with patients specific RQ values estimated from the 

nutrition. The results presented here and those in literature support the N3 
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hypothesis and indicate that VCO2-based calorimetry should be favoured over 

predictive equations when estimating a patient’s EE. 

In conclusion there seems to be support for, or no direct evidence to oppose, the 6 

hypotheses stated in the introduction, either through published literature or the work 

presented in the thesis. 

 

7.1. FUTURE WORK 

There are three major points of future work to be addressed, all of which involve 

clinical testing of Glucosafe. Glucosafe has thus far been clinically tested for the 

ability to safely lower BG but the hypotheses and modification to Glucosafe 

presented in this thesis has not been clinically tested yet. There is a need for clinical 

testing to prove that using Glucosafe lowers mortality, the clinical testing of the 

pancreas model, and Clinical testing of hypothesis N1 and N2 to find the optimal 

nutritional treatment for the critically ill. 

The regression analysis performed on several studies indicated that lowering BG 

without increasing hypoglycaemic events decreases mortality. While clinical 

studies of Glucosafe have not evaluated mortality, Glucosafe has been shown to 

lower BG without any hypoglycaemic events and therefore the expectation is that 

using Glucosafe results in lowered mortality. There is however a need to clinically 

test this, to prove the expectations. In addition such clinical testing may also show  

computer-based system have the added benefit of making it easier to keep track of 

current and previous treatment, both in terms of glycaemic control, but also for 

nutritional support. A computerized system would also make it easier to track 

nutritional inputs, patient EE, and caloric debt, on a continuous basis, compared to 

paper-based systems. 

There is also a need to clinically validate the pancreas model on patients that are 

recovering from critical illness. The model has thus far been tested for stability but 

there is need of a study to test if the addition of the pancreas model, not just 

improves the predictive capabilities of Glucosafe, but if Glucosafe is able to model 

less critically ill patients. 

As hypotheses N1 and N2 has not been proven and as there is not a consensus on 

the optimal nutritional treatment for critically ill, there is a need to clinically test the 

hypotheses, if permissive underfeeding in the early state of critical illness and then 

targeting the patients EE later improves patient outcome, including an accurate 

estimation of patient EE using either IC or VCO2-based calorimetry. 
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