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Abstract—LCL filters feature low inductance; thus, the injected 

grid current from an LCL-filtered Voltage Source Inverter (VSI) 

can be easily distorted by grid voltage harmonics. This problem is 

especially tough for the control system with Inverter-side Current 

Feedback (ICF), since the grid current harmonics can freely flow 

into the filter capacitor. In this case, because of the loss of 

harmonic information, traditional harmonic controllers fail to 

mitigate the grid current distortion. Although this problem may 

be avoided using the grid voltage feedforward scheme, the 

required differentiators may cause noise amplification. In light of 

the above issue, this paper develops a simple method for the ICF 

control system to mitigate the grid current harmonics without 

extra sensors. In the proposed method, resonant harmonic 

controllers and an additional compensation loop are adopted at 

the same time. The potential instability introduced by the 

compensation loop can be avoided through a special design of the 

compensation position. Finally, the effectiveness of the proposed 

method for harmonic rejection is verified by detailed 

experimental results.  

 
Index Terms—Harmonic suppression, inverter current control, 

grid-voltage distortion, voltage source inverter, LCL-filter. 

I. INTRODUCTION 

ower converters have been widely used in modern electric 

power systems [1], [2]. Generally, to avoid the adverse 

effects of power converters on the grid power quality, 

low-distortion output currents are required by grid standards 

such as IEEE 1547-2003 which specifies the limits of both low- 

and high-frequency harmonics [3]. However, most grid 

standards work on the premise of a harmonic-free grid, which is 

inconsistent with the real cases [3], [4]. It has been reported that 

an IEEE-1547-compliant PV inverter produces over 20% Total 
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Demand Distortion (TDD) under 3 % grid voltage distortion, 

which, in comparison, has only 0.66 % TDD under an ideal grid 

condition (i.e., a harmonic-free grid) [4]. Harmonic attenuation 

for the grid-connected inverters under distorted grid voltage is 

still an open research challenge [5]–[8]. 

Practically, to filter out the switching ripples, an LCL-filter is 

preferred for Voltage Source Inverters (VSI) [9]–[11]. 

However, beyond the excellent high-frequency attenuation 

performance of an LCL-filter, its low inductance dramatically 

increases the susceptibility to low-order current distortions. 

Instead of increasing the inductance (thus, increasing the cost 

and volume), it is preferred to use control methods 

(Inverter-Current Feedback (ICF) or Grid-Current Feedback 

(GCF)) to deal with the low-order harmonics. The ICF control 

is mostly selected in industry from the cost perspective, where 

current sensors are integrated in inverter-side for overcurrent 

protection [12]. Additionally, the ICF system has an inherent 

damping characteristic [1], while for the GCF system, an 

additional damping function has to be applied in the system in 

order to guarantee the stability of the system under weak grid 

condition. 
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Fig. 1.  Model of the LCL-filtered VSI and its performance under grid voltage 

distortions (v – inverter output voltage, vg – grid voltage, i1 – current through the 
inverter-side inductor L1, i2 – current through the grid-side inductor L2, and iC – 

current through the filter capacitor C): (a) simplified structure of the 

LCL-filtered VSI and (b) output current waveforms under a distorted 

grid-voltage condition. 
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In an ICF control system, the grid current has to be regulated 

indirectly, which may suffer from severe distortions in case of 

grid-voltage harmonics, since the harmonic current can freely 

flow through the filter capacitor C [13], [14]. This issue can be 

explained by the experimental results in Fig. 1, where the 

inverter current i1 is controlled to zero by a Proportional 

Resonant (PR) controller plus resonant Harmonic Controllers 

(HCs). However, it is seen in Fig. 1 that the grid current i2 is 

significantly distorted by the grid voltage harmonics, which 

flows into the filter capacitor C. Due to the loss of harmonic 

information (i.e., the inverter current i1 contains no information 

of the harmonics from the grid voltage), the HCs (either 

resonant or repetitive controllers) are not able to mitigate the 

harmonics. Clearly, a straightforward way is to make the 

current reference contain the full harmonic information, which 

can be realized by calculating the capacitor current from the 

capacitor voltage and then adding it into the reference. This 

idea has been reported to be effective for the ICF control system 

with a novel D-Σ digital controller in [15]. 

To cope with the harmonic issue of the ICF control system 

for the LCL-filtered VSI, a feedforward scheme has been 

extensively explored [7], [12], [16]. A proportional 

grid-voltage feedforward strategy was applied in [7], which 

shows excellent harmonic-attenuation performance, since the 

LCL-filter was simply treated as an L-filter. However, its 

effectiveness is deteriorated when the filter capacitor is 

considered. As an alternative, a transfer function was derived 

and inserted into the feedforward loop in [16] to eliminate an 

undesirable admittance effect. Unfortunately, the grid current 

may still be distorted by grid voltage harmonics, since the 

feedforward term is the capacitor voltage rather than the grid 

voltage. In [12], an accurate feedforward function for the grid 

voltage was derived, which can fully mitigate the impacts of 

grid voltage distortions on the grid current. However, a 

second-order differentiator is required in order to synthesize the 

feedforward function in [12]. Such a second-order 

differentiator is sensitive to noises, making the method 

impractical. Although an alternative capacitor-current 

feedforward scheme was also presented in [12] to tackle this 

issue, it is still impractical considering the increased cost 

because of the necessary capacitor-current measurement. 

In light of the above discussions, this paper proposes an 

enhanced scheme for the grid-current harmonic mitigation of 

the ICF controlled VSIs. Compared with the feedforward 

scheme in [12], only one differentiator is needed in the 

proposed scheme. Since the differentiator mainly works on the 

low-order harmonics, its noise sensitivity can be significantly 

reduced with an adjustable differentiator [17]. Furthermore, a 

harmonic compensation loop is added in the proposed scheme 

in order to provide the harmonic information needed for the 

resonant harmonic controllers. In spite of this added loop, the 

stability characteristic of the proposed control system can 

remain as that of the original system owing to a special design 

of the compensation position. Actually, the proposed control 

system is equivalent to a system applying the proportional 

control to the inverter current while the resonant control to the 

grid current. Therefore, the parameter design of the proposed 

control system can be simplified to that of the typical 

single-loop ICF control system. 

The rest of this paper is organized as follows: Section II 

presents the modelling of the typical single-loop ICF control 

system for the LCL-filtered VSI, with which the grid harmonic 

impedance of the system is derived and its insufficient 

harmonic attenuation capability is analyzed in details. The 

stability characteristic of the system is also briefly discussed. In 

Section III, a simple capacitor-current compensation scheme is 

explored for harmonic attenuation of the ICF control system, 

which however may cause instability. To solve this issue, an 

improved control scheme is then developed. The parameter 

design of the LCL-filter and the controllers is presented in 

Section IV before the experimental verification in Section V 

and conclusion in Section VI. 

 

 

II. SYSTEM MODELLING AND PROBLEM ANALYSIS  

Fig. 2(a) shows the general structure of a three-phase VSI 

system, which is connected to the grid through an LCL-filter. 

Its typical applications can be found in the DC/AC stage of 

transformerless string PV inverters [18]. Those inverters are 

required to comply with relevant grid standards, such as the 

IEEE-1547 Standard, which specifies the limits of both low- 

and high-frequency harmonics in the output current of the 

inverter [18]. As also observed in Fig. 2(a), the inverter current, 

which should be sensed for overcurrent protection, is used 

cost-effectively for control in most commercial products. In 

this case, the current controller is implemented in the αβ frame, 

which consists of a proportional controller and a set of resonant 

controllers for harmonic compensation. The resonant 

controllers produce infinite gains at the specified frequencies. 

Therefore, when the harmonic contents of the reference signal 

are set to zero, the inverter current i1 should be free of low-order 

       
(a) 

  
(b) 

Fig. 2.  Three-phase LCL-filtered grid-connected inverter: (a) general structure 

of the system with either inverter or grid current feedback control, and (b) 

equivalent block diagram of the Inverter Current Feedback (ICF) control. 
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harmonic distortion in steady state. On the other hand, the grid 

current i2 has to be regulated indirectly with additional errors, 

which may be distorted in the presence of grid voltage 

harmonics. The entire current controller F(s) (i.e., the PR 

controller plus HCs) is given as 

 
 

22
1 0

J
rh

p

h

K s
F s K

s h

 


                        (1) 

where Kp, h, Krh, J and ω0  represent the proportional gain, 

harmonic order, resonant gain of each harmonic component, 

maximum harmonic order specified for attenuation, and the 

fundamental grid frequency, correspondingly. 

A. Modelling of the Control System  

With the symbols defined in Fig. 2, the inverter system can 

be described by the following transfer functions in s-domain as 

   1
dsT

v F s e i i
                                    (2) 

1 1 CsL i v v                                          (3) 

2 2 C gsL i v v                                           (4) 

1 2CsCv i i                                         (5) 

where the grid impedance is included in the grid-side inductor 

L2 and the filter parasitic resistances are neglected (considered 

as the worst case). The grid voltage can be taken as a 

disturbance. Besides, Td is the total time delay of the system, 

which can be approximated as 1.5Ts by considering the process 

of sampling, computation, updating of the compare registers, 

and zero-order-hold effect of the Pulse-Width Modulation 

(PWM) [19]. The scalar notation of all variables is used for 

convenience, which should be interpreted as space vectors for 

the αβ-frame implementation. With the above transfer 

functions, the control block diagram of the ICF control system 

is shown in Fig. 2(b). The inverter current and the grid current 

can be calculated from the reference current and grid voltage, 

which are then given as 
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B. Stability Characteristic of the ICF Control System 

Stabilities of the single-loop current control systems of the 

LCL-filtered VSI have been widely studied [19]–[22]. 

Specifically, for the single-loop ICF control, the system can be 

stable with a properly designed proportional controller gain as 

long as the LCL-filter resonance frequency is smaller than the 

critical frequency fc. The critical frequency fc is the frequency at 

which the phase of the open-loop transfer function reaches 

180, and it is  mainly determined by the value of the time 

delay in a digital system [19], [20]. For instance, for an ICF 

control system with a time delay of 1.5Ts, fc can be calculated to 

be fs/6. In this case, the stable region of the system is (0, fs/6) 

and the unstable region is (fs/6, fs/2) as shown in Fig. 3(a), 

which is contrary to the characteristics of the single-loop GCF 

control system as shown in Fig. 3(b). 

 
To illustrate it more clearly, the root loci of the single-loop 

ICF control system are plotted in Fig. 4 for six resonance 

frequencies obtained with different filter capacitances shown in 

Table I. According to Fig. 3, it can be observed from Fig. 4(a) 

and (b) that the first three cases in Table I can be stable with a 

properly designed Kp, since the resonance frequencies are all 

below the critical frequency (fc = fs/6 = 3.33 kHz). On the other 

hand, as seen from Fig. 4(c) and (d), the other three cases are 

always unstable regardless of the value of Kp, since their 

resonance frequencies are all above the critical frequency. 

Detailed theoretical analysis of the stability characteristics of 

the single-loop ICF and GCF control systems has been given in 

[19], [22], which will be not elaborated in this paper. 

 

 

            
(a)                                                       (b) 

Fig. 3. Stable and unstable regions of the system with (a) ICF and (b) GCF. 

TABLE I 

LCL PARAMETERS AND RESONANCE FREQUENCIES OF SIX CASES 

 
Case  

I 

Case 

 II 

Case 

III 

Case 

IV 

Case 

V 

Case 

VI 

Inverter-side 
inductor  

L1 (mH) 

1.1 1.1  1.1 1.1 1.1  1.1 

Grid-side  

inductor  

L2 (mH) 

1.1 1.1 1.1 1.1 1.1 1.1 

Capacitor 

 C (µF) 
20  12 8 4 3 2 

Resonance 
frequency  

fr (kHz) 
 1.52  1.96  2.40 3.39  3.92 4.80 

 

   
      (a)                                                          (b) 

 
        (c)                                                          (d) 

Fig. 4. Root loci of the ICF control system when the LCL-filter resonance 
frequency is (a) below the critical frequency, and (c) above the critical frequency, 

where (b) and (d) are the zoomed-in root loci of (a) and (c), respectively. 
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C. Harmonic Impedance Analysis 

For ICF control, the inverter current can be free of low-order 

distortion with the benefit of HCs, no matter what harmonic 

sources are from the inverter-side or the grid-side. Specially, in 

case of inverter-side disturbance (e.g. dead-time effect), the 

grid current can also be free of distortion as long as the 

low-order harmonics have been eliminated from the inverter 

current before they flow into the grid-side inductor. However, 

in case of the grid-voltage distortion, the grid-current 

harmonics cannot be rejected by the HCs any more, due to the 

uncontrolled harmonic currents in the filter capacitor. To 

further elaborate the grid-current harmonic attenuation ability 

of the ICF control system, the grid harmonic impedance is 

calculated from (7) and it can be given as 

   d

d

3 2

1 2 1 2 2

2

2 1

( ) 1

( ) 1

sT

g

g sT

s L L C s L L F s e s L Cv
Z

i s L C sCF s e





   
 

 
     (8) 

which indicates the relationship between the grid voltage and 

the resulting grid current [12]. 

According to (8), at low and high frequencies, the harmonic 

impedance can be approximated as (9) and (10), respectively, 

2

g

gLow p

v
Z K

i
                                   (9) 

2

2

g

gHigh

v
Z sL

i
                              (10) 

It can be seen from (9) and (10) that the harmonic impedance 

shows resistive characteristic at low frequencies and inductive 

characteristic at high frequencies. The resistance is determined 

by Kp, while the inductance is determined by the grid-side 

inductor L2. For a specific case, at the frequencies where the 

HCs work, F(s) becomes infinite and (8) can be approximated 

as 

2

2

1g

gHarmonic

v
Z sL

i sC
                    (11) 

These three characteristics can be intuitively illustrated using 

the circuit model of the control system presented in [23], where 

the principle of the PR controller is represented by a resistor 

and a set of LC circuits in Fig. 5. The findings from this 

equivalent circuit can be concluded as follows: 

1) At very low frequencies, the inductor impedance is very 

small and the capacitor impedance is very large, which is 

seen as a short circuit and an open circuit system, 

respectively. In this case, the current contributed by the 

grid voltage mainly flows in loop A, whose impedance is 

dominated by the resistor with the value of Kp (see (9)). 

2) At very high frequency, the capacitor is seen as a short 

circuit, and thus the current contributed by the grid voltage 

mainly flows in loop B, whose impedance is dominated by 

L2 (see (10)). 

3) At frequencies where the HCs work, the impedance of the 

LC circuits become infinite. Thus, the current contributed 

by the grid voltage mainly flows in loop B whose 

impedance is dominated by L2 and the filter capacitor C 

(see (11)). 

 
Furthermore, Fig. 6 shows the Bode plot of the grid 

impedance Zg, which compares the harmonic impedances of the 

ICF control systems whose harmonic controllers are disabled 

and enabled, respectively. The controllers are designed 

according to [24], which results in 10.69 for Kp. The 

fundamental resonant controllers of the two systems are 

disabled in order to clearly distinguish the difference induced 

by the harmonic controllers. 

 
It can be observed from the Bode plot that the characteristic of 

the grid impedance is in agreement with the theoretical analysis, 

which behaves as a resistor at low frequencies and an inductor 

at high frequencies. It is noted that at the working frequencies 

of the HCs, the harmonic impedance of the system is slightly 

larger than that when the HCs are disabled, because the current 

contributed by the grid voltage can flow both in loop A and 

loop B when the HCs are disabled, which has a lower 

impedance than loop B due to the parallel topology. It can be 

concluded that, although the HCs of the ICF control system 

cannot reject the grid-current harmonics completely, they help 

to attenuate the harmonics to some extent. However, the 

attenuation is quite limited, which is always below 40 dB in the 

provided case. Moreover, at the working frequencies of HCs, 

the impedance values are only determined by L2 and C (see (11) 

and Fig. 5), since the grid-current harmonics only flows from L2 

to C when the HCs are enabled. Therefore, the harmonic 

attenuation capability is fixed by the filter parameters and 

cannot be improved by designing the controller parameters. 

Unfortunately, in commercial products, to obtain a similar 

filtering performance, a comparatively large capacitor is 

preferred instead of a large grid-side inductor in order to reduce 

 
 

Fig. 5.  Equivalent circuit of the grid-connected LCL-filtered voltage-source 

inverter with its inverter current controlled by the proportional-resonant 

controller plus resonant Harmonic Controllers (HCs). 

 
Fig. 6.  Bode diagram of the grid harmonic impedance for the ICF control 

system when the HCs are enabled and disabled. 
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the volume and cost of the filter. As a result, the harmonic 

impedance will be small according to (11). 

Simulations are carried out to further illustrate this, and the 

results are given in Fig. 7, where the ICF control is employed 

for the LCL-filter in Table I with the resonance frequency of 

1.52 kHz and the grid voltage is distorted by the typical 5th, 7th, 

and 11th harmonics whose magnitudes are all 5% of the 

fundamental component. Due to the severe grid voltage 

distortion, both the inverter current and the grid current are 

seriously distorted without the HCs. The HCs are then enabled 

at 0.02 s, and the low-order harmonics in the inverter current 

can effectively be rejected, owning to the infinite gains 

introduced by HCs. However, the grid current is still distorted 

in that case, due to the limited harmonic impedance (decided by 

L2 and C according to (11)) at the harmonic frequencies. 

 
 

III. PROPOSED GRID-CURRENT HARMONIC SUPPRESSION 

METHOD FOR ICF CONTROL SYSTEM  

This section introduces a simple capacitor-current 

compensation term to the ICF control system, which enables 

the system to generate infinite harmonic impedance at the 

working frequencies of HCs. However, despite its simplicity, 

the control system may become unstable. Accordingly, an 

improved control scheme is developed to address this issue, 

which inherits the stability characteristic of the typical ICF 

control system while the grid-current harmonic attenuation 

capability is enhanced.  

A. Capacitor-Current Compensation 

Generally, for unity power factor operation, the inverter 

current reference of the ICF control system should be changed 

to include the fundamental reactive capacitor current which is 

usually calculated from the fundamental grid voltage. Similarly, 

this idea can be used in the ICF control system for grid-current 

harmonic control, for which the inverter reference should be 

changed to include the full capacitor current. To implement it, 

no extra sensor is added, since the capacitor current can be 

calculated from the capacitor voltage, which has been measured 

for grid synchronization. The resultant control diagram is 

shown in Fig. 8, which is equivalent to the single-loop GCF 

control system, since the measured inverter current i1 and the 

estimated capacitor current ic form the grid current i2. As a 

result, the infinite harmonic impedance for the ICF control 

system can be introduced at the frequencies where the HCs 

work and the harmonic components can therefore be rejected. 

Fig. 9 shows the Bode plot of the grid harmonic impedance, 

which compares the impedances of the system with and without 

the compensation loop. As evidenced in Fig. 9, the infinite 

harmonic impedance can only be introduced when the 

compensation loop is added. 

 

 
However, the above approach is not commonly adopted in 

typical PR or PI controlled ICF systems in literature, which 

may be because of the instability risk introduced by the 

compensation loop. Specifically, since the modified system is 

equivalent to the GCF system, its stable region is also the same 

as the GCF, which is (fs/6, fs/2) rather than (0, fs/6). In this case, 

additional damping is required to ensure the system stability 

under weak grid conditions. This is explained in the following. 

The root loci of the modified system are plotted in Fig. 10 with 

the first three LCL-filters in Table I, whose resonance 

frequencies are in the stable region of the single-loop ICF 

control system. However, it is observed in Fig. 10 that the 

system with the compensation loop cannot be stable with these 

three LCL-filters regardless of the value of Kp. The instability is 

further verified by the simulation results in Fig. 11, where the 

HCs are always enabled during the simulation and the grid 

 
 

Fig. 7. Simulation waveforms of the inverter current and the grid current when 

the HCs are enabled after 0.02 s in the ICF control system. 

 

 
 

Fig. 8.  Three-phase ICF-controlled LCL-filtered grid-connected inverter with 

capacitor-current compensation. 

 

 
Fig. 9.  Bode diagram of the grid harmonic impedance for the ICF control 

system when capacitor-current compensation is enabled and disabled. 
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condition is the same as that in Fig. 7. The compensation loop is 

enabled at 0.02 s and the instability occurs immediately, since 

(0, fs/6) has become the unstable region of the modified system. 

In practice, the resonance frequency may reduce below the 

critical frequency due to the increase of the grid impedance 

under weak grid conditions, which may trigger the instability of 

the modified control system. 

 

 

B. Proposed Scheme 

To avoid the instability issue of the modified system, an 

intuitive solution is to insert multiple band-pass filters into the 

iC compensation loop, which only allow the predefined 

harmonics to pass. However, as the number of the harmonics to 

be attenuated increases, the computational burden and the 

design difficulty become significant. To avoid these issues, a 

simpler scheme is proposed in the following, which has the 

same computational effort with the method illustrated in Fig. 8 

but a different compensation position as shown in Fig. 12. 

In the proposed method, the capacitor current is only 

processed by the resonant controllers instead of the 

proportional controller. The resonant HCs work on low-order 

harmonics, whose resonant frequencies are below the system 

bandwidth in order to ensure the controllability. When the 

resonant controllers are properly designed, their associated 

phase lags are nearly negligible and the stability of the control 

system will be mainly determined by the proportional gain Kp 

[11], [22]. In this case, the added compensation loop will not 

affect the stable and unstable regions of the initial single-loop 

ICF control system due to the same proportional gain. This can 

be observed from the root loci of the proposed control system in 

Fig. 13 with the first three LCL-filter parameters in Table I. It 

can be seen that the system can be stable with a proper Kp in the 

proposed method.  Besides, the root loci are almost the same 

with that of the single-loop ICF control system as shown in Fig. 

4(a) and (b), i.e., stable region of the proposed system is in 

agreement with the typical single-loop ICF control system 

despite an additional compensation loop. 

 

 
However, in terms of harmonic attenuation, the proposed 

scheme is superior to the single-loop ICF control system, as 

observed from the Bode plots in Fig. 14, where the infinite 

impedance is obtained at the working frequencies of the HCs 

due to the grid harmonic information indirectly provided by the 

compensation loop. Looking back at Fig. 12, it is interesting to 

find that the proposed scheme is actually a combination of an 

ICF control system and a GCF control system (the inverter 

current is controlled by the proportional controller, while the 

grid current is controlled by the resonant controllers). That is to 

say, the proposed scheme inherits the stability characteristic of 

the single-loop ICF control system and the harmonic 

attenuation capability of the single-loop GCF control system. 

To validate the theoretical analysis, simulation results are given 

in Fig. 15. It can be seen that, without the proposed method, the 

HCs can only reject the low-order harmonics in the inverter 

current, and fail to reject the grid current distortions. For 

comparison, the proposed scheme is then enabled at 0.02 s. 

Clearly, the system maintains the stability and the grid current 

becomes sinusoidal. In principle, similar results can also be 

obtained by the accurate grid-voltage feedforward scheme in 

[12], but a second-order differentiator is required, which may 

 
                                   (a)                                                      (b) 
Fig. 10. Root loci of the ICF control system with the capacitor-current 

compensation when the LCL-filter resonance frequency is below the critical 

frequency, (a) full root loci (b) zoomed-in root loci. 

 
Fig. 11. Simulation waveforms of the inverter current and the grid current 

when the capacitor-current compensation is enabled after 0.02 s in the ICF 

control system. 

 
 

Fig. 12. Three-phase ICF-controlled LCL-filtered grid-connected inverter with 
the proposed capacitor-current compensation. 

 

 
                                    (a)                                                     (b) 

 

Fig. 13. Root loci of the ICF control system with the proposed capacitor- 

current compensation when the LCL-filter resonance frequency is below the 

critical frequency, (a) full root loci (b) zoomed-in root loci. 
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cause noise amplification and usually it is difficult to 

implement. Although a capacitor current based approach was 

also proposed in  [12] to avoid derivatives, that method is 

different from the proposed one. The capacitor current in [12] 

was used for an approximate implementation of the 

grid-voltage feedforward control, while in the proposed control 

system, the capacitor current is used for harmonic reference 

generation and HCs should be used at the same time. Compared 

with the proposed method, the method in [12] suffers from 

inaccuracy, design complexity and additional cost for current 

sensing. 

 

 

C. Digital Differentiator 

To calculate the capacitor current, a differentiator is needed 

in the proposed method. Traditional discretization methods of 

the differentiator suffer from either large phase error or noise 

amplification. To tackle this problem, an adjustable digital 

differentiator based on the non-ideal Generalized Integrator (GI) 

was developed in [17], which is used in the proposed control 

system for capacitor current calculation. The proposed control 

system is not so sensitive to the magnitude error introduced by 

the digital differentiator, since the magnitude error can be 

eliminated by the integration characteristic of the resonant 

controllers. On the other hand, the sensitivity of the proposed 

method to the phase error is unknown, which should be 

investigated to ensure an accurate harmonic control. Detailed 

investigation will be provided in Section V. 

D. Performance Evaluation of the Proposed Scheme 

Simulations are carried out to further evaluate the 

performance of the proposed method, and the results are shown 

in Fig. 16. It is seen from Fig. 16(a) and (b) that the THD of the 

grid current without the proposed scheme is 6.6 % in the first 

case (grid-voltage THD = 3.46 %, deadtime 0.5 us), which in 

contrast reduces to 1.99 % with the proposed scheme. 

Furthermore, when the grid voltage THD increases to 6.4 %, 

the grid current THD increases simultaneously to 12.65 % 

without the proposed scheme, while it is only 2.01 % with the 

proposed scheme, as seen from Fig. 16(c) and (d). Moreover, it 

is observed from Fig. 16(e) and (f) that, when the grid voltage is 

highly distorted with a THD of 12.25 %, the THD of the grid 

current rises to 28.27 %. By contrast, when the proposed 

method is adopted, it is reduced to only 2.73 %. In all, the 

effectiveness of the proposed method is verified by the 

simulations. 

IV. PARAMETER DESIGN OF THE LCL-FILTER AND CURRENT 

CONTROLLER 

A. LCL-Filter Design 

In practice, the switching ripple current should be limited 

within 15 % ~ 40 % of the rated current [11], [25]–[27]. To 

realize it, the relationship between the ripple current and L1 has 

been derived in [28], where the peak ripple current value is 

given as 

1

1

3

12

dc sw

a

Mv T
i

L
                                 (12) 

in which M  is the modulation ratio, vdc is the dc-bus voltage, 

and Tsw is the switching period. In this paper, the ripple current 

is designed to be 35 % of the rated current. With the parameters 

in Table II, the required inductance can be calculated to be 1.1 

mH. Furthermore, the capacitor current is restricted to be 5 % ~ 

15 % of the rated current [26], [27]. In this paper, this 

restriction is set to be 12 %, resulting in a capacitance of 20 µF. 

Finally, the grid-side inductor is designed to guarantee that the 

dominated switching harmonics can be well attenuated below 

the value required by the grid standard [28]. Considering that 

the high-order harmonics (above 35th order) should be limited 

within 0.3 % according to the grid standard, e.g., the IEEE 1547, 

a conservative design of 0.1 % is selected, and the minimum 

required grid-side inductance L2 can be calculated as 241 uH. 

It is noted that the required grid-side inductance is very small 

owing to the excellent high-frequency attenuation performance 

of the LCL-filter. However, a small grid-side inductor will lead 

to a small grid harmonic impedance and the system will be 

sensitive to grid voltage harmonics. Moreover, a very small 

grid-side inductance also makes the system quite sensitive to 

the grid impedance variation. Considering these issues, the 

grid-side inductor is designed to be identical to L1 in the 

experimental setup, which is also suggested by the authors of 

[11]. 

 
Fig. 14.  Bode diagram of the grid harmonic impedance for the ICF controlled 

system when the proposed method is enabled and disabled. 

 
 

Fig. 15. Simulation waveforms of the inverter current and the grid current 

when the proposed method is enabled after 0.02 s in the ICF control system. 
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B. Controller Design 

When the parameters of the LCL-filter are specified, the 

system stability will mainly be determined by the proportional 

gain of the current controller as aforementioned. Since the 

proportional control loop of the system is the same with a 

typical single-loop ICF control system, the proportional gain 

can be designed in a similar way. Fig. 18 shows the open-loop 

Bode diagram of an ICF control system, from which it is 

observed that there are always three 0-dB crossing frequencies 

due to the resonant peak and the anti-resonance peak. Among 

these three frequencies, the largest one related to the smallest 

phase margin should be considered for the design of Kp. By 

setting the open-loop gain to be unity at the crossover 

frequency, Kp can be calculated as 

 3

1 2 1 2

2

2 1

c c

p

c

L L C L L
K

L C

 



  


 
                (13) 

where ωc is the crossover frequency of the control system, 

which can be calculated with a given system phase margin [24]. 

To ensure the system stability and fast dynamics, the phase 

margin is set as 40° in the targeted system, and the sampling 

frequency is 20 kHz in the setup, which result in the crossover 

frequency being 1.85 kHz. The Bode diagram of the open-loop 

transfer function derived from the proposed control structure in 

Fig. 12 is shown in Fig. 17. It can be seen that the phase margin 

is 41° and the crossover frequency is 1.83 kHz, both of which 

are in close agreement with the designed values. 

              
                                                                         (a)                                                                                                            (b) 

           
                                                                         (c)                                                                                                            (d) 

           
                                                                         (e)                                                                                                            (f) 
 

Fig. 16. Comparison of the grid-current waveforms when the proposed scheme is enabled and disabled under different grid conditions. (a), (c) and (e) without the 

proposed scheme; (b), (d) and (f) with the proposed scheme. 
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V. EXPERIMENTAL RESULTS 

The effectiveness of the proposed control scheme was tested 

in the experimental setup shown in Fig. 18, where a commercial 

inverter was connected to the grid through an LCL-filter. The 

grid was simulated by a grid simulator and the control 

algorithm was implemented in a dSPACE DS1007 platform. A 

Yaskawa D1000 regenerative converter whose AC terminals 

were connected to the grid through an isolation transformer to 

avoid the circulating current in the system built up the dc-link 

voltage of the inverter. The harmonics of the grid voltage and 

grid current were measured from a Newtons4th PPA 5530 

power analyzer. Parameters of the experimental system are 

given in Table II, which are identical to what are used in 

simulation. 

 
TABLE II 

  SYSTEM PARAMETERS USED FOR SIMULATIONS AND EXPERIMENTS 

Output Power Po 7.5 kW Grid voltage vg 220 Vrms 

Fundamental 

frequency f0 
50 Hz 

Dc-link 

voltage vdc 
650 V 

Switching  

frequency fsw 
20 kHz 

Sampling 

frequency fs 
20 kHz 

Inverter side 

inductance L1 
1.1 mH 

Grid side 

inductance L2 
1.1 mH 

Filter capacitance C 20 μF  

 

 

 
Fig. 17. Bode diagram of the proposed control system with a designed phase 

margin of 40°. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig. 19. Experimental waveforms of the grid current and inverter current under 

different grid condition and with different control methods, (a) with HCs under 
ideal grid, (b) without HCs under distorted grid, (c) with HCs under distorted 

grid, and (d) with the proposed control under distorted grid. 

 
Fig. 18. Experimental setup in the lab to validate the proposed method. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

Fig. 19(a) shows the inverter current and the grid current 

under an ideal grid condition. Because of the resonant HCs for 

the dead-time effect mitigation, the THD of the injected grid 

current is only 0.6 % under the ideal grid condition, which is 

much lower than the 5 % required by the grid standard. 

In comparison, the grid voltage output from the simulator is 

then set to be distorted by the low-order harmonics (5th, 7th, 

and 11th, THD ≈ 4.9 %) in Fig. 19(b). It is noted that both the 

grid current and the inverter current become seriously distorted 

without the HCs. Specifically, a THD of 9.9 % is observed in 

the grid current in Fig. 19(b), which exceeds 5 % required by 

the grid standard, showing the severe influence of the 

grid-voltage harmonics on the grid current quality. 

To mitigate these harmonics, the conventional resonant HCs 

tuned at the 5th, 7th, and 11th harmonic frequencies are enabled 

in Fig. 19(c). As a result, the inverter-current becomes less 

distorted due to the infinite harmonic impedance provided by 

the HCs. However, the HCs fail to mitigate the grid-current 

distortion, which becomes even more serious with the THD 

increased to 12.3 % as shown in Fig. 19(c), as previously 

discussed in this paper. 

The proposed scheme is then enabled in Fig. 19(d), where the 

capacitor current is calculated from the GI-based differentiator 

and fed forward to the input of the resonant controllers. Since 

the capacitor current contains the harmonic information, the 

proposed scheme ensures that all harmonics are produced from 

the inverter side rather than the grid side. As a result, the grid 

current can be free of distortions in theory. Clearly, it is 

observed from Fig. 19(d) that, with the proposed method, the 

grid current becomes much close to sinusoidal, which has a 

THD of 2.8 %. The experimental results are in agreement with 

the theoretical analysis and the simulation results in Section III. 

Hence, the effectiveness of the proposed method in case of grid 

voltage distortions is validated. 

Next, for comparison, the capacitor current is fed forward to 

the current reference rather than the input point of the resonant 

controllers. Although this approach is reported to be effective 

for an ICF control system using a D-Σ controller, it makes the 

traditional PR-controlled CCF system unstable according to the 

previous theoretical analysis. This conclusion is now validated 

by the experimental results in Fig. 20, where it is observed that 

the system cannot be stable when the capacitor-current 

compensation is enabled, and finally the divergent oscillation 

of the inverter current triggers the overcurrent protection. 

Again, the experimental results are in agreement with the 

simulation result in Fig. 11, which also validates the theoretical 

analysis. 

 
To give a more comprehensive comparison, for the three 

control schemes used in Fig. 19, the THD of the grid current are 

measured at different operating points: from 10 % to 100 % of 

the rated power. The grid voltage distortion is the same with 

that in the previous experiments. The results are presented in 

Fig. 21, where it can be observed that the proposed method has 

the lowest THD at all operating points among the three control 

schemes. Specifically, above 30 % of the rated power, the 

proposed method can guarantee the THD to be lower than 3 %, 

while for the other two control systems, the THD are almost 

higher than 10 %. Although the relative THD of the proposed 

method at 10 % of the rated power is 12.21 %, its corresponding 

absolute value becomes 1.2%, which is still lower than required 

in the grid standard. Besides, it is noted that, above 60 % of the 

rated power, the use of HCs even worsens the grid current 

quality as a higher THD is observed compared with the system 

without HCs. 

Additionally, the phase errors introduced by the non-ideal GI 

 

 
 

Fig. 20.  Experimental waveforms of the inverter current and the grid current 

when the capacitor-current compensation is enabled. 

 
 

Fig. 21.  THD of the grid current i2 for three different control systems at different operating point. 
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digital differentiator with four different k values are compared 

in Fig. 22. Transfer function of the non-ideal GI differentiator is 

given by [17] 

 
2

2 2

s
GI s

s ks








 
                       (14)  

where ωʹ is the Nyquist frequency and k is used to tune the 

phase and magnitude response of the differentiator. For digital 

implementation, the first-order hold discretization method is 

used to discretize (14). It can be seen from Fig. 22 that a larger k 

value leads to a larger phase error. With the same k value, the 

phase error increases with the increase of the frequency. 

 

 
 

 
 

To investigate the influence of the phase error on the control 

performance, the differentiator with four k values are tested in 

the experiments using the proposed control system. The grid 

condition is the same with previous experiments. With different 

k, the THDs of the grid current at different operating points are 

recorded in Fig. 23. It is seen from Fig. 22 that the phase error at 

the 11th harmonic is larger than 3 % for k = 50000 and 0.3 % 

for k = 5000. Despite the large difference, it is interesting to see 

in Fig. 23 that the THDs of the grid current at different 

operating points are quite similar. In Fig. 23, the phase error at 

the 19th harmonic when k is 30000 can still be maintained 

around 3 %, which is similar to the phase error at the 11th 

harmonic when k is 50000. Therefore, k is finally set to be 

30000 in the previous experiments considering the trade-off 

between the noise amplification and control performance. 

 
The designed LCL-filter is further verified experimentally. 

With the parameters in Table II, the rated inverter current is 

calculated to be 11.36 A. According to the analysis in Section 

IV, the ripple current can be limited to 35 % (3.98 A) of the 

rated current with an inverter-side inductor of 1.1 mH. To 

verify this, the inverter current and the capacitor current are 

shown in Fig. 24(a), where the switching ripple is observed 

clearly. Since most of the ripple currents flow into the capacitor, 

the maximum ripple can be observed to be 4 A from the 

capacitor-current waveform. The zoomed-in view of the 

inverter current at the middle zero-crossing point is shown in 

Fig. 24(b), where the ripple amplitude is 3.6 A. These results 

are in close agreement with the theoretical analysis. 

Fig. 25(a) further shows the dynamic performance of the 

proposed control system, where a step change in the inverter 

reference is enabled. The output power is changed from half 

load to full load. Fig. 25(b) shows the zoomed-in view of Fig. 

25(a). It can be seen from these results that the injected current 

can quickly track the reference within 2 ms with a very small 

overshoot, showing also the excellent dynamic response of the 

proposed method. 

 
Fig. 22. Phase error of the GI-based differentiator with different k values at the 

characteristic low-order harmonics. 

 
Fig. 23. THD of the grid current at different operating point and with the 

differentiator tuned by four different k values. 

 

 

 

 
(a) 

 

 
(b) 

 
Fig. 24.  Experimental waveforms to show the switching ripple in the inverter 

current and the capacitor current, (a) full view and (b) the zoom-in view of the 

middle zero-crossing point in Fig. 24(a). 
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VI. CONCLUSION 

This paper proposed a simple but cost-effective grid-current 

harmonic mitigation strategy for the LCL-filtered VSIs with the 

ICF control. The proposed method enables the inverter possible 

to inject high-quality current even under grid voltage 

distortions. It has also been revealed in this paper that the 

proposed method is equivalent to a control system using a 

proportional controller for the inverter current control, while 

resonant controllers for the grid current control. As a result, the 

proposed system can inherit the superior stability characteristic 

of the ICF control and the excellent harmonic controllability of 

the GCF control at the same time. To implement the control 

algorithm, a differentiator is used in the control system to avoid 

additional current sensors, which is implemented by a non-ideal 

generalized integrator to achieve a trade-off between the noise 

amplification and the harmonic control performance. The 

robustness of the control system against grid impedance 

variations can be further improved by applying the time-delay 

compensation approach proposed in [22], which is not 

elaborated in this paper. Parameter designs of the LCL-filter 

and the controller were presented to ensure the system stability 

and operation performance. Simulation and experimental 

results have verified the effectiveness of the proposed scheme 

in terms of good harmonic mitigation and fast dynamics. 
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