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ABSTRACT 40 
 

Knowing the forces in the human body is of great clinical interest and musculoskeletal models are the most 42 

commonly used tool to estimate them in vivo. Unfortunately, the process of computing muscle, joint 

contact and ligament forces simultaneously is computationally highly demanding. The goal of this study 44 

was to develop a fast surrogate model of the tibiofemoral (TF) contact in a total knee replacement (TKR) 

model and apply it to force-dependent kinematic simulations of activities of daily living (ADLs). Multiple 46 

domains were populated with sample points from the reference TKR contact model, based on reference 

simulations and design-of-experiments. Artificial neural networks learned the relationship between TF 48 

pose and loads from the medial and lateral sides of the TKR implant. Normal and right-turn gait, rising-

from-a-chair, and a squat were simulated using both surrogate and reference contact models. Compared 50 

to the reference contact model, the surrogate contact model predicted TF forces with a root-mean-square 

error (RMSE) lower than 10 N and TF moments lower than 0.3 Nm over all simulated activities. Secondary 52 

knee kinematics were predicted with RMSE lower than 0.2 mm and 0.2 degrees. Simulations that used the 

surrogate contact model ran on average three times faster than those using the reference model, allowing 54 

the simulation of a full gait cycle in 4.5 min. This modeling approach proved fast and accurate enough to 

perform extensive parametric analyses, such as simulating subject-specific variations and surgical-related 56 

factors in TKR.

 58 
 
KEYWORDS 60 
 
TKR, TKA, surrogate model, contact, musculoskeletal model 62 
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INTRODUCTION 64 
 

The calculation of forces acting on the musculoskeletal (MS) system during 66 

activities of daily living (ADLs) is of great interest as it aids in understanding how hard 

and soft tissues interact throughout the human body and at the joint level, and may 68 

help researchers and clinicians to understand better the mechanical pathways of MS 

pathologies. Body-level forces and moments are solved using multi-rigid body dynamic 70 

methods, which are normally inexpensive computationally: given a known motion and 

the external forces acting on the body, muscle and joint forces can be calculated by 72 

means of forward dynamics assisted data tracking and inverse dynamics with 

optimization-based muscle recruitment. The reader is referred to ref. [1] for an 74 

extensive review of these techniques. At the joint and tissue level, more advanced 

techniques – such as finite-element (FE) or elastic-foundation (EF) analyses – are 76 

required to represent the contact interactions between articulating surfaces and solve 

for ligament forces and secondary motions of the joints. 78 

Despite its great appeal, the coupling of such techniques for solving tissue-level 

and body-level mechanics is overall a highly computationally demanding process, up to a 80 

point that may hinder its clinical applicability or impede parametric and/or optimization 

analyses on a large scale. Recently, the force-dependent kinematic (FDK) method [2] 82 

was applied to estimate leg muscle forces, knee ligament and contact forces and 

secondary kinematics simultaneously in a MS model of a patient having a total knee 84 

replacement (TKR) [3]. However, the computational burden in that study was 

considerable, as it took more than four hours to analyze a single cycle of normal gait. 86 
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Surrogate models have been proposed to reduce the computational burden of 

MS simulations while retaining a reasonable level of accuracy. Halloran et al. 88 

demonstrated adaptive surrogate modeling techniques to accelerate the optimization of 

a jump height in a combined MS-FE model of the foot [4]. Surrogate models for the 90 

analysis of native knee joint forces [5,6], cartilage stresses [7] and tibiofemoral (TF) 

contact interactions and wear in total knee replacement (TKR) [8–11] were also 92 

reported. These models utilized a variety of techniques, such as response surface 

optimization [6], Lazy Learning [4], nonlinear dynamic models [5], Kriging [8–10], and 94 

artificial neural networks (ANN) [5,7,11]. Recently, Eskinazi and Fregly (2015) proposed a 

surrogate modeling approach based on ANN to accelerate an FE deformable contact 96 

model of TKR [11]. Artificial neural networks are known, among others, for their ability 

to learn virtually any complex relationship between a set of input and output variables 98 

[12]. For instance, for the knee joint, one would train ANNs using outcomes of repeated 

contact analyses of expensive reference FE or EF models, and subsequently fit the 100 

relationships between TF pose and the resultant TF contact forces and moments. Then, 

within a musculoskeletal analysis, the surrogate model would replace the reference 102 

contact model, providing a significant reduction in computation time. However, the 

performance of surrogate contact models for the simultaneous estimation of muscle 104 

forces, TF ligament and contact forces and secondary kinematics during activities of 

daily living (ADLs) has not been demonstrated yet. 106 

The aim of this study is to create and test a surrogate contact model of a TKR and 

to demonstrate its applicability in predicting muscle, ligament and TF contact forces and 108 
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secondary kinematics simultaneously during normal gait, right-turn gait, rising-from-a-

chair, and squat. We addressed the following specific questions: 1) how much reduction 110 

in simulation time is obtained and 2) how well is accuracy retained when a surrogate 

contact model is used instead of the reference contact model? 112 

 
METHODS 114 

 

A previously validated patient-specific MS model of a patient with a telemetric 116 

knee prosthesis was the basis for this study [3]. The model was built using the AnyBody 

Modeling System (AMS, version 6, AnyBody Technology A/S, Aalborg, Denmark) [13] and 118 

included head, two arms, trunk, pelvis and two legs. Further details can be found in ref. 

[3]. The analysis workflow consisted of two stages: a motion optimization (MO) and 120 

force-dependent kinematics (FDK), which applies inverse dynamic analysis as part of the 

solution process. In the first stage (MO), the full-body model was driven using marker 122 

trajectories from motion-capture data, and joint kinematics were optimized using an 

inverse kinematic analysis [14]. The AMS applies a full Cartesian formulation in which 124 

each body is described by the translation of the segment origin and the segment 

orientation specified with Euler parameters. The relative movement between the 126 

segments is restricted by constraint equations, which, in this case, allowed three 

translation and three rotations of the pelvis segment relative to the global reference 128 

frame, three pelvis-trunk rotations, neck extension and for each leg, three hip rotations, 

knee flexion, ankle plantarflexion and subtalar eversion. In the second stage (FDK), the 130 

optimized joint kinematics from MO stage and the experimental ground reaction forces 
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and moments (GRF&Ms) were input to an FDK model, which solved for the 166 Hill-type 132 

muscle element forces spanning the lower extremity, TF ligament and contact forces, 

and secondary TF joint kinematics under an assumption of quasi-static equilibrium 134 

within the joint [2]. To save computation time, the right (unaffected) leg and both arms 

were excluded from the FDK analyses and artificial reaction forces and moments were 136 

added to the pelvis segment to compensate for kinematic-kinetic inconsistencies.  

 138 

Description of the Reference Contact Model 
 140 
The reference TKR contact model of a left knee used in this study was extracted from 

the aforementioned MS model. It consisted of two contact pairs defined by the femoral 142 

component and the medial and lateral side of the tibial insert, respectively. Implant 

geometries were obtained from the 5th “Grand Challenge Competition to Predict In Vivo 144 

Knee Loads” dataset [15]. TF contact forces and moments were calculated using a linear 

pressure-overclosure relationship between the articulating surfaces, in which the 146 

contact forces were a linear function of the penetration volume, with a factor (pressure 

modulus) of 9.3 GN/m³ [3]. 148 

To generate a surrogate contact model of TKR, it was necessary to find the 

relationship between contact forces and moments resulting from the relative pose 150 

between the tibial and femoral component. For this, we used a design-of-experiment 

approach to define a model sampling scheme to obtain the desired input-output 152 

relations. Subsequently, we fitted the samples obtained from repeated evaluation of the 
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reference contact model using ANN until convergence criteria were reached. Details of 154 

this procedure are herein provided. 

The tibial component, consisting of medial and lateral contact surfaces, was fixed 156 

to the global reference frame. The femoral component was free to move in space having 

6 DOFs relative to the global frame. Thus, the relative TF pose could be defined by three 158 

translations and three rotations between tibial (fixed) and femoral (moving) frames of 

reference (Fig. 1). Tibiofemoral translations were defined as the translations of the 160 

femoral component frame measured with respect to the tibial frame of reference, and 

corresponded to anterior femur translation (x), joint distraction (y), and medial femur 162 

translation (z), respectively. Tibiofemoral rotations were defined using Tait-Bryan angles 

with the ‘z-y-x’ sequence of intrinsic rotations from the femoral component body frame 164 

to the tibial component body frame.  This rotation sequence allowed the description of 

knee abduction (θx) around a well-defined axis fixed in the tibial body. As will become 166 

clearer in the next section, knee abduction was a sensitive rotation, therefore, it was 

allowed to vary according to the abduction torque applied. Letting knee abduction be 168 

the last rotation in the sequence, a change in the rotation did not affect the remaining 

two non-sensitive rotations (θz and θy). Please note that the used sequence (‘z-y-x’ 170 

rotations from femur to tibia) is equivalent to a ‘x-y-z’ rotation sequence from tibia to 

femur, as defined in ref. [11], with an opposite sign convention. Furthermore, the 172 

assumptions of conservative (friction-less) and linear elastic contact were made. Under 

these conditions, it was possible to simplify the contact formulation and assume the 174 

contact forces and moments to depend purely on TF pose. Tibio-femoral forces and 
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moments resulting from medial and lateral contact analyses were measured with 176 

respect to the origin of the femoral coordinate system and expressed in the tibial 

reference frame. They will be referred to as Fx
Med, Fy

Med, Fz
Med, Mx

Med, My
Med, Mz

Med, for 178 

the medial side, and Fx
Lat, Fy

Lat, Fz
Lat, Mx

Lat, My
Lat, Mz

Lat, for the lateral side, in which the 

subscripts indicate the direction of application of the load. The resultant forces and 180 

moments from the medial and lateral sides combined could be conveniently expressed 

as the total TF loads: Fx
Tot, Fy

Tot, Fz
Tot, Mx

Tot, My
Tot, Mz

Tot. 182 

 
Sampling of the Reference Contact Model 184 
 
An efficient sampling plan was necessary to ensure coverage of the design space. 186 

Ideally, the surrogate model should have a perfect fit in all areas of the design space, 

which are likely to occur in a simulation, and also adequate in less probable areas, in 188 

order to prevent the contact algorithm from producing unacceptably large prediction 

errors. Due to the particular geometry of the articulating surfaces in TKR, there are 190 

specific directions in which minimal variations of the TF pose induce very large 

variations in the corresponding TF loads. These are referred to as ‘sensitive directions’ 192 

[8]. To identify possible sensitive directions in our contact model, we configured a 

reference TF pose in which all rotations and the anterior and medial femur translation 194 

were null and the femoral component “just touched” the tibial component. 

Subsequently, we perturbed the TF pose and analyzed the TF load response. We 196 

identified two sensitive directions, being the joint distraction (y) and the knee abduction 

(θx), respectively. The presence of sensitive directions suggested a definition of sample 198 

points as combinations of pose parameters in non-sensitive directions and loads in 
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sensitive directions: {x, Fy
Tot, z, Mx

Tot, θy, θz}, as in [8]. This definition was adopted to 200 

sample two-sided contact and contact boundary cases. To ensure a wider coverage of 

the design space, one ought to include also out-of-contact and single-sided contact 202 

cases [11]. In such cases, we adopted different definitions of the sample point, namely 

{x, y, z, θx, θy, θz} for out-of-contact cases, for which the femoral component could be 204 

freely moved far away from the tibial insert, and {x, Fy
Tot, z, θx, θy, θz} for single-sided 

contact cases, for which the knee abduction angle could be explicitly prescribed so as to 206 

produce lift-off on either sides, as in [11]. 

To define reasonable boundaries for the design space, we estimated and 208 

extracted TF load-pose data from five reference FDK analyses of ADLs obtained using 

our MS model with the reference contact model. These activities included one walking 210 

cycle of normal gait, one of right-turn gait, an unloaded leg-swing, two repetitions of a 

rising-from-a-chair task, and four repetitions of a squatting motion, for which motion-212 

capture data were available as part of the Grand Challenge dataset [15]. Differently than 

in the study of Eskinazi and Fregly [11], in which reference curves were extracted from 214 

14 gait cycles, we included reference curves from several types of ADLs, with the aim of 

generalizing the capabilities of the surrogate contact model for future use, as we plan to 216 

apply the surrogate model in MS analyses involving different loading conditions and 

ranges of motion. 218 

To take into account different contact cases, we adopted a multi-domain 

approach, as in the study of Eskinazi and Fregly [11], and we chose the Hammersley 220 

quasi-random (HQ) sequence [16] to evenly distribute points in each domain (Table 1). 
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However, some different choices were made for distributing samples points across 222 

domains, as detailed below. By using multiple domains, we attempted to maximize the 

coverage of areas of the design space that are as likely to occur as normal two-sided 224 

contact during the analysis of ADLs, for instance including lift-off of one or both of the 

two sides of the implant, or situations where the implant surfaces are barely in contact. 226 

Domain 1  consisted of data points spanning the boundaries of ± 1 standard deviation 

(SD) from the time-varying envelopes of each of the aforementioned reference analyses. 228 

This domain compared to domains D1 and D2 in the study of Eskinazi and Fregly [11], 

with the differences being the expansion factor of 1 SD (our method) as opposed to 230 

20 % and 100 % (their method), and the fewer points sampled. For each time-frame, 20 

data points were sampled, resulting in 18060 points. Our Domain 2 was comparable to 232 

domain D3 in ref. [11], though the sampling process was different. We first performed a 

principal component analysis (PCA) of the reference data, then we enlarged the 234 

envelopes of the principal components (PCs) by 50 % and we sampled data points in the 

new PC space. Finally, we transformed the PC samples back to the original variables 236 

space. By pre-transforming the domain space using PCA, the resulting samples points 

were more densely distributed around the data points of the reference curves. This 238 

domain enlarged substantially the coverage with respect to the Domain 1, while still 

retaining the gross inter-variability between the sampling variables, owing to PCA pre-240 

transformation. Domain 3 represented single-sided contact, similarly to domain D4 in 

ref. [11], which simulated lift-off of one of the two sides of the implant. The sampling 242 

point was defined as {x, Fy
Tot, z, θx, θy, θz}. Differently than in ref. [11], the PCA approach 
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was used for the TF pose parameters and an upper boundary equal to 100 N was set on 244 

Fy
Tot (lower boundary was 0 N), which covered situations with low contact forces on 

either sides. Domain 4 consisted of contact boundary points, similar to domains D6 and 246 

D7 in ref. [11], in which one or both sides were barely touching. This domain accounted, 

for instance, for situations in which the leg would enter the swing phase of gait, and the 248 

TF loads would progressively decrease. The sample point definition for this domain was 

{x, Fy
Tot, z, Mx

Tot, θy, θz}, thus we set an upper boundary of 100 N on Fy
Tot, and a lower 250 

and upper boundary of ± 5 Nm on Mx
Tot. This choice differed from that of Eskinazi and 

Fregly for domain D6 and D7, in which the medial and lateral vertical contact forces 252 

were kept fixed at 5 N, simultaneously or alternately, while sampling the TF pose 

parameters. Domains 5 and Domain 6 were populated with samples representing both 254 

sides out-of-contact cases, in which the femoral component was in the proximity 

(Domain 5) and far away (Domain 6) from the tibial insert, respectively. The sample 256 

point definition was {x, y, z, θx, θy, θz}. Our Domain 5 was comparable to domain D5 in 

ref. [11], but we sampled a much larger number of points. In this domain, the contact 258 

boundary samples were re-used, and the distraction was raised up to 2 mm in four 

increments (as opposed to three in ref. [11]). Furthermore, we extended the out-of-260 

contact coverage with Domain 6, to ensure that the response of the surrogate model did 

not diverge dramatically when the femoral component separated substantially from the 262 

tibial component, providing additional robustness to the surrogate model. In Domain 6, 

boundaries on the y translation were set between the maximum y translation of contact 264 

boundary cases and 10 cm. 



BIO-16-1267 Marra 13 
 

All sample points were evaluated by repeated static analyses using the reference 266 

contact model (Fig. 1), to obtain the combinations of TF pose and corresponding TF 

loads. As for Domains 5 and 6 – in which samples consisted purely of pose parameters – 268 

the analysis was displacement-driven and TF loads solved for using ordinary inverse 

dynamics. Sampling domains that included sensitive directions for certain loads 270 

(Domains 1-to-4) were analyzed using a combination of displacement-driven and force-

driven analyses, where TF pose parameters in non-sensitive directions and loads in 272 

sensitive directions were prescribed, whereas TF pose parameters in sensitive directions 

and loads in non-sensitive directions were simultaneously solved for using FDK analyses. 274 

In these cases, the FDK algorithm solved for the unknown TF pose parameters in 

sensitive directions that put the system in static equilibrium, under the application of TF 276 

loads in sensitive directions and the prescribed pose in non-sensitive directions. Errors 

of up to 0.1% of the applied loads were tolerated, whereas samples that led to larger 278 

errors were discarded. Additionally, samples that led to TF component overclosure 

larger than 2 mm were also filtered out. Approximately 85% of all the successful sample 280 

points were allocated for surrogate model training. The remaining 15% were assigned to 

a separate testing dataset. No samples were allocated for testing in Domain 1, as the 282 

accuracy in this sort of domain would be better evaluated by FDK analysis of ADLs. 

 284 
Training of the Surrogate Contact Model 
 286 
Multiple-input multiple-output feedforward ANNs were configured in MATLAB (version 

8.6.0, The MathWorks Inc., Natick, MA) using the Neural Network Toolbox (Fig. 2). As 288 

opposed to the study of Eskinazi and Fregly, who interconnected multiple ANNs, each 
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with multiple inputs and a single output [11], we opted for ANNs with multiple inputs 290 

and multiple outputs in an attempt to exploit the correlation likely to exist between 

different output variables. Similarly to ref. [11], the training phase consisted of two 292 

stages: in the first stage, one ANN learned the relationship between medial and lateral 

TF loads in sensitive directions, {Fy
Lat, Mx

Lat, Fy
Med, Mx

Med}, and the TF pose, {x, y, z, θx, θy, 294 

θz}; in the second stage, two additional ANNs learned the relations between the 

remaining medial and lateral TF loads separately, and a combination of TF pose 296 

parameters and sensitive loads of either side. This allowed proper learning of the out-of-

contact cases, in which zero loads may correspond to many different combinations of 298 

pose parameters and to have fully independent medial and lateral surrogate contact 

models. 300 

Given the impossibility to establish a priori the correct number of layers and 

neurons, a heuristic method was used to decide both number of network layers and 302 

neurons per layer. We started with two hidden layers and ten neurons per layer. We 

started the network training and recorded the value of the performance function after 304 

one hour. If the performance value fell below 0.001, then we would accept the current 

network configuration, else we would primarily add ten neurons to each layer (up to 306 

forty neurons in total per layer) and, secondly, add one more hidden layer. After each 

network modification we would repeat the one-hour training test. This process led us to 308 

a final network configuration consisting of three hidden layers with thirty neurons per 

layer, having hyperbolic tangent sigmoid transfer function. The network was then 310 

completed with one output layer of purely linear neurons.  
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Each network was trained using the MATLAB training function trainbr, which 312 

uses Bayesian regularization within the Levenberg-Marquardt backpropagation 

algorithm. According to this training scheme, the performance function to be minimized 314 

was a linear combination of squared errors and weights, in which the coefficients were 

continuously updated to prevent data over-fitting and lead to networks with good 316 

generalization qualities. Each network trained for at least 18 hours and the training was 

stopped only after the performance function visibly converged. 318 

After training succeeded, the weights and biases of each network were exported 

as standalone functions using built-in MATLAB capabilities. Custom-written MATLAB 320 

routines translated those standalone functions into C++ code. The Eigen template library 

[17] was used to represent and operate on numerical data in the C++ surrogate model 322 

functions. The latter were then built together as a dynamic-link library (DLL) to maximize 

efficiency. A post hoc condition was defined in the surrogate model functions: if the 324 

medial or lateral TF force in the y direction was negative or equal to zero, then all 

remaining loads on the respective side were immediately assigned zero as well, without 326 

calculating the output of the second stage. 

  328 
Testing of the Surrogate Contact Model and Performance of Simulated ADLs 
 330 
We used the surrogate contact model functions to evaluate the sample points from the 

testing dataset, and reported the testing performances using the coefficient of 332 

determination (R², defined by 1 - sum of squares of residuals divided by total sum of 

squares) and the root-mean-square error (RMSE) of output medial and lateral TF loads 334 

relative to targets. 
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We then replaced the reference contact model of the MS model with the newly 336 

built surrogate contact model. This was achieved using C++ hook capabilities of the 

AMS, which can load external DLL functions and make them available to the model 338 

during run time. In this way, the medial and lateral TF contact loads were obtained by 

executing function calls to the respective medial and lateral surrogate model DLL 340 

functions, using the current TF pose as input argument. Differently from our previous 

MS model [3], in which the computation of muscles and ligament lines of action – or 342 

wrapping algorithm – was carried out using numerical methods, in this study, we opted 

for an analytical solution2, to prevent possible hindrances to the true performances of 344 

the surrogate model. Moreover, since we were interested in testing a surrogate model 

of a TKR TF joint, we replaced the patellofemoral (PF) joint with an ideal revolute joint 346 

and let the only DOF of patella be controlled by an elastic patellar ligament (stiffness 

1187 N/mm). During an analysis, the FDK algorithm explored the TF pose space until a 348 

quasi-static equilibrium was reached, and to do so it iteratively executed function calls 

to the surrogate model, rather than executing function calls to the reference contact 350 

model. To evaluate the performance of the surrogate contact model for the analysis of 

dynamic motor tasks, we simulated four ADLs using both the reference and the 352 

surrogate contact model. We simulated one walking cycle of normal gait, one of right-

turn gait, two repetitions of a rising-from-a-chair task, and four repetitions of a 354 

squatting motion for which motion capture data were available as part of the Grand 

Challenge dataset [15]. For each activity and for each contact model, we estimated TF 356 

                                                
2 The algorithm for the analytical solution is not part of the AMS release and it was provided separately to 
us by AnyBody Technology A/S in a prototype version that solved a single cylindrical wrapping case. 
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forces, moments and six-DOF knee kinematics and we evaluated the accuracy of the 

surrogate model predictions compared to the predictions obtained with the reference 358 

model. We calculated R², RMSE, and maximum prediction errors for all TF forces, 

moments, and kinematics. Knee kinematics were defined according to a knee joint 360 

coordinate system consistent with the description of Grood and Suntay [18]. 

Tibiofemoral rotations were defined using Tait-Bryan angles with the ‘z-x-y’ sequence of 362 

intrinsic rotations from the femoral component body frame to the tibial component 

body frame. Note that this convention differed from that used during the sampling 364 

process; however, this choice was justified to provide a physically meaningful 

description of knee kinematics; namely, anterior tibial translation, joint distraction, 366 

lateral tibial translation, knee flexion, knee adduction, and tibial external rotation. 

Additionally, we compared the computation times required to complete the FDK 368 

analyses with either contact model. 

 370 
RESULTS 

 372 

On the testing dataset, the surrogate model predicted medial and lateral TF 

loads with an R² value greater than 0.99 and 0.96, respectively, for all components of 374 

force and moment. The largest medial and lateral RMS force errors (Table 2) were 

observed in Fy
Lat (76 N, Domain 6) and Fy

Med (20 N, Domain 3), respectively. The largest 376 

medial and lateral RMS moment errors were observed in Mx
Med (0.72 Nm, Domain 6) 

and Mx
Lat (1.9 Nm, Domain 6). Maximum errors were in most cases one to two orders of 378 

magnitude larger than RMS errors, indicating the presence of extreme outliers. The 
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largest maximum errors were 1863 N in Fy
Lat and 50 Nm in Mx

Lat, both found on 380 

Domain 2. 

On the simulations of normal gait, right-turn gait, rising-from-a-chair, and squat, 382 

medial and lateral TF loads were predicted with an R² value greater than 0.99 and 0.98 

in all cases. The knee kinematics obtained with the surrogate model agreed to those 384 

obtained with the reference model with an R² value greater than 0.96 in all cases, 

except for lateral tibial translation in the normal gait (R² = 0.93). The largest RMS errors 386 

among all trials (Table 3) were 5.6 N in Fy
Med and 9.9 N in Fy

Lat, and 0.17 Nm in Mx
Med and 

0.26 Nm in Mx
Lat. The largest maximum errors on TF loads were 47 N for Fy

Lat in the 388 

right-turn and 1.4 Nm for Mx
Med in the normal gait. The largest RMS errors in knee 

kinematics (Table 4) were found in lateral tibial translation (0.13 mm) and tibial external 390 

rotation (0.17 degrees) in the right-turn. Maximum errors reached up to 0.90 mm for 

anterior tibial translation and up to 1.27 degrees for tibial external rotation, both in the 392 

right-turn. 

Simulation times (Table 5) were 4.5 and 13.6 min for the normal gait, 7.3 and 394 

22.7 min for the right-turn trial, 27.2 and 70.3 min for the rising-from-a-chair trial, and 

38.5 and 96.4 min for the squat trial, when using the surrogate and reference contact 396 

model, respectively. The speed improvement introduced by the surrogate model was 

greater than 2.5 times for the squat and rising-from-a-chair trials, and greater than 3 398 

times for the normal gait and right-turn trials, thus it was greatest in trials with a short 

duration and a fewer number of time frames analyzed (less than 2 s/200 frames), as 400 

opposed to trials with a longer duration (more than 8 s/1000 frames). 
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 402 
DISCUSSION 

 404 

In this study, we successfully incorporated a surrogate contact model of a TKR 

based on ANNs into a MS model that solved for lower extremity muscle, TF ligament and 406 

contact forces and secondary TF kinematics simultaneously. Tibiofemoral contact forces 

and moments and secondary kinematics were predicted almost as accurately as with the 408 

reference contact model in all ADLs, but within a third of the time. The ability to reduce 

the computation time of MS analyses is an important step forward towards the 410 

application of MS models in extensive parametric studies and/or the planning of 

orthopedic interventions through optimization. 412 

The prediction errors remained low across the different ADLs analyzed and 

among different components of the loads. For instance, RMS errors on TF compressive 414 

forces were on average less than 1% of peak forces reported for gait [19]. The RMS and 

maximum errors were lower than 10 N/0.26 Nm and 47 N/1.4 Nm for all load 416 

components, respectively. The sampling scheme based on multiple domains proved thus 

effective in providing a good coverage for the contact conditions arising during the ADLs 418 

simulated. 

The RMS errors for the prediction of TF contact forces and moments during gait 420 

simulations (1.9 N/0.063 Nm) were on the same order of magnitude but slightly lower 

than the errors reported by Eskinazi and Fregly (2.6 N/0.078 Nm) [11]. Sub-millimeter 422 

and sub-degree accuracy was also achieved in predictions of secondary knee kinematics 

in all ADLs investigated, indicating that the iterative process that computed the quasi-424 
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static equilibrium in the secondary knee DOFs converged to very similar results. 

Moreover, when the goal is to capture the overall kinematics for various ADLs, as was in 426 

the current study, small errors in the TF loads predicted by the surrogate model do not 

critically affect the kinematic results of the simulations. None of the previous studies 428 

reported on the accuracy of secondary knee kinematics predicted concurrently with 

muscle, ligament and contact forces using a surrogate TF contact model. 430 

The time to complete an FDK analysis of the ADLs investigated in this study was 

reduced by about three times when the surrogate contact model replaced the reference 432 

contact model. The speed improvement appeared quite modest and warranted further 

exploration. To exclude possible hidden overhead within the surrogate model functions, 434 

we investigated the execution time of isolated surrogate contact model function calls: 

this was on the order of 77 μs per evaluation, as opposed to 78 ms for the reference 436 

contact model. Thus, at the level of isolated function calls, the surrogate model was 

about 1000x faster than the reference contact model, as expected, however such a 438 

speed improvement did not extend to FDK analyses of ADLs. This can be explained by 

other time-consuming processes taking place within such analysis; namely, the 440 

kinematic analysis, and the optimization that solved the muscle recruitment problem. 

Both processes were solved numerically using iterative algorithms which themselves 442 

added overhead. Replacing the reference contact model with a faster surrogate contact 

model removed a part of this overhead. 444 

A full gait cycle could be analyzed in just 4.5 min, using a surrogate contact 

model, which is of practical advantage in many cases. Extensive parametric studies often 446 
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require repeating similar analyses hundreds or thousands of times to assess the 

influence of individual parameters. For instance, it could be interesting to study the 448 

performances of a certain implant design under varying subject-specific factors, such as 

height, weight, muscle strength, soft tissue characteristics, and limb alignment and/or 450 

implant related factors, such as implant alignment. In all these cases, very low 

computation times would be highly beneficial, as it would eliminate an important 452 

bottleneck in the implementation of such analyses. 

The simulation time to analyze one walking cycle of normal gait (4.5 min) was 454 

almost one order of magnitude smaller than the time reported by a previous study that 

used surrogate contact models of both TF and PF joints (42 min) [9]. Our model did not 456 

include a PF joint contact model; however, it included 166 Hill-type muscles elements 

spanning the entire lower extremity, in addition to TF ligaments and contact forces, as 458 

opposed to the other study, which included only eleven muscles spanning the knee joint 

and omitted all knee ligaments except the patellar ligament [9]. Other studies which did 460 

not employ surrogate models reported simulation times to complete a forward and 

inverse dynamic analysis of one walking cycle which were comparable to ours (a few to 462 

ten minutes) [20–22]. However, these models did not include muscles and some 

motions were input to the simulations; namely, knee anterior-posterior translation and 464 

internal-external rotation. The analysis approach of the present study solved for the 

muscle forces of the entire lower extremity and did not prescribe any of the secondary 466 

knee kinematics. We believe that estimating muscle, ligament and joint contact forces 

and secondary knee kinematics simultaneously – rather than prescribing or neglecting 468 
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any of them – is essential if the aim is to investigate the effect of implant-related factors 

on the overall joint function, as any of the aforementioned outcomes may affect and/or 470 

be affected by the different implant conditions. Thus, when the higher computational 

complexity of our modeling approach is taken into account, the time performances 472 

appear more than justified. 

When evaluating the surrogate model over a testing dataset, RMS prediction 474 

errors were all lower than 76 N (Fy
Lat on Domain 6) and 1.9 Nm (Mx

Lat on Domain 6). The 

presence of extreme outliers was also noted, as testified by maximum errors in certain 476 

domains that were orders of magnitude higher than the RMS errors in those domains: 

1863 N for Fy
Lat and 50 Nm for Mx

Lat, both on Domain 2. This signifies the presence of 478 

tiny areas of the design space that the surrogate model could not learn accurately 

enough and for which it produced large errors. This could have happened if, for 480 

instance, too few sample points were available in those areas during training of the 

surrogate model, resulting in large testing errors, or if an insufficient number of hidden 482 

layers was used in the ANN. A careful inspection of the ‘problematic’ points revealed 

that the corresponding pose parameters referred to non-physiological situations, with 484 

the femoral component almost below the tibial insert and/or rotated to a very large 

extent. Such cases are very unlikely encountered in realistic contact situations, and, 486 

therefore, they should not constitute a serious problem. If we exclude from the 

comparison our Domain 6, which does not have an analogous in a previous study [11], 488 

then the largest errors were found on analogous domains in both studies; namely, our 

Domain 2 and their domain ‘D3’, which represented an expansion of the global 490 
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reference curves. In these analogous domains, the largest RMS (maximum) errors in our 

study were 69 N/1.8 Nm (1863 N/50 Nm) as opposed to 14 N/0.4 Nm (249 N/4.7 Nm) in 492 

[11]. Thus, our RMS (maximum) errors were up to five (ten) times larger, which could be 

due to the different sampling choices (we used an expansion factor that was twice as 494 

large) and/or different surrogate model architectures. 

A surrogate contact modeling toolbox (SCMT) for the creation of surrogate 496 

contact models was recently presented and made freely available by Eskinazi and Fregly 

[23]. This toolbox was tested for the replacement of an EF contact model of both TF and 498 

PF joints in a TKR model. In this study, we developed our own surrogate model creation 

process, as the reference contact model of TKR was already available, as part of a 500 

previously published MS model validated against knee forces and kinematics [3]. 

Furthermore, the previously published toolbox could not easily connect to our modeling 502 

environment, which let us pursue the development of a dedicated surrogate model 

creation process. 504 

Our surrogate modeling approach introduced some novel aspects, as compared 

to previous studies, which are worth discussing. First, an advantage of the used FDK 506 

approach is that it eliminates the sensitivity of predicted muscle, ligament, and joint 

contact forces to errors in the location of a fixed knee flexion-extension axis when such 508 

is assumed in the applied knee model. When a fixed knee flexion-extension axis is used, 

typically only muscle forces are assumed to contribute to the net joint moment about 510 

the fixed axis, whereas the contribution from contact and ligament forces are neglected. 

Using FDK, the joint DOFs are left free to equilibrate under the compound action of 512 
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muscle, ligaments and contact forces (in a quasi-static fashion) and no assumptions are 

required about the DOFs to which contact (and ligament) forces do not, and do, 514 

contribute. This methodology relieves very much the efforts when modeling complex 

non-conforming joints, such as the knee [2]. Second, pre-transforming the sampling 516 

variables using PCA in Domain 2 and Domain 3 likely made our sampling scheme more 

efficient, as the resulting sample points could be more densely distributed close to the 518 

data points from the reference curves. This is due to the PCA being able to decouple the 

original variables, thus allowing sampling along the principal directions of the reference 520 

data points. Third, although an explicit comparison was not performed in this study, 

choosing multiple-output instead of single-output ANNs may have benefitted the final 522 

accuracy, as the covariance existing between the output loads was taken into account 

during the fitting process, whereas single-output ANNs would fit each of the output 524 

variables independently from the others. However, this should be investigated in a 

future study. Fourth, using Bayesian regularization as part of the ANN training algorithm 526 

helped preventing data over-fitting and producing ANNs with good generalization 

qualities. Using a training algorithm that does not intrinsically over-fit the data has also 528 

the practical advantage of not requiring a constant monitoring of the training state 

and/or an additional dataset on which to perform validation. 530 

We should note that our surrogate model creation process is not limited 

uniquely to the contact model presented in this study, but can be easily extended to 532 

virtually any other FE or EF contact models, provided that the assumptions of elastic and 

friction-less contact are met. In that respect, the surrogate model could provide a fast 534 
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and valid alternative to contact models which cannot directly interface to the modeling 

system of use. Furthermore, the surrogate model resulting from our creation process 536 

can be exploited in virtually any simulation software capable of integrating an external 

DLL module. This represents a very viable way to describe complex structural models, 538 

without actually simulating them. 

The time required to generate the sample points amounted to almost 5 days of 540 

continuous computation on all four cores of an Intel® Core™ i5-4570 quad-core CPU 

equipped with 16 gigabytes of RAM. About 60 additional hours were necessary to train 542 

the ANNs. The total surrogate model generation time was considerable, however, both 

the sampling process and the training of the neural networks could be massively 544 

parallelized and executed on multiple processing units, or machines with many cores. 

This approach would easily bring the generation time to more manageable levels. It 546 

should also be noted that the generation time for a given implant design is paid only 

once upfront, but the resulting surrogate model can be reused for the evaluations of 548 

many conditions and multiple patients. Another way to reduce the generation time 

would be to reduce the number of training points, but this aspect requires further 550 

investigation. 

The sample generation process relied heavily on reference curves and/or 552 

variables bounds extracted from existing reference simulations performed with the 

reference model. This approach may work well when such data are already available – 554 

or if they can easily be obtained from experimental measurements – however, this is 

seldom the case. Perhaps the most challenging case is that of a patient-specific knee 556 
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model, generated ex novo from medical images of the patient. In such a case, although 

some joint kinematics may be extracted using in vivo imaging techniques, no reference 558 

load curves are available and a different sampling strategy should be devised. The 

definition of bounds for the sample points could also be based on the geometrical 560 

conformity between the articulating surfaces, and bounds on joint loads in sensitive 

directions could be obtained from the literature. However, these approaches require 562 

further investigation. 

The activities simulated in this study were also incidentally used during the 564 

sampling stage to provide reference curves. If activities were to be simulated which 

involved joint loads and/or kinematics very different from the ones in the training 566 

dataset, it is almost impossible to know whether the surrogate model predictions would 

still be sufficiently accurate. One possible solution could be to build accuracy maps over 568 

various regions of the design space and, subsequently, to relate the distance of new 

query points from the dataset of training points prior to the surrogate model evaluation 570 

to estimate the expected accuracy for the new points. However, mapping the accuracy 

over a multi-dimensional domain is not trivial. 572 

We introduced a discontinuity in the surrogate model, which prevented negative 

forces in the TF distraction (y) direction, and avoided the estimation of TF loads in non-574 

sensitive directions when the compressive force was lower than or equal to zero. To find 

the configuration of static equilibrium in the TF joint, the FDK method solves a set of 576 

nonlinear equations using gradient information. Therefore, our choice made the 

gradient of the system of equations potentially discontinuous, whereas a smooth 578 
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transition to zero would be a better choice. However, the reference contact model 

contained the same discontinuity and the surrogate contact model did not exacerbate 580 

this problem. 

Friction between the articular implant surfaces was neglected and the contact 582 

was assumed to be linear elastic based on penetration volume. The friction-less 

assumption may not allow proper study of polyethylene wear of the tibial insert under 584 

dynamic conditions. However, for all other cases of interest (e.g., parametric variation, 

knee kinematic studies and ligament force predictions), this assumption does not 586 

represent a major limitation. With regards to the linear elastic assumption, previous 

studies have failed to demonstrate the superiority of non-linear contact models over 588 

linear models to describe the load response of the polyethylene component [24]. 

However, the surrogate contact model creation process should work just as well for 590 

non-linear elastic contact models, as long as the contact forces and moments can be 

represented as functions of only model pose. 592 

In conclusion, we successfully applied surrogate modeling techniques based on 

ANNs to reduce the computation time of knee joint loads and kinematics in MS models. 594 

We evaluated its accuracy and demonstrated its performance in the simulation of four 

ADLs. Accuracy was comparable to that of the reference model, while simulations were 596 

performed three times as fast, with a full gait cycle analyzed in only 4.5 min. We believe 

that these performances will promote the applicability of MS models in extensive 598 

parametric studies and/or planning of orthopedic interventions through optimization. 

 600 
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Table Caption List 
 684 

Table 1 Sampling domains, number of samples and approximate sampling time 

for each domain 

Table 2 RMS (maximum) prediction errors of medial (Med) and lateral (Lat) TF 

loads for the testing dataset in each sampling domain. 

Table 3 RMS (maximum) prediction errors of medial (Med) and lateral (Lat) TF 

loads for normal gait, right-turn, rising-from-a-chair, and squat. 

Table 4 RMS (maximum) prediction errors of knee kinematic parameters for 

normal gait, right-turn, rising-from-a-chair, and squat. 

Table 5 Simulation times and speed improvement for surrogate vs. reference 

contact model for normal gait, right-turn, rising-from-a-chair, and squat. 
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Figure Captions List 686 
 

Fig. 1 Contact model of TKR. The TF pose is defined by the relative translation 

and rotation between the femoral component frame (blue) and the tibial 

component frame (red). Tibiofemoral translations are expressed in the 

tibial component frame of reference, and represent anterior femur 

translation (x), joint distraction (y), and medial femur translation (z). 

Tibiofemoral rotations are expressed in the femoral component frame of 

reference with Cardan angles using the z-y-x sequence of rotations, 

where the first rotation represent knee extension, the second, tibial 

external rotation, and the third, knee abduction. Rigid surface contact 

based on pressure-overclosure is defined between medial and lateral 

side of tibial component and femoral component. To obtain samples for 

the surrogate model, this contact model is evaluated using repeated 

static analyses. 

Fig. 2 Diagram of the 2-stage feedforward artificial neural network (ANN). The 

stage I network (left) learned the relations between TF loads in sensitive 

directions (Fy
Med, Tx

Med, Fy
Lat, Tx

Lat) and the TF pose parameters; in stage II 

(right) the remaining TF loads of medial (lateral) side are obtained as 

functions of the TF pose and the medial (lateral) TF loads from stage I. 

HL: hidden layers, W: network weights, b: network biases. 

Fig. 3 Medial (top) and lateral (bottom) TF compressive forces during normal 
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gait, right-turn, rising-from-a-chair, squat simulation. Reference 

measured force (eTibia, shaded), predictions using surrogate (solid) and 

reference (dotted) contact model. 

Fig. 4 Anterior tibial translation, joint distraction, lateral tibial translation, knee 

flexion, knee adduction and tibial external rotation predicted using the 

reference contact model (solid line) and the surrogate contact model 

(dotted line) during normal gait, right-turn, rising-from-a-chair, and squat 

simulation. 

688 
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Table 1 
Domain Description Number of 

training 
samples 

Number of 
testing samples 

Approximate 
sampling 
time 
core time 
(effective 
time)a 

1 Time-varying local 
envelopes of reference 
simulations expanded 
by 1 SD 

18 060 - 102 (25) 
hours 

2 Global envelopes of 
reference simulations 
expanded by 50 % 

27 253 3 416 226 (57) 
hours 

3 Single-sided contact 
(lift-off cases) 

10 000 1 765 47 (12) hours 

4 Contact boundary 
(swing phase) 

9 990 1 755 70 (17) hours 

5 Out-of-contact, 
proximity cases (y up to 
2 mm, in four steps) 

67 760 11 958 11 (3) hours 

6 Out-of-contact, far 
away cases (y up to 10 
cm, coarse) 

2 000 353 15 (4) min 

 Total 134 973 19 247 456 (114) 
hours 

aSampling time referred to a single CPU core. Considering a total of 4 cores per CPU, the 690 
effective sampling time is reduced by four. 
  692 
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Table 2 
Do
ma
in 

Side Fx (N) Fy (N) Fz (N) Mx (Nm) My (Nm) Mz (Nm) 

        
2 Med 3.8 (58)  18 (462) 3.2 (32) 0.44 (9.7) 0.09 (1.4) 0.21 (6.5) 

Lat 12 (379) 69 (1863) 9.3 (315) 1.8 (50) 0.32 (11) 1.1 (41) 
        
3 Med 3.9 (32) 20 (113) 6.8 (81) 0.46 (2.9) 0.14 (1.5) 0.21 (1.7) 

Lat 5.2 (48) 29 (191) 8.0 (126) 0.71 (5.3) 0.19 (2.3) 0.40 (6.7) 
        
4 Med 2.1 (23) 9.9 (108) 3.9 (41) 0.26 (2.3) 0.07 (0.58) 0.12 (2.3) 

Lat 2.3 (14) 13 (77) 3.3 (49) 0.35 (2.3) 0.07 (0.51) 0.14 (1.1) 
        
5 Med 0.13 (3.2) 1.0 (16) 0.44 (8.0) 0.03 (0.57) 0.01 (0.11) 0.01 (0.16) 

Lat 0.15 (5.3) 1.4 (25) 0.20 (5.4) 0.04 (0.42) 0.00 (0.21) 0.01 (0.15) 
        
6 Med 8.4 (140) 17 (273) 3.2 (41) 0.72 (12) 0.13 (2.0) 0.02 (0.3) 

Lat 44 (602) 76 (1192) 51 (727) 1.9 (28) 1.8 (21) 0.77 (11) 
 694 
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Table 3 696 
Trial Side Fx (N) Fy (N) Fz (N) Mx (Nm) My (Nm) Mz (Nm) 
        
Normal 
gait 

Med 0.50 (2.2) 4.2 (14) 1.1 (11) 0.17 (1.4) 0.02 
(0.09) 

0.04 
(0.17) 

 Lat 0.50 (2.0) 4.4 (17) 0.43 (2.7) 0.12 
(0.54) 

0.02 
(0.08) 

0.01 
(0.05) 

Right-
turn 

Med 0.49 (3.0) 4.3 (24) 2.2 (11) 0.14 
(0.65) 

0.04 
(0.18) 

0.04 
(0.16) 

 Lat 0.95 (4.8) 9.9 (47) 2.2 (21) 0.26 (1.2) 0.03 
(0.17) 

0.10 (0.6) 

Rising-
from-a-
chair 

Med 0.85 (2.7) 5.6 (13) 0.51 (1.5) 0.11 
(0.28) 

0.01 
(0.04) 

0.06 
(0.14) 

 Lat 0.57 (2.0) 5.7 (13) 0.66 (2.1) 0.11 
(0.30) 

0.02 
(0.07) 

0.06 
(0.16) 

Squat Med 0.34 (1.1) 4.2 (10) 0.51 (2.0) 0.10 
(0.23) 

0.01 
(0.02) 

0.06 
(0.15) 

 Lat 0.29 
(0.96) 

3.7 (11) 0.55 (2.2) 0.10 
(0.23) 

0.01 
(0.04) 

0.04 
(0.13) 
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Table 4 
Trial Anterior 

Tibial 
Translation 
(mm) 

Joint 
Distraction 
(mm) 

Lateral 
Tibial 
Translation 
(mm) 

Knee 
Flexion 
(deg) 

Knee 
Adduction 
(deg) 

Tibial 
External 
Rotation 
(deg) 

Normal 
gait 

0.06 (0.34) 0.01 (0.06) 0.07 (0.15) 0.00 (0.00) 0.01 (0.06) 0.04 (0.30) 

Right-
turn 

0.12 (0.90) 0.10 (0.62) 0.13 (0.84) 0.09 (0.43) 0.14 (0.72) 0.17 (1.27) 

Rising-
from-a-
chair 

0.03 (0.16) 0.01 (0.03) 0.01 (0.08) 0.01 (0.02) 0.01 (0.06) 0.03 (0.14) 

Squat 0.02 (0.10) 0.00 (0.01) 0.00 (0.03) 0.00 (0.02) 0.01 (0.02) 0.03 (0.10) 
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Table 5 702 
Trial Number 

of time-
frames 

Trial 
duration (s) 

FDK simulation time Speed 
improvement 

   Reference 
model (min) 

Surrogate 
model (min) 

 

Normal gait 146 1.2 13.6 4.5 3.0 
Right-turn 187 1.5 22.7 7.3 3.1 
Rising-from-
a-chair 

1066 8.8 70.3 27.2 2.6 

Squat 1074 8.9 96.4 38.5 2.5 
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Figure 1 
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Figure 2 708 
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Figure 3 
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Figure 4 714 

 


