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ABSTRACT 

 28 

Knowledge of the muscle, ligament and joint forces is important when planning orthopedic surgeries. Since 

these quantities cannot be measured in vivo under normal circumstances, the best alternative is to 30 

1 Corresponding author, msa@m-tech.aau.dk. 
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estimate them using musculoskeletal models. These models typically assume idealized joints, which are 

sufficient for general investigations but insufficient if the joint in focus is far from an idealized joint. The 32 

purpose of this study was to provide the mathematical details of a novel musculoskeletal modelling 

approach, called Force-dependent Kinematics (FDK), capable of simultaneously computing muscle, 34 

ligament and joint forces as well as internal joint displacements governed by contact surfaces and 

ligament structures.  36 

The method was implemented into the AnyBody Modeling System and used to develop a subject-specific 

mandible model, which was compared to a point-on-plane (POP) model and validated against joint 38 

kinematics measured with a custom-built brace during unloaded emulated chewing, open and close and 

protrusion. Generally, both joint models estimated the joint kinematics well with the POP model 40 

performing slightly better (Root-Mean-Square Difference (RMSD) of less than 0.75 mm for the POP model 

and 1.7 mm for the FDK model). However, substantial differences were observed when comparing the 42 

estimated joint forces (RMSD up to 24.7 N), demonstrating the dependency on the joint model. Although 

the presented mandible model still contains room for improvements, this study shows the capabilities of 44 

the FDK methodology for creating joint models that take the geometry and joint elasticity into account.   

 46 

 

INTRODUCTION 

Musculoskeletal models are frequently used to gain insight into the muscle, joint 

and ligament forces that are otherwise difficult or impossible to measure in vivo. 

Research into such models has increased over the past decades and they have been 

applied in multiple areas, including orthopedics [1], ergonomics [2] and occupational 

health [3]. 
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Several musculoskeletal analysis methods exist but the most commonly applied 

are inverse dynamics [4,5], forward dynamics-based tracking methods [6], 

electromyography (EMG)-driven models [7] and dynamic optimization [8]. For a 

thorough review of computational methods, please see Erdemir et al. [9]. Common to 

these methods is the modeling of joints as idealized kinematic constraints, e.g. the 

temporamandibular joint (TMJ) as a point-on-a-plane [10] (POP), the intervertebral 

joints as spherical joints [11], the knee as a revolute [12] and the ankle and subtalar 

joints as two non-orthogonal revolute joints [12]. However, several anatomical and 

prosthetic joints are non-conforming to such an extent that the forces significantly 

influence the joint kinematics and the joint’s internal force equilibrium. Additionally, 

joints such as knee and shoulder have complicated geometries that are difficult to 

model accurately using idealized joint models. In such joints, the joint kinematics is 

governed by an interaction between the muscle actions, contact mechanics and 

ligaments. Direct measurement of these movements is also difficult with the methods 

available in most clinics because the movements are small compared to the principal 

articulations and obscured by the surrounding soft tissue [13]. 

A few studies have previously incorporated detailed joint models in 

musculoskeletal models [14-16]. Thelen et al. [14] extended Computed Muscle Control 

(CMC) [6] to co-simulate detailed musculoskeletal dynamics and knee joint mechanics. 

This method utilizes feed forward and feedback control to track measured movements 

and assumes that the joint translation accelerations are instantaneously zero. Halloran 

et al. [15] used a dynamic optimization problem to predict muscle excitations that 
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minimize a given performance criterion and included a Finite Element (FE) foot model. 

They reported computation times of over 10 days. Lei and Fregly [16] introduced a two-

level optimization approach to incorporate an elastic foundation-based contact knee 

model into a musculoskeletal model. In their formulation, the outer optimization 

searched for the muscle activations that minimized the chosen muscle recruitment 

criterion while the inner optimization searched for the femoral position such that static 

equilibrium between all applied loads, muscle and contact forces was obtained. Both 

optimization problems were solved using non-linear least-squares minimization. 

However, the frequently used muscle recruitment criteria, e.g. polynomial [4], min/max 

[5], or energy-based criteria [17], are convex optimization problems for which 

specialized, efficient and robust algorithms have been developed [18]. By handling 

muscle recruitment in the outer loop, the approach of Lei and Fregly [16] does not allow 

the use of optimization solvers tailored to these muscle recruitment criteria.  

Andersen et al. [19] introduced the Force-dependent Kinematics (FDK) method, 

which has been implemented into the AnyBody Modeling System (AMS) and 

subsequently applied by several, independent research groups to study, among others, 

knees [20], hips [21], shoulders [22] and spine [23]. The FDK methodology augments an 

inverse dynamic analysis method with the possibility of not only computing muscle and 

joint reaction forces but also joint kinematics, taking into account complex joint 

geometry and elasticity of the surrounding soft tissues. While the abstract by Andersen 

et al. [19] introduced the idea of FDK, the underlying mathematical and mechanical 

description has not yet been published. Also, the original FDK method assumed a 
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kinematically determinate description of the model movements. However, this 

approach limits the possibility of combining marker-based motion capture information 

with a detailed force-based joint description. Therefore, this paper extends our previous 

abstract [19] to provide a full description of the mathematical and mechanical 

formulation of FDK including its connection to kinematically determinate and over-

determinate motion data. Additionally, we demonstrate the capabilities of the method 

for developing a subject-specific model exemplified here by a mandible. 

MATERIALS AND METHODS 

Force-dependent Kinematics 

The idea behind FDK is to extend the output of an inverse dynamic analysis to 

include the movements in some of the degrees of freedom (DOF) in the model. Let the 

movements of these (FDK)n  DOFs be denoted as )FDK(α , and refer to them as the FDK 

DOFs. We shall assume that these FDK DOFs experience “small” movements and the 

dynamics occurring in these DOFs are negligible. We denote the residual forces in the 

FDK directions (FDK)f  and introduce as many FDK residual forces as there are FDK DOFs 

in the model. With these assumptions, an iterative scheme is wrapped around the 

inverse dynamics analysis that computes the positions in the FDK DOFs such that the 

forces acting along these DOFs are in static equilibrium for each time step in the 

simulation, which is accomplished when the FDK residual forces are zero (see Fig. 1). 

Note, however, that the full dynamics in all other DOFs are taken into account. 

5 
 



Introduction to Force-dependent Kinematics: Theory and Application to Mandible Modeling 

To describe the kinematic analysis and muscle recruitment, we adopt the 

notations and approaches presented by Andersen et al. [24] and Damsgaard et al. [25]. 

In terms of notation, we denote scalars with lower case normal letters, vectors with 

lower case bold letters and matrices with bold, upper case letters. All vectors are 

defined as column vectors. The definition and dimensionality of all variables are 

presented in the nomenclature list. 

 

Kinematic analysis 

 The first step of the iterative scheme is to compute the positions, velocities and 

accelerations of all the involved segments for a given )FDK(α  while assuming that 

0== )FDK()FDK( αα  .  

The position and orientation of the ith segment is denoted by [ ]TTT
iii prq =  where ir  

is the position of the center of mass and ip  are the Euler parameters describing its 

orientation. Additionally, the velocity of the ith segment is denoted by [ ]TT'T
iii ωrv = , 

where '
iω  is the angular velocity of the segment measured relative to its body-fixed 

reference frame. The positions and velocities of all bodies are assembled in vectors  

[ ]TTT
2

T
1 nqqqq =  and [ ]TTT

2
T
1 nvvvv = , respectively.  Please note that 

FDK DOFs, the segment positions, orientations and velocities are all functions of time 

but the arguments have been omitted in the interest of keeping the equations concise. 

The joints, the movement and the relationship between the segment coordinates and 

the FDK DOFs are described by means of constraint equations: 
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,)(

),(
)FDK()FDK( 0αqΦ

0qΦ
=−

=t
       (1) 

where ),( tqΦ  denotes the joints and drivers in the system and )()FDK( qΦ  specifies the 

FDK DOFs. The interpretation of the latter equations is that )FDK(α  controls the 

kinematic quantity observed by )()FDK( qΦ . For instance, if elements of )()FDK( qΦ  

computes a vector between two points on adjoining segments, the corresponding 

elements of )FDK(α specify the values of this vector, i.e.  )FDK()FDK( )( αqΦ =  Similarly, 

)()FDK( qΦ  can express a joint angle as a function of the segment orientations or any 

other geometrical quantity that can be expressed as a function of the segment positions 

and orientations. While )()FDK( qΦ  could theoretically be an explicit function of time 

similar to the other constraints, ),( tqΦ , we have not yet found a practical case where 

this would be beneficial. The purpose of the )()FDK( qΦ  is solely to express the 

relationship between the segment positions and orientations and the degree of 

freedoms along which it is desired to compute the movement rather than provide it as 

input. 

 

Determinate kinematic analysis 

 If there are as many independent constraint equations as there are unknown 

coordinates, i.e. a kinematically determinate set of equations, the equations can be 

solved using a numerical method, e.g. the Newton-Raphson method. Subsequently, the 

linear velocity equations: 
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,)FDK(

ˆ

ˆ

0vΦ

ΦvΦ

q

q

=

−= t
        (2) 

and acceleration equations:  

 
,)FDK()FDK(

ˆ

ˆ

γvΦ

γvΦ

q

q

=

=




        (3) 

must be solved to obtain the segment velocities and accelerations, respectively, where 

the assumptions that 0)FDK()FDK( == αα   have been applied. These equations have been 

derived by differentiation of Eq. (1) with respect to time. qΦ ˆ  is the Jacobian matrix of 

the constraint equations with respect to a virtual set of positions q̂ , that correspond to 

v (see Damsgaard et al. [25]), tΦ  is the partial derivative of the constraint equations 

with respect to time and γ  and )FDK(γ contain the position- and velocity-dependent 

terms from the differentiation of Eq. (2) with respect to time.  Note that q̂  only makes 

sense as infinitesimal values applied in differentiation but not as finite values [25].  

Additionally, note that the arguments for the derivatives of functions are omitted.  

 

Over-determinate kinematic analysis 

 Commonly, the motions of musculoskeletal models are measured using motion 

capture technologies. As described by Andersen et al. [24], this usually results in more 

measured DOFs than the model comprises and the kinematic analysis approach for 

determinate systems described above cannot be applied. To solve this, Andersen et al. 

[24] split the equations into two sets: 1) ),( tqΦ  that must always be fulfilled, referred 

to as “hard” constraints and 2) ),( tqΨ  that has to be solved “as well as possible”, 
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referred to as “soft” constraints. With this split, position analysis can be cast as an 

optimization problem [24]: 

 
( )

,)(
),(

.t.s

),(min

)FDK()FDK( 0αqΦ
0qΦ

qΨ
q

=−

=t
tG

       (4) 

where ( )),( tG qΨ  is a scalar objective function.  

Typically, a weighted least-square objective function  

 ( ) ),()(),(
2
1),( ttttG T qΨWqΨqΨ =       (5) 

is used to solve this optimization problem. The term )(tW  is a, possibly, time-varying, 

weight matrix. Subsequently, velocity and acceleration analysis must be performed. One 

approach is to solve the linear set of equations, originating from time-differentiation of 

the Karush-Kuhn-Tucker (KKT) conditions for the optimization problem in Eq. (4) [24], for 

the unknown velocities and accelerations. Although this approach leads to velocity and 

acceleration estimates within machine precision, the method has the drawback that it 

requires analytical third-order derivatives which may be difficult to obtain for advanced 

kinematic constraint equations. In this study, instead of using analytical derivatives, we 

applied a finite-difference-based approach in which the velocities and accelerations of 

the system coordinates are approximated. When the optimization problem in Eq (4) has 

been solved, it is possible to compute and subtract the residual, )(tδ , of the soft 

constraint equations such that all constraint equations are equal to zero:  

   
.)(

),(
)(),(

)FDK()FDK( 0αqΦ
0qΦ
0δqΨ

=−

=
=−

t
tt

      (6) 
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By differentiation of this set of equations with respect to time, a linear set of equations 

with unknown velocities is obtained. However, this set of equations includes the time 

derivative of the residual vector, which is not generally known analytically. To 

approximate the derivative of the residual vector, the residual of the soft constraints at 

t∆  before and after the current analysis time step was computed from which the 

velocity of the residual can be approximated with a central difference: 

 .
2

)),(()),((
approx t

tttttttt
∆

∆−∆−−∆+∆+
=

qΨqΨδ     (7) 

Hereby, the over-determinate velocity equations are written as: 

  

.)FDK(
ˆ

ˆ

approxˆ

0vΦ

0ΦvΦ
0δΨvΨ

q

q

q

=

=+

=−+

t

t


       (8) 

Since this generally leads to more equations than necessary, we computed the velocities 

that minimize the least-square error on the approximated velocity equations subject to 

the hard constraints and the constraint on the FDK DOFs: 

 
( ) ( )

.
.t.s

2
1min

)FDK(
ˆ

approxˆapproxˆ

ˆ

0vΦ

0ΦvΦ

δΨvΨδΨvΨ

q

qqv

q

=

=+

−+−+

t

t
T

t


   (9) 

With a similar approach, an optimization problem to compute the approximate 

accelerations is set up: 

( ) ( )

,
.t.s

2
1min

(FDK))FDK(
ˆ

ˆ

approx
)(

ˆapprox
)(

ˆ

0γvΦ

0γvΦ

δγvΨδγvΨ

q

q

Ψ
q

Ψ
qv

=−

=−

−−−−






T

   (10) 
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where )(Ψγ  contains the position- and velocity-dependent terms of the soft constraint 

equations differentiated twice with respect to the time and approxδ  contains the 

approximated second derivative of the residual vector. 

  

Muscle recruitment 

 With the segment positions, velocities and accelerations computed, the muscle 

recruitment problem can be set up and solved. Since there are in general more muscles 

in the model than there are DOFs and because musculoskeletal models frequently 

contain closed kinematic loops, there are not enough dynamic equilibrium equations to 

determine the muscle forces uniquely [9]. To solve this, it is common to assume that the 

forces in the system are distributed according to some optimality criterion [4,5,9]. 

Multiple muscle recruitment criteria can be used, but the discussion of the best criterion 

is beyond the scope of this manuscript and we instead refer the reader to the review by 

Erdemir et al. [9]. 

Generally, the muscle recruitment problem is formulated as an optimization problem of 

the following form [5,25]:  

 

( )

[ ]

,  

.t.s

min

(M)

(FDK)

(R)

(M)

(FDK)(R)(M)

(M)

sf0

d
f
f
f

CCC

f
f

≤≤

=
















H

     (11) 

where  ( )(M)fH  is the objective function, which is expressed as a function of the muscle 

forces, (M)f , [ ](FDK)(R)(M) CCC  is the coefficient-matrix for the unknown forces, 

11 
 



Introduction to Force-dependent Kinematics: Theory and Application to Mandible Modeling 

[ ]T(FDK)T(R)T(M)T fff ; )(Rf  are the joint reaction forces and d  contain all applied loads 

and inertia forces. The latter inequality states that the muscles can only pull and not 

generate a force larger than their instantaneous strength, s . The coefficient-matrix 

associated with the ith segment, we denote: [ ](FDK)(R)(M)
iii CCC . The coefficient-

matrix associated with the muscle forces, (M)C , is given by the partial derivative of the 

length between the origin and insertion with respect to q̂ : 

[ ](oi)T
ˆ

(oi)T
ˆ

2(oi)T
ˆ

1(M)
qqqC lll

mn= , where (oi)T
q̂l

i  is the partial derivative of the origin to 

insertion length of the ith muscle with respect to q̂  [25]. The coefficient-matrix for the 

reaction forces is given as the transpose of the partial derivative of ),( tqΦ  with respect 

to q̂  but with the columns associated with pure movement omitted [25]: T
qΦC ˆ

(R) ~= , 

where Φ~  denotes the set of constraint equations after the constraints specifying pure 

movements have been omitted. Similarly, the coefficient-matrix for the FDK residual 

forces is given as the transpose of the partial derivatives of the FDK constraint equations 

with respect to q̂ : T
ˆ

(FDK) )FDK(

qΦC = .  

We use the Newton-Euler equations re-organized to fit the form in Eq. (11), which for 

the ith segment are: 

 

[ ] ,

~

(FDK)

(R)

(M)

(FDK)(R)(M)

''''
(app)(FDK)(FDK)(R)(R)(M)(M)

iiii

iiii

i
iiii

m

d
f
f
f

CCC

ωJω
0

v
J0
0I

gfCfCfC i

=
























−








−=++ 

  (12) 
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where im  is the segment mass, '
iJ  is the inertia tensor referring to the body-fixed 

frame, (app)
ig  contain the applied loads and:  

  .~ ''''
(app)









−








−=

iii
i

i

i
ii

m
ωJω

0
v

J0
0I

gd       (13) 

Hereby, the dynamic equilibrium equations on the required form for Eq. (11) can be 

assembled for all the segments: 

  

[ ] .
(FDK)

(R)

(M)

(FDK)(R)(M)

2

1

(FDK)

(R)

(M)

(FDK)(R)(M)

(FDK)
2

(R)
2

(M)
2

(FDK)
1

(R)
1

(M)
1

d
f
f
f

CCC

d

d
d

f
f
f

CCC

CCC
CCC

=


































=




































nnnn



     (14) 

With the above formulations of kinematic analysis and the muscle recruitment problem, 

it is possible to compute all muscle, joint and FDK residual forces for a given )FDK(α . 

Hereby, it is possible to systematically search for )FDK(α  such that )FDK(f  is zero and in 

which case static equilibrium along the FDK DOFs is obtained.  Numerically, we apply a 

Newton-Raphson-based approach augmented with a golden section line search to 

determine )FDK(α  such that 0αf =)( )FDK()FDK( . This approach is illustrated in Fig 1. 

 

Mandible model  

 To test the method, a subject-specific mandible model was developed. The 

mandible offers a unique opportunity of noninvasively obtaining in vivo measurements 
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of the bone movements by attaching a measurement device to the teeth. Therefore, it is 

an attractive example for this study. 

 

Experimental setup 

 A cone beam CT scan (NewTom 5G, QR Verona, Italy) of the skull and mandible 

bones was obtained for one male subject (age 40, mass 70 kg) with an isotropic voxel 

dimension of 0.3 mm. During the scanning, the teeth were not in an intercuspal 

position, but separated by two dental cotton rolls, which facilitated the subsequent 

segmentation. The skull and mandible bones as well as the skin surface were segmented 

using a visualization software package (Mimics 14.12, Materialise, Leuven, Belgium).  

 To accurately measure the movement of the mandible relative to the skull, a 

custom brace was developed (Fig. 2). First, a dental impression of the subject's teeth 

was obtained by an experienced dentist, after which a dental cast of the subject was 

created. Second, a 1 mm thick Poly(methyl methacrylate) (PMMA) plastic brace was 

created to fit over the cast on both the upper and lower part. After hardening the plastic 

brace, 1.2 mm metal wires were shaped and glued to the outside of the brace, which 

enabled attaching a 50 x 50 x 6 mm plate made out of Obomodolan 1000 (OBO-Werke 

GmbH & Co. KG, Stadthagen, Germany). This was accomplished by drilling 1.2 mm holes, 

in the foam into which the metal wires were inserted together with glue to obtain 

fixation. At each corner of the Obomodolan plate, 4 mm light weight half-sphere retro-

reflective markers (Qualisys, Gothenburg, Sweden) were attached. The total mass of 

14 
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each of the two braces including the plastic, metal wires, the Obomodolan plates and 

markers was approximately 15 g, which we considered negligible in the models.  

The project was performed according to the regulations of the local ethical committee. 

 

Motion capture data  

 To estimate the mandible movements under various tasks, a motion capture 

experiment was conducted, where the subject wore the custom brace. All 

measurements were performed with the subject seated. 

 Nine 7-mm light weight, retro-reflective markers were attached to the subject 

(see Fig. 2) and their trajectories were tracked using a marker-based motion capture 

system, consisting of eight infrared high-speed cameras (Oqus 300 series), sampling at 

100 Hz, combined with Qualisys Track Manager v. 2.9 (Qualisys, Gothenburg, Sweden). 

The marker placed on the nose as well as the two markers placed on the medial and 

lateral sides of the chin where, however, later excluded from the analysis as it turned 

out to be difficult to define their location on the segmented skin of the CT scan. 

First, a reference trial was collected where the subject occluded his mouth as much as 

possible. Subsequently, three dynamic tasks were recorded: 

• Task 1: Chewing movement but without producing a bite force, with a frequency 

of approximately 1 Hz. 

• Task 2: A cyclic protrusion movement from intercuspal position to sub-maximal 

protrusion corresponding to the incisor-to-incisor position with a frequency of 

approximately 0.5 Hz. 
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• Task 3: A cycling opening/closing of the mouth to a half-open position. 

•  

For each task, the subject was instructed to repeat the movements for 10 seconds 

followed by a small pause. This process was repeated twice for each movement. 

Subsequently, the first five complete cycles of each movement were extracted for 

further analysis.  

 

Laser scan of the brace geometries 

 The brace was laser scanned using a NextEngine Ultra HD 3D scanner 

(NextEngine, Santa Monica, California) to create a geometrical model. A hole was drilled 

in the middle of the most posterior edge of each of the casts such that they could be 

secured to the scanner. Subsequently, the upper and lower parts of the brace were 

attached to the respective cast and a 360° scan obtained of each part separately. 

  

Musculoskeletal model 

 The mandible model was developed in the AMS v. 6.0.5 based on the acquired 

CT scan. A Frankfurt horizontal plane was defined based on the left and right porion and 

the left orbital. From this, an anatomical reference frame was defined such that the 

origin was located midway between the most superior point of each condyle of the 

mandible. The y-axis was constructed by projecting the line connecting the most 

superior point of the condyles onto the Frankfurt horizontal plane with the axis pointing 

from right to left. The x-axis was constructed as the line orthogonal to the y-axis 
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pointing towards the left orbital. The z-axis was computed as the cross product between 

the x- and y- axis. This reference frame was defined for both the skull and mandible such 

that the two reference frames were fully aligned in the relative pose of the skull and 

mandible of the CT scan. The reference frame is depicted in Fig. 2. 

 To determine the location of the custom-built brace relative to the segmented 

skull and mandible of the CT scans, the reference trial was used. The locations of the 

skin markers were identified on the skin surface of the CT scan by the same investigator 

who placed them during the motion capture session. Similarly, the locations of the 

markers on the brace parts were identified in the laser scan reference frame. 

Subsequently, a least-squares fit was set up, where the skin markers of the CT scan 

tracked the measured skin markers and the four markers on each part of the brace 

tracked the corresponding four markers for the first frame of the reference trial. From 

this, the relative position and orientation of the laser scan reference frame of each 

brace part relative to the respective bone reference frame was computed and used to 

define the four brace markers in the skull and mandible reference frames, respectively 

(Fig. 2). In all subsequent dynamic trials, the skin markers were not used in the analysis. 

 Since muscle and ligament insertions were not visible in the CT scan, these were 

approximated from the bone geometries using the model of de Zee et al. [10] as 

reference. The model was equipped with 24 Hill-type muscle actuators each consisting 

of a contractile, serial and parallel elastic element. The mass, inertia and muscle 

mechanical properties were adapted from de Zee et al. [10], which is based on the peak 

isometric force and optimum fiber lengths reported by Koolstra and Van Eijden [26].  
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 To model the temporomandibular joints (TMJs), two models of different 

complexity were developed.  

 

Point-on-plane TMJ model 

 In the first model, a POP-constrained TMJ model was constructed similarly to de 

Zee et al. [10]. For each condyle, a single kinematic constraint was introduced to ensure 

that the most superior point of the condyle was constrained to a plane angled 30° 

downwards and canted 5° medially relative to the Frankfurt horizontal plane. Since the 

TMJ is a loose joint, the reaction forces of the joint were constructed such that only 

compression was allowed. Specifically, this was accomplished by introducing a strong 

contact element with a constant isometric strength of 20 kN that can only push and its 

force computed as part of the muscle recruitment (See Eq. (11)). The high strength of 

this contact element ensures that it behaves like a reaction force (having no cost) in the 

muscle recruitment optimization. Compared to the isometric strength of the muscles, 

the strength of the contact element is almost two orders of magnitude larger and it 

remains activated less than 0.5 % in the simulations, which should make it insignificant 

in the objective function. Additionally, one constraint equation was introduced that 

prevented movement along the medial/lateral axis of the skull anatomical reference 

frame. The model is illustrated in Figure 3. 

 Kinematic analysis was performed by minimizing the least-squares difference 

between the eight markers on the brace and the corresponding marker trajectory in the 

laboratory reference frame using the method of Andersen et al. [24] while enforcing the 
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abovementioned constraint equations. Subsequently, muscle recruitment was 

performed to compute the muscle and joint reaction forces, including the unilateral 

reaction forces of the TMJ, using a polynomial recruitment criterion with the muscle 

activities cubed [25]. For later comparison with the FDK model, the medial/lateral 

reaction force was split into two, such that, when it was pointing to the right, it was 

referred to the right TMJ and vice-versa to the left TMJ. 

 

FDK TMJ model 

 In the second model, the TMJ was modeled with three FDK DOFs. These were 

defined as the movements in the normal directions of the rotated planes used to define 

the POP constraints and the medial/lateral movement. To restrict and stabilize the now 

free motions, models of the contacting surfaces of the TMJ and the temporomandibular 

ligaments were introduced.  

 Each temporomandibular ligament was modeled as three nonlinear line 

elements, which include a slack region, a polynomial toe region at low strain and a linear 

region for high strain [27]: 
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where lf  is the tensile force in the ligament, k  is the ligament stiffness (in Newton per 

unit strain), ε  is the strain and lε  is the linear strain limit, which was set to 0.03 [28]. 

The strain was computed based on the ligament length and slack length. Since the 
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subject-specific stiffness and slack length values of the ligaments were not known for 

the subject, a parameter study was performed as will be explained later. 

 The contacts between the skull and mandible at the TMJ were modeled with an 

elastic foundation contact model using the triangulated surface models of the bone 

geometries provided as STL files. To improve computation efficiency, the STL files only 

included the areas around the TMJs. To account for the missing soft tissue within the 

joints in the CT scans, the condyle surfaces were offset by 1 mm. The contact model 

computed the forces based on an approximation of the overlapping volume between 

the two STL surfaces  and a linear contact law. This approximation uses the penetration 

depth, id , of the ith vertex of one triangle-mesh into the closest point on the opponent 

surface. The  volume, iv , of the ith triangular prism of height id  and cross-sectional 

area, ia  , was computed as iii dav = . The magnitude of the contact force of the ith 

element was computed by assuming a linear relationship between the penetration 

volume and the force magnitude, ii pvf = , with a so-called pressure modulus, p , as the 

coefficient. The pressure modulus was set to 10 GNm-3.  In this study, the pressure 

modulus is a non-physical quantity estimated to ensure that the penetration into the 

contact surfaces remains small and on the same order of magnitude as the kinematic 

tolerance. 

With eight measured markers on the brace, a kinematically over-determinate system is 

obtained and the FDK analysis approach with over-determinate kinematics was 

therefore employed to compute the muscle, ligament and contact forces. Similar to the 
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POP model, a polynomial recruitment criterion with the muscle activities cubed was 

applied. 

 

Parameter study 

 Since the specific TMJ ligament stiffness and slack length properties are not 

available for the test subject, a parameter study was conducted. Similarly to Chen et al. 

[29], the stiffness of the TMJ was initially assumed to be 272.4 Nm-1  and equally divided 

between each of the three TMJ ligament elements on the left and right side. As this 

value is uncertain, a parameter study was conducted in which the ligament stiffness was 

systematically set to 136.2 Nm-1, 272.4 Nm-1 and 544.8 Nm-1. The strain in the ligament 

was described by introducing a reference length, rl , and a reference strain, rε : 
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where 0l  is the slack length. The length between origin and insertion of the ligament 

branches in the CT scan position was used as the ligament reference lengths. 

 For each of the three stiffness values, the reference strain was systematically 

varied from  -0.04 to 0.04 in steps of 0.02 for all branches of the ligaments. This led to a 

total of 15 combinations of stiffness and reference strains. 
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Model evaluation 

 Differences between measured and estimated secondary joint kinematics and 

between FDK-predicted and POP-predicted TMJ reaction forces were quantified using 

Root-Mean-Square-Deviation (RMSD), squared Pearson's correlation coefficient (r2)  and 

the Sprague and Geer's metrics of differences in magnitude (M) and phase (P) [30]. For 

these comparisons, we used the FDK model with TMJ ligament stiffness of 272.4 Nm-1 

and a reference strain of 0.0. 

 

RESULTS 

 The results for the predicted and measured TMJ kinematics and forces are 

depicted in Figs. 5-7 and quantified in Tables 2 and 3.  

 The POP model generally predicted the AP and SI kinematics on both sides better 

than the FDK model with r2 values between 0.98 and 1.00 on average and an RMSD of at 

most 0.57 mm. This excellent prediction of the kinematics was also observed in the 

magnitude error, which was at most 8 % on average. However, although the RMSD in 

the ML directions were generally below 0.75 mm, the r2 was generally low. This is likely 

caused by the model, which does not allow ML movement, and the low range-of-motion 

of this DOF that leads to a low signal-to-noise ratio. 

The FDK model generally produced good estimates for the kinematics for the AP and SI 

DOFs with the exception of the right SI for the chewing movement, which had a lower r2.  

Although the RMSD was slightly higher for the FDK model compared to the POP model 
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for the ML direction, the r2 was generally higher, which indicates that the curve shapes 

are better captured by the FDK model. 

 While the TMJ kinematics generally compared well between the two TMJ model 

types and the measured kinematics, the estimated TMJ reaction forces showed 

substantial differences. For the SI direction, the POP model demonstrated a lower force 

than the FDK model for all movements as observed by the negative magnitude 

differences in Table 2. The smallest difference of -0.20 in the SI force magnitude error 

was observed for the right TMJ during the chewing movement and the highest during 

the protrusion movement of -0.51. A force difference of more than 100% was found in 

the AP direction of the right TMJ during the open-close movement. 

 The results of the parameter study on the ligament properties demonstrated 

that the associated variation of the results is on the same order of magnitude as the five 

repetitions of the trials and must be considered less sensitive parameters in this model. 

 

DISCUSSION 

 The first aim of this study was to provide the theoretical foundation of the FDK 

methodology and extend the original method with the capability of handling over-

determinate kinematic information. To this end, we developed a general analysis 

framework to compute muscle forces, joint reaction forces and secondary joint 

kinematics that can be applied to any musculoskeletal model with any desired joint 

model as long as the bones can be considered rigid and the forces occurring within the 

joint can be described in terms of the position, velocity and acceleration coordinates.  
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The second aim was to apply the extended FDK method to the analysis of a subject-

specific mandible model to estimate TMJ kinematics and reaction forces. The predicted 

secondary joint kinematics were compared to measured kinematics obtained with a 

custom-built brace and the kinematics obtained with a POP TMJ model. Finally, we 

compared the estimated TMJ forces between the two models. We found a good 

agreement between the secondary joint kinematics computed with FDK and the 

measured joint kinematics in terms of RMSD. For this particular subject, the POP model 

produced better estimates of the TMJ kinematics than the FDK model. However, both 

models showed only small error magnitudes.  

 In terms of the estimated TMJ reaction forces, substantial differences were 

observed between the two models but as direct measurements of the reaction forces 

are not available, it is not possible to conclude which of the two predictions is more 

accurate. For the POP model, the orientation of the reaction force is prescribed by the 

orientation of the plane except in the ML direction which is split between the two 

condyles depending on the sign of the ML force. Since the orientation of the plane is an 

input to the model, the resultant force depends on the accuracy of the orientation of 

the plane and, not least, on how accurately the assumption of a plane represents the 

underlying geometry. On the contrary, with the FDK approach, the joint can be modeled 

directly based on the subject-specific information that can be acquired from medical 

images and does not require the kinematics and force-directions to be prescribed. This 

has several advantages when applying this type of model to the analysis of pathological 

cases or the development of joint replacements, where the resulting kinematics may 

24 
 



Introduction to Force-dependent Kinematics: Theory and Application to Mandible Modeling 

not be known a priori. However, for the example model used in this study, the results 

indicate that using only the bone geometry with a 1 mm offset is insufficient to fully 

capture the detailed mechanics of the TMJ where especially the movements of the 

articular disc has been omitted in the model. A natural next step with the FDK TMJ 

model would be to include a more detailed model of the articular disc, TMJ ligament 

and capsule. Especially the poor estimation results for the SI kinematics of the right TMJ 

during the chewing movement indicates that the FDK TMJ model requires 

improvements of the TMJ representation. Since the movement in this direction is 

primarily controlled by the contact between the condyle and the mandibular fossa, this 

increased error compared to other DOFs suggests that a better model of the articular 

disc would lead to improvement. Such an articular disc could be introduced as a 

separate body and its movements controlled with FDK DOFs. 

 Although it is generally difficult to compare to previous simulation studies due to 

differences in modeling methodologies and reported outcomes, comparable studies of 

unloaded chewing and open-close movements are available. Hannam et al.  [31] 

presented simulation results for unloaded chewing and both the mandible kinematics 

and the superior/inferior forces are qualitatively comparable to our FDK model. On the 

contralateral side (right in our model), Hannam et al.  [31] reported a double hump in 

the superior/inferior force, which is also qualitatively present for the FDK model 

although the hump is larger in our simulations. The POP model showed a more 

symmetrical superior/inferior force on both sides and it does not present a double 

hump in the contralateral side. Qualitatively, the anterior/posterior and medial/lateral 
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force of the model of Hannam et al.  [31] shows the same tendencies in terms of timing 

as the POP model. This is likely caused by similarities in the models although the model 

of Hannam et al. has taken the s-shape of the TMJ into account. Differences in the 

predictions of the model of Hannam et al. and the POP model on the one side and the 

predictions of the FDK model on the other side are seen particularly in the 

medial/lateral direction. This is likely because the FDK model takes into account the 

curvature of the TMJ in this direction. During a simulated open and close cycle, Tuijt [32] 

reported larger forces in the TMJ during the opening phase compared to the closing 

phase. However, we did not find such a clear pattern with our models. Over the five 

repeated trials, the left TMJ forces generally showed a pattern of the force being larger 

during the closing phase compared to the opening phase except for a couple of the trials 

where the forces were similar in the two phases for both model types. For the right TMJ 

forces, both models estimated almost similar forces during opening and closing except 

in a few trials where the opening force was larger than the closing force. There were, 

however, large differences in the forces between the different repetitions in the trials, 

which is also indicated by the large variations in the forces seen in Fig. 6. The reason for 

these differences in predicted forces is unknown but could be related to differences in 

the simulated subject or the modeling approach and comparison of the two simulation 

techniques on the same experimental data would be required to deduce the cause of 

the differences.  

 In recent years, there has been an increased focus on the development of 

methods that allow detailed joint models. Largely, this has been caused by the Grand 
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Challenge Competition to Predict In Vivo Knee Loads [33] and focus on the knee joint. 

Compared to other recently developed simulation methods that can include detailed 

joint descriptions such as Thelen et al. [14] and Guess et al. [34], the FDK approach 

offers some advantages. Both the methods of Thelen et al. [14] and Guess et al. [34] 

contain non-physiological controller parameters that must be chosen whereas the FDK 

approach as such does not contain such parameters. These controllers introduce non-

physiological dynamics into the predictions and their impact depends on manually 

tuned parameters. Although the pressure modulus in the mandible was chosen as a 

non-physiological parameter, its impact on the simulations is likely minor due to the 

small penetrations obtained. The parameter could be estimated based on material 

properties, but this would likely lead to stiff contact models that are potentially difficult 

to solve numerically. Theoretically, there is no limitation to how the contact forces and 

models of the soft tissues can be defined. In this particular study of the mandible, we 

applied elastic foundation theory to compute the contact force based on STL files. 

However, the contact force could also have been described using Discrete-element 

Analysis or even Finite-element analysis. The considerations of which approach to apply 

are the associated computational cost, the required accuracy of the solutions to the 

various nonlinear equations and the desired output variables. In our case, the 

motivation for introducing a contact force description and a nonlinear description of the 

ligaments was to improve the simulated movements in non-conforming joints as these 

affect the moment arms of the muscles and external forces, which subsequently affect 

the predicted forces. The aim was not to accurately predict the contact pressures as this 
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can be accomplished more accurately in a detailed joint model specifically setup for this 

purpose and with the forces estimated by the musculoskeletal model as boundary 

conditions. Therefore, we opted to apply a non-physiological parameter for the pressure 

modulus in the TMJ model as this resulted in penetrations of the surfaces comparable to 

the applied kinematic tolerance applied when solving the nonlinear least-square 

optimization problem in Eq. (4). To compute the movements of the FDK DOFs that 

resulted in the FDK residual forces to be smaller than a specified tolerance, we applied a 

nonlinear equation solver based on a Newton-Raphson scheme augmented with a 

golden section line search. As part of this process, we approximated the Jacobian matrix 

of the FDK residual forces with respect to the FDK DOFs using a central finite difference 

method. This was done to ease the implementation of the FDK solution scheme but at 

the expense of increased computation time compared to an implementation with an 

analytical Jacobian. Despite this, the mandible model simulations each only took a few 

minutes to complete. In the interest of speed, accuracy and robustness, implementation 

of analytical Jacobians should be explored in the future. The main difficulties associated 

with this derivation is to determine the derivatives of the muscle recruitment, the 

nonlinear force-displacement relationships applied for the contact forces and soft 

tissues, the approximated velocity and acceleration analysis, and not least wrapping 

muscles.   

 As mentioned in the introduction, the FDK methodology has already been 

applied to several other joints of the body and, in particular, for validation studies of the 

predicted contact forces in the knee compared to those measured with an instrumented 
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prosthesis from the Grand Challenge data set [20,35], and showed good results. 

Additionally, Marra et al. [20] compared the predicted joint kinematics against single 

plane fluoroscopy during an unloaded leg swing and found a very good match between 

the model and the experiment. However, this only investigated the sagittal plane 

kinematics and not the secondary joint kinematics, as these were not measured. 

Unfortunately, no full data set exist with both full lower limb medical imaging, measured 

ground reaction forces and bi-planar fluoroscopy or bone pins for validation of the 

secondary joint kinematics although this would be highly valuable for model validation 

and should be explored in the future. As we do not have access to bi-planar fluoroscopy, 

we opted for developing a model of the mandible as its movements can be measured 

non-invasively and, hereby, provides an ideal option for direct model validation as 

shown in this study. Additionally, the mandible model has several potential applications 

such as planning of orthodontic surgery.  

 The present study contains some limitations that are worth discussing. First, the 

FDK method assumes that the dynamics occurring in the FDK DOFs are negligible. From 

our experiences with knees [20] and mandible models, this is a reasonable assumption, 

which indicates that these joints experience a significant amount of damping. This is also 

indicated by the measured and estimated TMJ kinematics depicted in Figs. 5-8, where 

the measured TMJ kinematics does not show dynamic components that were not 

estimated with the FDK model. Second, we have only validated the model predictions 

for one subject and it is, therefore, unknown whether the results obtained when 

comparing to the measured TMJ kinematics represent an outlier or not. To fully 
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understand the accuracy of the FDK TMJ model with the current level of detail, more 

subjects must be analyzed. Also, to estimate the TMJ kinematics based on the marker 

trajectories of the brace, the registration of the brace to the cone beam scan relied on 

the identification of the marker landmarks on the surface of the segmented cone beam 

scan. Unfortunately, this approach introduces a bias of unknown magnitude although 

we tried to minimize this by ensuring that it was the same examiner that placed the 

markers on the subject and model. In a future study, this bias could be reduced by 

either obtaining the cone beam scan while the subject is wearing the brace or by 

instrumenting the subject with markers that are visible in the scan. Third, no attempt 

was made to adjust the TMJ ligament properties of the subject. However, our sensitivity 

analysis of the stiffness and reference strain shows that the variation in results caused 

by these parameters has the same order of magnitude as the five repetitions of the 

trials performed by the subject and, therefore, only have a small impact on the 

predictions. Finally, a ML constraint in the POP model was introduced similar to de Zee 

et al.  [10] but, as this constraint forces the mandible to pivot around a point on the AP 

axis, it will affect the predicted kinematics in the cases where the teeth move to the left 

or right as the rotation will, in these cases, occur around the respective condyle and not 

mid-way between the condyles. This may have affected the POP model estimations 

during the chewing movements but as the FDK model does not include such a 

constraint, it will not be affected by this limitation.  

 In conclusion, we presented the mechanical and mathematical foundation of the 

novel FDK method and demonstrated how it can be used to develop a subject-specific 
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mandible model. Since the FDK approach allows detailed joint models described with 

force elements, it opens up new opportunities for modeling and studying the detailed 

mechanics of joints for which an explicit kinematic description is not easy to obtain or 

for non-conforming joints where the joint elasticity plays a significant role.  
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Figure Captions List 
 

Fig. 1 The FDK analysis framework. The block on the left illustrates the nonlinear 

equation solver based on a Newton-Raphson scheme augmented with a 

golden section line search. Throughout the execution of this solver, the 
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inverse dynamic analysis model is executed with the FDK DOFs, )FDK(α , as 

input from which the FDK residual forces, )FDK(f , are computed. In the 

figure, the kinematic analysis is illustrated by the equations solved at 

position level but the equations subsequently solved to compute the 

velocities and accelerations are not shown in the figure. These can be seen 

in Eqs. (2) and (3) in the case of determinate kinematics and Eqs. (9) and 

(10) in case of over-determinate kinematics. For a description of the 

terms, please see the method section and the nomenclature list.  

Fig. 2 (a) and (b) show the subject sitting in the reference position while wearing 

the brace and with the skin markers attached. The red circles indicate 

areas where skin markers were attached but later excluded due to 

difficulties in accurately defining their location on the surface of the CT 

scan.  (c) Shows the laser scanned brace components registered to the CT 

scan. (d) and (e) show the musculoskeletal model and the defined 

anatomical reference frame. (f) Shows the subject-specific braces 

Fig. 3 Illustration of the POP model without muscles. (a) shows a right side view 

of the model with the plane that the most superior point of the condyle 

was constrained to stay on. (b) is a zoom of the TJM with the constraint of 

the most superior point of the condyle (shown as a green dot) is restricted 

to only slide and rotate in that plane. Note that the constraint shown only 

apply in the viewing plane. The same constraint is applied on the left hand 
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side. (c) Shows a front view of the model with the planes of the left and 

right TMJs included. (d) Shows a top view of the mandible. The skull 

anatomical reference frame is indicated in black and the origin of the 

mandible anatomical reference frame is indicated as a green dot. The 

origin of the mandible anatomical frame is constrained such that it cannot 

move medial or lateral relative to the skull anatomical reference.   

 Fig 4 Illustration of the FDK model without muscles. (a) shows a right side view 

of the model and (b) a zoom of the TMJ. The three white lines illustrate 

the elements of the TMJ ligament and the small black arrows illustrate the 

contact forces for each triangle in the STL files. (c) and (d) illustrate the 

contact force of the right TMJ applied by the skull onto the mandible. Note 

that the skull and mandible were positioned with excessive penetration of 

the contacting surfaces into each other to clearly illustrate the contact 

forces.  

Fig. 5 Simulation results for the chewing task. The two top rows show a 

comparison of the TMJ kinematics measured with the brace (red) and 

predicted with the POP model (green) and the FDK model (blue). The two 

bottom rows show the estimated TMJ forces with the POP model (green) 

and FDK model (blue). The grey area shows the results of the parameter 

study. The shaded areas indicate ± 1 standard deviation. Note that the 

grey areas largely overlap with the other areas. 
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Fig. 6 Simulation results for the Open-close task. The two top rows show a 

comparison of the TMJ kinematics measured with the brace (red) and 

predicted with the POP model (green) and the FDK model (blue). The two 

bottom rows show the estimated TMJ forces with the POP model (green) 

and FDK model (blue). The grey area shows the results of the parameter 

study. The shaded areas indicate ± 1 standard deviation. Note that the 

grey areas largely overlap with the other areas. 

Fig. 7 Simulation results for the protrusion task. The two top rows show a 

comparison of the TMJ kinematics measured with the brace (red) and 

predicted with the POP model (green) and the FDK model (blue). The two 

bottom rows show the estimated TMJ forces with the POP model (green) 

and FDK model (blue). The grey area shows the results of the parameter 

study. The shaded areas indicate ± 1 standard deviation. Note that the 

grey areas largely overlap with the other areas. 
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Table Caption List 
 

Table 1 Comparison of the predicted left and right TMJ kinematics against the 

joint kinematics measured with the custom brace for the FDK TMJ model 

and the POP TMJ model. The differences are quantified using Root-

Mean-Square-Deviation (RMSD), squared Pearson's correlation 

coefficient, r2, and the Sprague and Geer's metrics of magnitude (M) and 

phase (P). 

  

Table 2 Comparison of the left and right TMJ reaction forces predicted by the 

POP model against the FDK TMJ model. The differences are quantified 

using Root-Mean-Square-Deviation (RMSD), squared Pearson's 

correlation coefficient, r2, and the Sprague and Geer's metrics of 

magnitude (M) and phase (P). 
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Fig 1 
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Fig 2 
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Fig  3 
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Fig 4 
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Fig 5 
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Fig 6 
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Fig 7 
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Table 1 
   FDK TMJ model  POP TMJ model 
Displacements  RMSDa r2 M P  RMSDa r2 M P 
Chewing           
 Left AP  0.79±0.06 0.99±0.00 0.00±0.01 0.05±0.01  0.57±0.03 0.99±0.00 0.00±0.01 0.04±0.00 
 Left ML  0.98±0.07 0.70±0.13 0.00±0.00 0.01±0.00  0.74±0.04 0.03±0.03 -0.01±0.00 0.00±0.00 
 Left SI  1.70±0.09 0.93±0.01 -0.03±0.02 0.22±0.02  0.63±0.07 0.98±0.01 -0.03±0.02 0.08±0.01 
 Right AP  0.78±0.03 1.00±0.00 0.11±0.01 0.04±0.00  0.39±0.03 0.99±0.00 0.02±0.02 0.02±0.00 
 Right ML  0.95±0.07 0.79±0.11 0.00±0.00 0.01±0.00  0.75±0.04 0.12±0.06 0.01±0.00 0.00±0.00 
 Right SI  1.66±0.09 0.57±0.06 -0.06±0.03 0.14±0.01  0.48±0.10 0.96±0.02 -0.01±0.03 0.04±0.01 
Open-close           
 Left AP  0.61±0.04 0.99±0.01 0.00±0.05 0.04±0.02  0.35±0.04 0.99±0.00 -0.01±0.03 0.03±0.01 
 Left ML  0.48±0.10 0.30±0.13 0.01±0.00 0.00±0.01  0.27±0.03 0.21±0.05 0.00±0.00 0.00±0.00 
 Left SI  1.25±0.15 0.92±0.08 0.13±0.20 0.16±0.07  0.47±0.06 0.99±0.00 -0.02±0.03 0.07±0.04 
 Right AP  0.81±0.08 1.00±0.00 0.12±0.04 0.06±0.04  0.22±0.05 1.00±0.00 0.05±0.04 0.01±0.01 
 Right ML  0.47±0.10 0.32±0.12 -0.01±0.00 0.00±0.00  0.28±0.03 0.14±0.11 0.00±0.00 0.00±0.00 
 Right SI  1.41±0.06 0.85±0.12 -0.05±0.16 0.12±0.03  0.33±0.08 0.98±0.00 -0.08±0.05 0.02±0.00 
Protrusion           
 Left AP   0.59±0.07 0.99±0.00 -0.04±0.01 0.03±0.00  0.32±0.05 1.00±0.00 0.02±0.01 0.01±0.00 
 Left ML  1.16±0.14 0.18±0.11 0.00±0.00 0.01±0.00  0.37±0.12 0.05±0.08 0.01±0.00 0.00±0.00 
 Left SI  1.34±0.12 0.92±0.02 0.02±0.05 0.11±0.01  0.53±0.05 0.99±0.00 -0.04±0.02 0.04±0.01 
 Right AP  0.88±0.08 0.99±0.00 0.07±0.01 0.04±0.01  0.21±0.02 1.00±0.00 0.00±0.00 0.01±0.00 
 Right ML  1.16±0.14 0.18±0.12 0.00±0.00 0.01±0.00  0.37±0.11 0.06±0.10 -0.01±0.00 0.00±0.00 
 Right SI  1.25±0.10 0.91±0.02 0.00±0.03 0.09±0.01  0.40±0.07 0.98±0.00 -0.05±0.03 0.02±0.00 

aRMSD is in unit of millimetres. 
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Table 2 

 
   FDK TMJ model vs POP TMJ model 
TMJ reaction forces  RMSDa r2 M P 
Chewing      
 Left AP  4.71±0.46 0.46±0.10 0.12±0.10 0.18±0.02 
 Left ML  12.5±1.44 0.14±0.09 0.35±0.21 0.51±0.01 
 Left SI  5.67±0.37 0.89±0.03 -0.21±0.04 0.08±0.01 
 Right AP  9.84±0.89 0.06±0.07 0.73±0.17 0.44±0.04 
 Right ML  17.88±2.87 0.00±0.00 0.92±0.43 0.50±0.02 
 Right SI  6.63±0.51 0.87±0.09 -0.20±0.04 0.09±0.02 
Open-close       
 Left AP  7.49±2.44 0.95±0.03 0.48±0.18 0.04±0.01 
 Left ML  18.69±12.25 0.37±0.32 -0.77±0.17 0.43±0.13 
 Left SI  12.17±4.05 0.99±0.01 -0.23±0.07 0.02±0.01 
 Right AP  19.29±5.42 0.09±0.13 3.34±2.66 0.19±0.03 
 Right ML  24.7±5.96 0.23±0.30 -0.86±0.08 0.53±0.26 
 Right SI  14.4±3.66 0.99±0.00 -0.25±0.07 0.03±0.01 
Protrusion       
 Left AP   0.75±0.13 0.64±0.21 -0.08±0.18 0.11±0.01 
 Left ML  5.46±1.01 0.37±0.32 -0.93±0.03 0.34±0.11 
 Left SI  3.25±0.25 0.73±0.19 -0.49±0.10 0.10±0.01 
 Right AP  2.37±0.37 0.14±0.21 -0.08±0.23 0.34±0.05 
 Right ML  5.14±1.14 0.14±0.08 -0.68±0.10 0.56±0.02 
 Right SI  4.68±0.67 0.38±0.26 -0.51±0.07 0.15±0.04 

                   aRMSD is in unit of Newton. 
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Nomenclature 
Variable Dimensionality  

(rows x columns) 
Description 

n  Scalar Number of rigid bodies 
(M)n  Scalar Number of muscles 
(R)n  Scalar Number of reaction forces 
(FDK)n  Scalar Number of FDK DOFs 

)(Φn  Scalar Number of hard constraints 
)(Ψn  Scalar Number of soft constraints 
)~(Φn  Scalar Number of hard constraints remaining after 

those associated with pure movements have 
been omitted.  

t  Scalar Time 
ir  3 x 1 Position vector of the center of mass of ith 

segment. 
ip  4 x 1 Vector of Euler parameters for the ith segment 

iq  7 x 1 Vector containing the position vector and Euler 
parameters of the ith segment  

q  7 n  x 1 Vector containing the position vectors and 
Euler paremeter of all segments 

ir  3 x 1 Velocity vector of the center of mass of ith 
segment 

'
iω  3 x 1 Angular velocity vector of the ith rigid 

segment measured relative to its body-fixed 
reference frame 

'~
iω  3 x 3 Skew-symmetric matrix associated with the 

angular velocity vector of the ith segment 
iv  6 x 1 Vector containing the linear and angular 

velocity vectors for the ith segment 
v  6 n  x 1 Vector containing the linear and angular 

velocity vectors of all segments 
v  6 n  x 1 Vector containing the linear and angular 

acceleration vectors of all segments 
Φ  )(Φn  x 1 Vector of hard constraint equations 

)FDK(Φ  (FDK)n  x 1 Vector of FDK constraint equations 
)FDK(α  (FDK)n  x 1 Vector of FDK position coordinates 
)FDK(α  (FDK)n  x 1 Vector of FDK velocity coordinates 
)FDK(α  (FDK)n  x 1 Vector of FDK acceleration coordinates 

q̂  6 n  x 1 Vector of a virtual set of positions that 
correspond to v  

qΦ ˆ  )(Φn  x 6 n  Jacobian matrix of the hard constraint 
equations with respect to q̂  

)FDK(
q̂Φ  (FDK)n  x 6 n  Jacobian matrix of the FDK constraint 

equations with respect *q  
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tΦ  )(Φn  x 1 Vector of the partial derivatives of the hard 
constraint equations with respect to time 

γ  )(Φn  x 1 Vector of position- and velocity-dependent 
terms emerging from the differentiation of the 
hard constraint equations, Φ , with respect to 
time. 

)FDK(γ  (FDK)n  x 1 Vector of position- and velocity-dependent 
terms emerging from the differentiation of the 
function )FDK(Φ , with respect to time 

Ψ  )(Ψn  x 1 Vector of soft constraint equations 
G  Scalar Objective function of the soft constraint 

equations 
W  )(Ψn  x )(Ψn  Weight matrix applied in the objective function 

of a weighted least-square optimization 
problem for over-determinate kinematics 

δ  )(Ψn  x 1 Vector of residuals on the soft constraint 
equations  

approxδ  )(Ψn  x 1 Vector of approximated velocities of the 
residual vector δ  

approxδ  )(Ψn  x 1 Vector of approximated accelerations of the 
residual vector δ  

t∆  Scalar Time increment used in the approximate 
velocity and acceleration analysis 

qΨ ˆ  )(Ψn  x 6 n  Jacobian matrix of the soft constraint equations 
with respect to q̂  

tΨ  )(Ψn  x 1 Vector of the partial derivatives of the soft 
constraint equations with respect to time 

)(Ψγ  )(Ψn  x 1 Vector of position- and velocity-dependent 
terms emerging from the differentiation of the 
soft constraint equations, Ψ , with respect to 
time 

H  Scalar Muscle recruitment objective function 
(M)f  (M)n  x 1 Muscle forces 
(R)f  (R)n  x 1 Reaction forces 
(FDK)f  (FDK)n  x 1 FDK residual forces 
(M)
iC  6 x (M)n  Coefficient matrix for the muscle forces on the 

ith segment 
(R)
iC  6 x (R)n  Coefficient matrix for the reaction forces on 

the ith segment 
(FDK)
iC  6 x (FDK)n  Coefficient matrix for the FDK residual forces 

on the ith segment 
(M)C  6 n  x (M)n  Coefficient matrix for the muscle forces on all 

segments 
(R)C  6 n  x (R)n  Coefficient matrix for the reaction forces on all 

segments 

49 
 



Introduction to Force-dependent Kinematics: Theory and Application to Mandible Modeling 

(FDK)C  6 n  x (FDK)n  Coefficient matrix for the FDK residual forces 
on all segments 

s  (M)n  x 1 Vector of instantaneous muscle strengths 
I  3 x 3 Identity matrix 

'
iJ  3 x 3 Mass moment of inertia tensor refering to the 

body-fixed reference frame of the ith segment 
(app)
ig  6 x 1 Vector of applied loads on the ith segment 

id  6 x 1 Vector of applied loads minus the inertial and 
gyroscopic terms for the ith segment 

d  6 n  x 1 Vector of applied loads minus the inertial and 
gyroscopic terms for all segments 

)(
ˆ
oiilq  1 x 6 n  The partial derivative of the origin to insertion 

length of the ith muscle with respect to q̂ . 
Φ~  )~(Φn  x 1 Subset of constraint equations from Φ  where 

constraints specifying pure movement have 
been omitted.  

)FDK(
)FDK(αf  (FDK)n  x (FDK)n   Jacobian matrix of the FDK residual forces 

derived with respect to the FDK DOFs 
β  Scalar Step length applied in the FDK solver 

lf  Scalar Magnitude of a ligament force 
k  Scalar Ligament stiffness 
ε  Scalar Ligament strain 

lε  Scalar Ligament linear strain limit 

id  Scalar Penetration depth of the ith vertex into the 
closest triangle on the opposite surface 

ia  Scalar Area of the triangle closest to the ith vertex 

iv  Scalar Penetration volume of the ith vertex 
p  Scalar Pressure modulus 

if  Scalar Contact force from the ith vertex 
l  Scalar Ligament length 
0l  Scalar Ligament slack length 

rl  Scalar Ligament reference length 

rε  Scalar Ligament reference strain 
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