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 

Abstract— Some couplings exist between the positive- and 

negative-sequence impedances of a voltage sourced power 

converter especially in the low frequency range due to the 

nonlinearities and low bandwidth control loops like the PLL. In 

this paper, a new numerical method based on the Harmonic 

Transfer Function for analysis of the Linear Time Periodic 

systems is presented, which is able to handle these couplings. In a 

balanced three-phase system, there is only one coupling term, but 

in an unbalanced (asymmetrical) system, there are more 

couplings, and therefore, in order to study the interactions 

between these couplings a matrix based method should be used. 

No information about the structure of the converter is needed 

and elements are modelled as black boxes with known terminal 

characteristics. The proposed method is applicable for both 

power quality (harmonic and inter-harmonic emissions) and 

stability studies, which is verified by simulations in this paper. 

 
Index Terms— Asymmetry; Black box modelling; Current 

control; Frequency coupling; Power converter; Unbalanced 

systems. 

 

I. INTRODUCTION 

ARMONIC emission from power electronic components 

in modern wind farms is inevitable [1]–[3]. Even though 

the power electronic converters offer more efficiency and 

controllability, they may trigger the parallel and series 

resonances in the power system [4]. They may also interact 

with each other or with passive network elements, leading to 

instability [5], [6]. Hence, stable operation of wind farms with 

an acceptable harmonic emission level must be verified for 

different situations in the design phase. 

The effects of the outer control loops such as the 

synchronization and power control loop cannot be neglected in 

the low frequency range (i.e. around the fundamental 

frequency). It has been found that the Phase-Locked Loop 
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(PLL) may introduce a negative damping with a frequency 

coupling between the input voltage and output current [7], [8]. 

This effect may further lead to instability in weak grids, where 

the resonances are located at lower frequencies. The situation 

is even worse when the grid and the high voltage grid 

connection system assets are unbalanced, for instance due to 

the asymmetrical displacement of the conductors in flat 

formation underground transmission cables, where more 

couplings between the frequency components exist, and 

consequently finding an analytic solution is very difficult [9], 

[10]. Modelling a balanced system in the dq domain solves the 

problems of the low frequency couplings [11], however, there 

exist a coupling between d- and q-channels. Also, for 

unbalanced networks; the couplings appear in the dq signals 

[12], and therefore, a matrix-based method is inevitable.  

In [13] a new numerical matrix-based method has been 

presented that can easily consider all couplings in the 

impedance model of a power converter. In this method, a 

given converter is treated like a black-box, and no modelling 

and knowledge are needed for the system under study. Some 

frequency excitation tests are just needed for the system under 

study, which can be obtained from a full-detailed simulation 

model or from experiments. Therefore, different kinds of 

control strategies such as asymmetrical current control can 

also be studied with the same method. Another advantage is 

that it uses numerical data instead of very complicated analytic 

expressions (in case of a multi-converter system the 

complexity increases rapidly). Moreover, the parameters, 

structure and control of power converters are sometimes 

confidential, and therefore, the frequency response is only 

available as a numerical lookup table obtained from some 

measurements. Also for some passive elements the numerical 

representation is less complicated e.g. the grid impedance can 

be modelled as a numerical look-up table instead of a high 

order passive network formed of many elements [14]. In 

addition to all the above-mentioned reasons, finally the 

numerical evaluation methods such as the Nyquist plot may be 

used for stability assessment. Thus, using numerical data is 

advantageous in many cases. 

In this paper, the matrix based method will be extended to 

unbalanced three-phase systems, which are more difficult to 

analyze due to a more complicated current controller and also 
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existence of more frequency couplings. This paper is 

organized as follows, first the couplings in balanced and 

unbalanced power electronic based systems are introduced, 

then the matrix frequency response is briefly presented, and 

finally the proposed method is used in an unbalanced system 

that uses an asymmetrical current controller.   

II. FREQUENCY COUPLINGS IN  A POWER CONVERTER 

One way to study the stability of nonlinear control systems 

is to linearize the system around the operating point and to use 

linear methods for the small signal incremental equations. 

Therefore, the Impedance Based Stability Criterion (IBSC) 

can be applied to small signal impedances. The small signal 

impedance of a three-phase power converter can be expressed 

in phase (abc) domain or sequence domain [7]. And since in 

three-wire systems, there is no neutral wire, therefore no zero-

sequence current can be flowing. Therefore, the zero sequence 

components and impedances can be neglected. In this paper, 

the impedances are modelled in the sequence domain because 

it leads to 2x2 (positive and negative quantities) matrices 

instead of 3x3 ones (abc quantities) and also the positive- and 

negative-sequence impedances of power system components 

are readily available.  

It has been mentioned in [9], that the negative sequence 

impedance is indeed the complex conjugate of the 

corresponding positive sequence quantity with the negated 

frequency.  

𝑍𝑛𝑒𝑔(𝑗𝜔) = (𝑍𝑝𝑜𝑠(−𝑗𝜔))
∗
 (1) 

Therefore, hereafter the positive frequencies are used for 

positive sequence components and negative frequencies stand 

for negative sequence. 

Fig. 1 shows the considered power converter and how it is 

connected to the grid, where an L filter is used. However, this 

method is also applicable for converters with LCL filters by 

changing the grid/converter impedance. It has been shown in 

[7], [15] that if the effects of the PLL is not neglected then in 

response to a positive sequence voltage at the PCC, the 

converter current will have a positive sequence current with 

the same frequency and a negative sequence current with a 

different frequency and vice versa. Fig. 2 shows that if the 

system is balanced, then no other frequencies than the stated 

ones will appear. The numbers are used to highlight the path 

that a voltage/current traverses. A voltage perturbation at the 

grid propagates to the PCC voltage (Block 1 to Block 2), then 

the power converter in response to this perturbation at the 

PCC voltage responds with two components, one at fp (Block 

2 to Block 3) and another one at –(fp-2f1) (Block 2 to Block 4), 

where fp is the perturbation frequency and f1 is the 

fundamental frequency [7], [8]. Since the grid impedance is 

passive and balanced; the current flow with those frequency 

components only creates the same frequency and sequence 

components at the PCC voltage (Block 3 to Block 5 and Block 

4 to Block 6). In other words balanced impedance in the 

sequence domain is decoupled and a current in a sequence 

cannot induce a voltage at the other sequence. Consequently, 

the power converter observes a voltage with a frequency of 

−(𝑓𝑝 − 2𝑓1) at the PCC, therefore, the current response would 

again have two components, one at the same frequency (Block 

7 to Block 4) and the other one at −(−(𝑓𝑝 − 2𝑓1) − 2𝑓1) = 𝑓𝑝 

(Block 7 to Block 3). Thus, the response to the new 

components in the PCC voltage does not create any new 

frequencies in the current, and therefore, the loop is closed and 

one can calculate the closed loop impedance using this.  

However, if the grid impedance is unbalanced, in response 

to a positive sequence current, in addition to a positive 

sequence voltage it also creates some voltage in the negative 

sequence. It does not change the frequency; it only injects both 

sequences to the PCC voltage. The equation for an unbalanced 

branch, which is shown in Fig. 3, is 

𝑍± = [
𝑍𝑝𝑝 𝑍𝑝𝑛
𝑍𝑛𝑝 𝑍𝑛𝑛

] (2) 

𝑍𝑝𝑝 = 𝑍𝑛𝑛 =
1

3
(𝑍1 + 𝑍2 + 𝑍3) (3) 

𝑍𝑝𝑛 = (𝑍𝑛𝑝)
∗
=
1

6
(2𝑍1 − 𝑍2 − 𝑍3 − 𝑗√3(𝑍2 − 𝑍3)) (4) 

where, Zi is the impedance of the ith phase and Z± is the 

impedance matrix in the sequence domain. 

As shown in Fig. 4, the imbalance results in an unlimited 

number of frequency couplings, which makes it difficult to 

find a closed form equation for the impedances. The converter 

current has a frequency component at −(𝑓𝑝 − 2𝑓1) in response 

to a voltage perturbation at the PCC. Since, the grid 

 
Fig. 1. A current controlled three-phase voltage-source converter.  
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Fig. 2. Perturbation propagation in a balanced power system.  
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Fig. 3. A three-phase inductive branch.  
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impedance is unbalanced, it also creates a reverse sequence 

voltage drop and therefore, the PCC will have a component at 

(𝑓𝑝 − 2𝑓1). The converter in response to this new frequency 

generates a current at −(𝑓𝑝 − 4𝑓1). This cycle never stops and 

more frequency couplings appear. One can suggest some 

assumptions for instance, only consider one coupling. 

However, it might not always be true and in the end the error 

might not be acceptable [9]. If a matrix-based solution is used, 

it can consider and calculate all these couplings without any 

assumptions or simplifications. 

III. THE MATRIX-BASED METHOD 

The matrix-based method was first introduced in [13]. It 

uses the matrix frequency response for all active and passive 

components, which can be filled in using the theoretical 

equations (for the components whose transfer functions are 

known), the simulation or the experimental data, as shown in 

(5). Each column is the frequency spectrum of the response to 

a sinusoidal excitation, whose frequency is corresponding to 

that column. 

ℋ = 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝜔1
𝜔2
⋮
𝜔𝑛

{[

𝐻11(𝑗𝜔1) 𝐻12(𝑗𝜔2) ⋯ 𝐻1𝑛(𝑗𝜔𝑛)

𝐻21(𝑗𝜔1) 𝐻22(𝑗𝜔2) ⋯ 𝐻2𝑛(𝑗𝜔𝑛)
⋮ ⋮ ⋱ ⋮

𝐻𝑛1(𝑗𝜔1) 𝐻𝑛2(𝑗𝜔2) ⋯ 𝐻𝑛𝑛(𝑗𝜔𝑛)

]

⏟                          

   𝜔1  𝜔2 ⋯     𝜔𝑛
𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛

 
(5) 

where Hij is the frequency component of the response at 

ω=ωi to a sinusoidal excitation with a frequency at ω=ωj. It 

must be noted that these frequencies are necessarily not 

multiples of the fundamental frequency and in (5) ω1 is not the 

fundamental frequency. For a Linear Time-Invariant (LTI) 

system there exists only one response at the same frequency of 

the excitation, therefore, the matrix frequency response will be 

a diagonal matrix. 

The matrix-based method can be considered as the 

numerical form of the Harmonic Transfer Functions (HTF) for 

Linear Time Periodic (LTP) systems [16], [17], where the 

operating point varies periodically. This is the case in AC 

systems where all steady state quantities are periodic with the 

system frequency. One way to study these systems is to use 

Harmonic State Space (HSS) equations that need complete 

model of the system under study [18]. However, in this paper 

it is considered that no information about the structure is 

available and only the input/output characteristics can be 

obtained from measurements. The input-output relation of an 

LTP system in the frequency domain can be described as 

𝒴(𝑠) = ℋ(𝑠)𝒰(𝑠) (6) 

where ℋ(𝑠) is the HTF of the system, 𝒰(𝑠) and 𝒴(𝑠) are 

vectors of frequencies in the input and the output, respectively 

as follows. 

𝒴(𝑠) =

[
 
 
 
 

⋮
𝑌(𝑠 − 𝑗𝜔1)

𝑌(𝑠)

𝑌(𝑠 + 𝑗𝜔1)
⋮ ]

 
 
 
 

 (7) 

𝒰(𝑠) =

[
 
 
 
 

⋮
𝑈(𝑠 − 𝑗𝜔1)

𝑈(𝑠)

𝑈(𝑠 + 𝑗𝜔1)
⋮ ]

 
 
 
 

 (8) 

ℋ(𝑠)

=

[
 
 
 
 
⋱ ⋱ ⋱ ⋱ ⋱
⋱ 𝐻0(𝑠 − 𝑗𝜔1) 𝐻−1(𝑠) 𝐻−2(𝑠 + 𝑗𝜔1) ⋱

⋱ 𝐻1(𝑠 − 𝑗𝜔1) 𝐻0(𝑠) 𝐻−1(𝑠 + 𝑗𝜔1) ⋱

⋱ 𝐻2(𝑠 − 𝑗𝜔1) 𝐻1(𝑠) 𝐻0(𝑠 + 𝑗𝜔1) ⋱
⋱ ⋱ ⋱ ⋱ ⋱]

 
 
 
 

 
(9) 

where, ω1 is the angular frequency of the system, and Hm(s-

jnω1) shows the coupling between the input U(s-jnω1) and the 

output Y(s-j[n-m]ω1)[16]. Finding the closed form equations 

for Hi(s) is very difficult, but by using the small signal 

perturbations at different frequencies the elements can be 

filled in numerically. If the HTF of the open loop gain of an 

LTP system is 𝒢(𝑠) , then the Generalized Nyquist Criterion 

(GNC), which is the plot of the eigenvalues of the numerical 

HTF by sweeping the frequency s=jω in the interval (-jω1/2, 

+jω1/2), can be used to assess the stability of the closed loop 

system [19].  

It can be seen from (9) that for each frequency s=jω a 

different matrix must be calculated. Infinite number of 

harmonics cannot be considered and the system must be 

truncated up to a certain harmonic M. Instead of calculating 

the eigenvalues of matrices 𝒢 (𝑠 = −𝑗
𝜔1

2
)…𝒢 (𝑠 = +𝑗

𝜔1

2
)  

separately, one can calculate the eigenvalues of 𝔾 as shown in 

(10), since the eigenvalues of a block-diagonal matrix is the 

collection of eigenvalues of each sub-matrix. 

𝔾 = 

[
 
 
 
 
 
 [𝒢 (−𝑗

𝜔1
2
)] 0 ⋯ 0

0 [𝒢 (−𝑗
𝜔1
2
+ 𝑗𝛿𝜔)] ⋱ ⋮

⋮ ⋱ ⋱ 0

0 … 0 [𝒢 (+𝑗
𝜔1
2
)]]
 
 
 
 
 
 

 
(10) 

 
Fig. 4. Perturbation propagation in an unbalanced power system.  
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where,  

[𝒢(𝑠)] = 

[
 
 
 
 
 
 
 𝐺0 (𝑠 − 𝑗

𝑀

2
𝜔1)

⋱ 𝐺−1(𝑠) ⋱

⋱ 𝐺0(𝑠) ⋱

⋱ 𝐺1(𝑠) ⋱

𝐺0 (𝑠 + 𝑗
𝑀

2
𝜔1)]

 
 
 
 
 
 
 

 
(11) 

and δω is the frequency resolution of the GNC plot. The 

frequencies considered in  𝒢(𝑠) are [s-jMω1/2, s-

jMω1/2+jω1,…, s+ jω1M/2]. If one sorts the rows of 𝔾 based 

on the frequencies and then sorts the columns, (5) will be 

obtained. It must be noted that swapping the rows i, j of a 

matrix followed by swapping the columns i,j does not change 

the eigenvalues. Therefore, (5) can be used for stability studies 

in a simpler manner compared to (7)-(10). In the authors’ 

view, (5) can be understood easier than (7)-(10) and also the 

results can be visualized in a better way. 

Fig. 5 shows an example of the impedance matrix of a 

balanced and an unbalanced inductive branch. The horizontal 

axis is the excitation frequency, the vertical axis is the 

response frequency and the color intensity of each pixel 

(square) shows the response magnitude. For instance, most 

parts of Fig. 5 are white which means the coupling is zero. It 

must be noted that the dashed lines are only for annotation. As 

mentioned before, the negative frequency is to model the 

negative sequence component. It must be noted that the 

admittance matrix is a complex matrix. However, for the sake 

of simplicity; only the magnitude is shown here. It can clearly 

be seen that there are some couplings between the positive- 

and negative-sequence admittances. For instance, for the 

balanced case, in response to a +250 Hz perturbation (the red 

dashed line), there is only one response at +250 Hz (the blue 

dashed line). However, for the unbalanced case, in addition to 

the 250 Hz response (response 1: blue dashed line); there is 

also another component at -250 Hz (response 2: green dashed 

line), which is weaker than the direct component. 

In this paper the imbalance is in focus, and therefore, an 

unbalanced current controller must be utilized to successfully 

track the references, otherwise the controller fails due to the 

adverse effect of negative sequence component in a dq 

transformation [20]. In order to handle both positive and 

negative sequences a Sequence Extraction Block (SEB) must 

be used that extracts the positive and negative sequence 

components in the dq signals correctly. The highlighted block 

in Fig. 6 is the block diagram of a SEB based on the 

Decoupled Double Synchronous Reference Frame (DDSRF) 

that has first been described in [20]. Tdq is the Park’s 

transformation and 

 (12) 

 (13) 

where θ is the phase angle of the PLL and ωf=ω1/√2 in order 

to have a good performance [21]. 

As it is shown in Fig. 6, the SEB needs the phase 

f

f

F
s








 
   
   

2

cos 2 sin 2

sin 2 cos 2dq
T

 


 

 
  

  

 
(a) 

 (b) 

 
Fig. 5. The impedance matrix of an inductive branch as shown in Fig. 3 (a) 

a balanced case. (b) an unbalanced case.  

 

 

 
Fig. 6. A DDSRF PLL, where the highlighted area is the Sequence 

Extraction Block [21].  
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information of the positive sequence voltage. This can be done 

by using a simple Synchronous Reference Frame (SRF) PLL 

to synchronize to the positive sequence voltage as shown in 

Fig. 6.  

In this paper the current controller also utilizes the same 

SEB to regulate the positive-/negative-sequence currents. Fig. 

7 shows a block diagram of this controller [22], [23], where 

the current controller blocks are 

 (14) 

 (15) 

and Hi(s) is a PI controller and Gdec minimizes the couplings 

between the dq signals.  

In this paper the admittance matrix of a power converter, 

whose parameters are listed in Table I and Table III (stable 

case), is filled in using simulations and no equation is used for 

stability analysis. At each simulation, a small signal 

perturbation in the voltage with a defined frequency is directly 

applied to the converter terminals without any grid impedance. 

The admittance by definition is the changes in the current due 

to a change in the terminal voltage. Therefore, for each 

excitation frequency a column of (5) is filled in based on the 

FFT of the current. However, the linearized models, which are 

used, are dependent on the operating point, and if the 

operating point (i.e. the output current and the PCC voltage) is 

changed (which is a valid assumption in a wind farm), then the 

whole identification process must be repeated. In [13] it has 

been shown that the linearized admittance matrix of a power 

converter changes linearly with the operating point (i.e. the 

output current and the PCC voltage). Therefore, by calculating 

these linear characteristics once, the admittance can be 

calculated at any conditions. The considered system in [13] is 

a balanced system, and one may question the linearity 

assumption here because the system under study is now 

unbalanced. Hence, the operating point quantities, voltage and 

current at PCC (for both sequences) are changed (the 

perturbation frequency is fixed at 110 Hz) to see whether the 

relationship is linear or not. Fig. 8 indicates that all electrical 

quantities behave linearly except for the positive sequence 

voltage (note absolute value is plotted). This is due to the PLL 

that uses the positive sequence voltage and is a nonlinear 

block in the low frequency range. However, Fig. 8 (c) reveals 

that if the PCC voltage lies in the interval (0.95, 1.05) p.u. 

then it can be considered as a linear function. This is a valid 

assumption in power systems, where the voltages are kept 

inside this interval by reactive power control. In a wind farm, 

wind turbines can also support the PCC voltage by injecting or 

absorbing the reactive power. Thus, one can use (16) to 

calculate the admittance matrix at any other conditions, if the 

partial derivatives, which describe the linear characteristics, 

are available. 
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Fig. 7. A Decoupled Double Synchronous Reference Frame current 

controller [22], [23].  
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TABLE I. PARAMETERS OF THE GRID-CONNECTED INVERTER FOR 

SIMULATION 

Symbol Description Value 

f1 Grid frequency 50 Hz 

L Filter inductance 1.5 mH 

R Filter equivalent resistance 0.5 Ω 

Vdc Inverter dc voltage 600 V 

Kp Proportional gain of the current controller 0.01 

Ki Integrator gain of current controller 0.1 

BWPLL Bandwidth of PLL  65 Hz 

Kd Decoupling term 0 

 

 

 
Fig. 9. How to calculate the parameters that are needed for the matrix-

based method.  

TABLE II. COMPARING THE PREDICTED RESULTS WITH THE SIMULATIONS 

Frequency 110 Hz 10 Hz 

 Theory Sim. Theory Sim. 

|Ia| 0.0240 0.0244 0.1600 0.1614 

 Ia 0.053 0.032 0.142 0.180 

|Ib| 0.0282 0.0286 0.1534 0.1557 

 Ib -2.373 -2.407 2.336 2.369 

|Ic| 0.0187 0.0187 0.1431 0.1455 

 Ic 1.771 1.738 -1.9433 -1.902 
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Fig. 10. A Decoupled Double Synchronous Reference Frame current 
controller [22], [23].  
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𝑌(𝑉𝑑𝑞
+ + ∆𝑉𝑑𝑞

+ ,  𝐼𝑑𝑞
+ + ∆𝐼𝑑𝑞

+ , 𝑉𝑑𝑞
− + ∆𝑉𝑑𝑞

− ,  𝐼𝑑𝑞
− + ∆𝐼𝑑𝑞

− ) 

≈ 𝑌(𝑉𝑑𝑞
+ ,  𝐼𝑑𝑞

+ , 𝑉𝑑𝑞
− ,  𝐼𝑑𝑞

− ) +
𝜕𝑌

𝜕𝑉𝑑𝑞
+ ∆𝑉𝑑𝑞

+ +
𝜕𝑌

𝜕𝐼𝑑𝑞
+ ∆𝐼𝑑𝑞

+

+
𝜕𝑌

𝜕𝑉𝑑𝑞
− ∆𝑉𝑑𝑞

− +
𝜕𝑌

𝜕𝐼𝑑𝑞
− ∆𝐼𝑑𝑞

−  

(16) 

The partial derivatives in (16) can easily be found by the 

procedure illustrated in Fig. 9. For instance, by repeating the 

simulation for another positive-sequence current set point 

while all other quantities (PCC voltage both positive and 

negative components, current control parameters and etc.) are 

kept constant, the rate of the change in the admittance to a 

change in the injected positive sequence current 
𝜕𝑌

𝜕𝐼𝑑𝑞
+  can be 

found. 

To verify (16), the converter admittance at a new and 

untrained operating point (𝑣𝑑𝑞
+ =95, 𝐼𝑑𝑞

+ =20+j5, 

𝑉𝑑𝑞
− =10+j5, 𝐼𝑑𝑞

− =2+j2, fp=110 Hz) is anticipated using (16) and 

is verified by time domain simulations as shown in Table II. 

Fig. 10 shows the admittance matrix of the power converter. 

IV. SIMULATION RESULTS 

The operating point of the converter depends on the 

network configuration and the voltages and currents in the 

network. Therefore, the first step is to run a load flow and 

calculate the operating point. At this stage the converter can be 

modelled as a constant power element. Then, the load flow 

data are used as the initial points and the linearized matrix of 

the converter can be found using (16). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Fig. 8. The admittance change versus: (a) the positive sequence current reference d channel 𝐼𝑑
+ . (b) the positive sequence current reference q channel 𝐼𝑞

+ . (c) 

the positive sequence voltage at the PCC. (d) the negative sequence current reference d channel 𝐼𝑑
−. (e) the negative sequence current reference q channel 𝐼𝑞

−. (f) 

the negative sequence voltage at the PCC d channel 𝑉𝑑
−. (g) the negative sequence voltage at the PCC q channel 𝑉𝑞

−.  
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To show the effectiveness of the method, two studies will 

be presented. The first case is used for stability evaluation of 

the system, while the other one is used for power quality 

studies in the system. In both cases the system shown in Fig. 1 

is used, where the current controller and the PLL are based on 

Fig. 7 and Fig. 6, respectively.  

A. Case 1: Stability of an unbalanced system 

In this part, the considered converter is connected to an 

unbalanced grid, where the imbalance is intentionally set too 

large to do some comparisons (see Table III). The controller 

regulates the positive sequence current and keeps the negative 

sequence current to zero. Therefore, the objective is to inject 

balanced current that is synchronized with the positive 

sequence voltage at the PCC. All elements are modelled as 

matrix impedances/admittances. The method is used to 

evaluate the stability based on the matrix form of the 

impedance based stability criterion [13], where the 

eigenvalues of the minor loop gain in the matrix form (the 

product of the grid impedance and the converter admittance, 

both are matrices) are plotted. 

It can be seen from Fig. 11 that when the output current set 

point is lowered from 20 A to 2 A, the system becomes 

unstable. This conclusion is also verified by time domain 

simulations of a full detailed model as shown in Fig. 12 and 

Fig. 13. The PCC voltage as shown in Fig. 12 (b) and Fig. 13 

(b) is around the nominal value; therefore, there is no problem 

with the nonlinearity of the PCC voltage as described by Fig. 

8 (c). Fig. 13 shows that the converter is unable to regulate the 

output current due to the instability. One may ask that if the 

system is unstable why the converter is not saturated as shown 

in Fig. 13 (c), the modulation indices are below 100%. The 

current system is a nonlinear system and small signal 

linearization is used to find a linear model. Therefore, all 

conclusions are valid for a small signal region around the 

operating point. In large signal, sometimes a nonlinear system 

is attracted to a limit cycle [24], [25] and does not necessarily 

go to infinity. However, the results of the small signal studies 

are valuable; because they can clearly state that the behavior is 

not as expected in a given operating point (uncontrolled 

currents and harmonics). The frequency spectrum of the 

output current and the PCC voltage indicates that the 

frequency of instability is around 14 Hz. This frequency can 

also be predicted by looking at the crossover frequency 

(intersection with the unity circle) of the Nyquist plot shown 

in Fig. 11.  

TABLE III. THE PARAMETERS OF THE GRID 

Symbol Description Value 

V+
g Grid line-ground peak voltage (Pos. Seq.) 100 V 

I+
dr 

Pos. seq. d channel current reference 

(stabe/unstable cases) 
20/2 A 

I+
qr Pos. seq. q channel current reference 0 A 

I-
dr Neg. seq. d channel current reference 0 A 

I-
qr Neg. seq. q channel current reference 0 A 

L1 
Grid inductance-phase A 

(unbalanced/balanced) 
2.3 / 2.3 mH 

L2 
Grid inductance-phase B 
(unbalanced/balanced) 

1.1 / 2.3 mH 

L3 
Grid inductance-phase C 

(unbalanced/balanced) 
3.4 / 2.3 mH 

 

 
Fig. 11. The generalized Nyquist plot of the unbalanced system when the 

output current is changed.  

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 12. Time domain simulations of the unbalanced system, when the 

output current set point is 20 A (a) the output current (b) the PCC voltage  
(c) the modulation indices.  
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To see what is exactly the effect of imbalance, the previous 

case is now repeated with a balanced grid, where the 

inductance values are the average of the unbalanced 

inductances. Based on (4), by using the average values, the 

positive/negative sequence impedance are not changed. It can 

be seen from Fig. 15, Fig. 16 and Fig. 17 that the Nyquist plots 

and the time domain results are closely correlated. In other 

words, that large changes in the grid did not influence the 

results so much, and one can say that the balanced case is even 

worse than the unbalanced case (the Nyquist plot is closer to 

the critical point), and therefore, if the balanced case is only 

studied it gives a more conservative result in this case. 

A. Case 2: The power quality studies 

By knowing the harmonic sources and matrix impedances, 

the harmonics at different points can be found using some 

simple electrical network equations. For instance, for the 

simple case that is presented in Fig. 1, if the harmonics content 

 
(a) 

 
(b) 

 
(c) 

Fig. 13. Time domain simulations for the unbalanced system, when the 

output current set point is 2 A (a) the output current (b) the PCC voltage  
(c) the modulation indices.  

 

Fig. 14. The frequency spectrum of the output current and the PCC voltage, 

when the output current setpoint is 2 A (the unstable case). 

 

 

 

 
Fig. 15. The generalized Nyquist plot of the unbalanced system when the 

output current is changed.  

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 16. Time domain simulations for the balanced system, when the output 

current set point is 20 A (a) the output current (b) the PCC voltage 
(c) the modulation indices. 

  

 

 



2168-6777 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2017.2742241, IEEE Journal
of Emerging and Selected Topics in Power Electronics

in the grid is known (as a vector that contains all frequencies), 

then the harmonics at the PCC can easily be found using (17). 

[𝑉𝑃𝐶𝐶] = [𝑍𝑐][𝑍𝑔 + 𝑍𝑐]
−1
[𝑉𝑔] (17) 

where, [Zc] is the impedance matrix of the converter (inverse 

of the admittance matrix), [Zg] is the impedance matrix of the 

grid and [Vg] is the present harmonics at the grid.  

The phasor plot shown in Fig. 18 is for the previous case, 

where the system is unbalanced but all the current set points 

are now non-zero as stated in Table IV. To show the 

effectiveness of the proposed method, it is assumed that the 

grid has a positive sequence inter-harmonic component at 90 

Hz. It can be seen that due to the aforementioned couplings at 

the PCC, an additional 10 Hz (–(fp-2f1)) component can also 

be seen, which surprisingly is even larger than the 90 Hz 

component for the currents. It can be seen that the results from 

theoretical equations using the matrix-based method are in 

good agreement with the results of the time domain 

simulations. Fig. 19 show the time domain results of this case, 

where the effects of the 10 Hz components is significant in the 

output current.  

V. CONCLUSION 

In this paper, a numerical matrix-based method for 

harmonic studies in unbalanced networks is proposed. The 

method is able to deal with the couplings between the positive 

and negative sequence impedances due to the outer loop 

controls and also the asymmetrical transmission assets. The 

method is proved by the HTF concept in studying LTP 

systems. The admittance matrix of the converter is a nonlinear 

function of the positive sequence voltage of the PCC but is a 

linear function of the output current. If the PCC voltage is kept 

close to the nominal value, then, no matter how much the 

current is changed, the admittance can be calculated. This is 

also the case in a wind farm where the output power (current) 

is changing a lot depending on the wind speed and voltage 

magnitudes are almost constant. The proposed method is 

verified by time domain simulation of a full detailed model 

and it is shown that based on the results of this study some 

simplifications can be made. For instance, it seems that if the 

system is well designed for a balanced case (i.e. enough 

stability margins), the stability is even better in the unbalanced 

case. However, proving this needs a more detailed discussion 

with analytical formulation, which is not the subject of this 

paper. The proposed method can also be used for power 

TABLE IV. THE CURRENT SET POINTS FOR THE SECOND CASE STUDY 

Symbol Description Value 

I+
dr 

Pos. seq. d channel current reference 

(stabe/unstable cases) 
20 A 

I+
qr Pos. seq. q channel current reference 5 A 

I-
dr Neg. seq. d channel current reference 2 A 

I-
qr Neg. seq. q channel current reference 2 A 

 
(a) 

 
(b) 

Fig. 18. The phasor plot of (a) harmonic currents and (b) harmonic voltages 

at the PCC found by theory and simulations.  

 

 

 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 17. Time domain simulations for the balanced system, when the output 

current set point is 2 A (a) the output current (b) the PCC voltage 
(c) the modulation indices. 

.  
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quality studies to include the effects of coupling. It is shown 

that in the low frequency range, the couplings should not be 

neglected due to the fact that their effect might be even larger. 
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