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Abstract— Augmenting RGB images with depth information
is a well-known method to significantly improve the recognition
accuracy of object recognition models. Another method to im-
prove the performance of visual recognition models is ensemble
learning. However, this method has not been widely explored
in combination with deep convolutional neural network based
RGB-D object recognition models. Hence, in this paper, we form
different ensembles of complementary deep convolutional neural
network models, and show that this can be used to increase
the recognition performance beyond existing limits. Experiments
on the Washington RGB-D Object Dataset show that our best
performing ensemble improves the recognition performance with
0.7% compared to using the baseline model alone.

Keywords— Deep Learning, Computer Vision, RGB-D, Convo-
lutional Neural Networks, Ensemble Learning.

I. INTRODUCTION

In this paper, we address the problem of RGB-D based ob-
ject recognition, which deals with making a machine capable
of identifying object types using both RGB and depth data.
Although successful RGB based object recognition models
already exist, recent advancements within range imaging tech-
nologies have made supplemental depth data available, which
can be used to further increase the recognition performance.
This is possible, as the depth data contains additional geomet-
ric information about the object shapes, besides the texture,
color and appearance information already contained in the
RGB data. The depth data is furthermore invariant to lighting
and color variations, allowing for a potentially more robust
classifier [Guo et al., 2014]. Current State-of-the-Art (SoTA)
methods within both RGB and RGB-D object recognition
mainly relies on deep Convolutional Neural Network (CNN) as
feature extractors, as these are generally superior to the classi-
cal methods such as Scale Invariant Feature Transform (SIFT)
[Lowe, 2004] and Histogram of Oriented Gradients (HOG)
[Dalal and Triggs, 2005] [Razavian et al., 2014]. RGB-based
object recognition models are typically evaluated on the Ima-
geNet Large-Scale Visual Recognition Challenge (ILSVRC)
dataset [Russakovsky et al., 2015], and often make use of
ensemble learning to effectively minimize the prediction error.
In fact, all the latest winning entries on the ILSVRC are en-
sembles of CNN models. A widely used dataset for evaluation
of RGB-D based object recognition models is the Washington
RGB-D Object Dataset [Lai et al., 2011]. However, literature
experimenting with improving the performance of RGB-D

based object recognition models using ensemble learning is
sparse. Surprisingly, to the best of the author’s knowledge,
there currently does not exist any work describing the effect
of using ensemble learning in combination with CNN based
RGB-D object recognition models in the literature. Hence,
we have conducted experiments under the hypothesis that
ensemble learning can also be beneficial within the RGB-
D domain. We find that the recognition performance of an
existing multi-modal RGB-D object recognition model can
be increased significantly by forming an ensemble of two
generalist models and an expert model, when evaluated on
the publicly known Washington RGB-D Object Dataset.

II. RELATED WORK

Our method is related to work within the field of both RGB
and RGB-D based object recognition, and ensemble learning.
Ensemble Learning Theory. Ensemble learning is a way
to build a stronger model, by combining a collection of
weaker and diverse models to get an aggregated prediction,
a concept commonly used with the highly successful deep
CNNs, as these models generally have a high variance and
a low bias [Dietterich, 2000]. By averaging the prediction of
slightly uncorrelated variants of these models, the variance
can be reduced significantly. Namely, the diversity between
the models is crucial in order to improve the performance by
averaging the predictions [Bishop, 2006].
Ensembles of CNNs. Ensemble learning is widely used
by the winning entries in the prestigious image classifi-
cation challenge ILSVRC. In [Krizhevsky et al., 2012], an
ensemble of 5 identical but differently trained versions of
the AlexNet, achieved a top-1 error rate of 38.1%, com-
pared to a single CNN with an error rate of 40.7% on
the 2012 ILSVRC. The same tendency was also found
in [Simonyan and Zisserman, 2014], where VGGNet mod-
els trained with different initialization was used to form
an ensemble. In [Szegedy et al., 2014], an ensemble of 7
GoogLeNet model, trained with a differently sampled dataset
resulted in a 3.45% reduction of the top-5 error on the 2014
ILSVRC. In [He et al., 2015] an ensemble of six ResNet
models with different depths reduced the top-5 error with
0.92% on the 2015 ILSVRC. However, none of these ensemble
approaches actively tries to combine individual models which
best complement each other, but instead relies on the sheer



amount of individual models in the ensembles. According to
[Bonab and Can, 2016] the number of models in an ensemble
should be the same as the amount of classes, to obtain the
highest possible accuracy. However, in many cases this is
impractical, and for evaluation on the Washington RGB-D
dataset this would mean that 510 individual models would
have to be trained, as this particular dataset contains 51
different classes and uses 10-split cross-validation.
RGB-B Object Recognition. One of the first uses of
CNNs for RGB-D image classification was the work of
[Socher et al., 2012], where a model based on a CNN com-
bined with a Recursive Neural Network (RNN) was used
as feature extractors in combination with a Support Vector
Machine (SVM) classifier. In [Eitel et al., 2015] an end-to-
end mapping from image pixels to object classes is performed
using a two-stream CNN, operating on RGB and depth data
respectively, and an additional late fusion network and classi-
fier. A simple, but effective Jet encoding of the depth values
enabled the use of models pre-trained on ImageNet data. In
[Li et al., 2015] dense local features are extracted from the
depth data and encoded as Fisher vectors. These features are
concatenated with RGB features extracted by a CNN, and
fed to a SVM classifier. In [Carlucci et al., 2016] a large
database, with more than 4 million synthesized depth images,
is created for the purpose of training a CNN on the raw depth
data, without the need of prior pre-processing. A method that
resembles the one of [Eitel et al., 2015], but relies on deeper
networks and surface normal encoding of the depth values
are presented in [Wang et al., 2016]. In [Sun et al., 2017] a
model pre-trained on virtual Computer-aided design (CAD)
data used to eliminate the need for color encoding of the
depth data. In [Asif et al., 2017] hierarchical cascaded forests
are used both to compute grasp-poses and predict object
categories.

III. PROPOSED APPROACH

Ensembles of CNNs are typically created by averaging a
relatively high number of independent models, which are often
created by slightly changing the models hyper-parameters
or the order of which the training samples are presented.
However, creating a sufficient amount of independent models
this way, for evaluation on the Washington RGB-D Object
Dataset is not feasible and also inefficient. To this end, we
form our ensembles using candidate models which are known
in advance, to be complementary each other. This enables us to
use much fewer models in the ensemble, while still providing
an improvement in recognition accuracy [Lee et al., 2015].
To establish the knowledge to accomplish selecting proper
ensemble candidates, we first study the baseline model and
different pre-processing methods of the depth-images. Finally,
we review commonly used ensemble methods.

A. Baseline Model

The baseline model for our work is the deep learning
based multi-modal object recognition model described in

[Aakerberg et al., 2017]. This model is based on the Fu-
sionNet concept, proposed by [Eitel et al., 2015], consisting
of two CNNs streams, pre-trained on ImageNet data, op-
erating on RGB and depth data respectively. A late fusion
approach is used to combine features extracted by the two
streams, effectively creating a multi-modal classifier which
creates higher level representations of features from the two
modalities. Different from [Eitel et al., 2015] this model uses
a deeper network architecture for the RGB stream, namely
the 16-layered VGGNet [Simonyan and Zisserman, 2014] in
comparison to the 8-layered CaffeNet [Jeff Donahue, ] used
in the original FusionNet, and rely on colorized surface
normals for encoding of the depth values. When evaluated
on the Washington RGB-D Object Dataset this model has a
recognition performance of 93.5 ± 1.1. Furthermore, as seen
in Fig. 1, this model has a recall that is >98% on 31 out of
the 51 classes in the dataset.
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Fig. 1: The per-class recall of the baseline model, averaged
over all ten splits.

B. RGB-D Image Pre-Processing

Both the RGB and depth data needs to be pre-processed
before it can be used in combination with CNNs pre-trained
on ImageNet data. The baseline model used in this work
does this by squaring images from both domains using border
replication of pixels on the longer sides and re-sizing them to
256 × 256 pixels. During training and inference, the images
are either randomly cropped, or center cropped to match the
input dimensions of the respective CNNs. While the RGB
images need no further processing, the depth images have to
be transferred to the RGB domain to benefit from the features
learned in the CNNs pre-trained on natural images. The
baseline model uses colorized surface normals to effectively
capture object shape and curvature information. A drawback
of this method is that the surface normals cannot be calculated
correctly when large amounts of the depth values are missing,
which is especially pronounced in depth images of objects with
dark or highly specular surfaces. A simpler, but still effective,
way to colorize the depth values is the Jet color encoding
method proposed by [Eitel et al., 2015]. In comparison, this
method, are able to preserve the outline of objects when large
amounts of the depth values are missing. The two depth image
pre-processing methods are visualized in Fig. 2.



RGB. Jet. Surface Normals.

Fig. 2: Comparison of Jet and surface normal encoding of the
depth values, of an image with large amounts of missing depth
values.

C. Ensemble Candidates

In this work, we propose three candidate models for forming
ensembles, namely α, β and γ. α is the baseline model
and β is a variant of the baseline model which uses Jet
color encoding of the depth values, computed as described
in [Eitel et al., 2015]. This latter has been trained similarly
to the baseline model and has a recognition performance
of 92.9% ± 1.0 when evaluated on the Washington RGB-
D Object Dataset. This is slightly lower than the baseline
model, which is expected due to the performance differences
between using surface normal or Jet-encoding of the depth
values. Despite of this, β is still useful in an ensemble
with the baseline model, as the two models have learned
different but complementary features from the depth domain,
and the fact that the Jet-encoding method tends to perform
better with missing depth values. Additionally, we use the
concept of generalist and expert models [Hinton et al., 2015],
for the γ candidate, which is an expert model specialized in
the particularly difficult classes of the dataset. This expert
model is created by performing additional fine-tuning of the
baseline model, but while only presenting training samples
of classes with a recall lower than 94%. We fine-tune the
expert model for 15,000 iterations with a learning rate of
0.001 which is dropped with a polynomial decay of the order
0.5, in conjunction with a momentum of 0.9 and a weight
decay of 0.0005. Despite the fact that the expert models
performance on the particular difficult classes is improved
significantly, compared to the baseline model as seen in Fig. 3,
the overall recognition performance of the expert model is
considerably lower than the baseline model, due to the problem
of catastrophic forgetting [Goodfellow et al., 2013]. However,
by only including predictions from within the expert models
domain, when performing inference with the ensemble, this
problem can be mitigated.

D. Ensemble Methods

There exists a number of different ensemble methods where
unweighted and weighted averaging and majority voting are
among the most common ones.

Unweighted Averaging: The standard ensemble approach
for CNNs is the unweighted average, where the softmax
probabilities of each model are averaged to create the final
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Fig. 3: Visualization of the improvement of the per-class recall
on difficult classes from split-1, when training an expert model
using only training images from these classes, in comparison
to the baseline model. Green bars show the improvement in
comparison to the baseline model, and red bars show classes
where the expert model performs worse than the baseline
model.

prediction as seen in Equation 1. If the individual models in the
ensemble are uncorrelated enough, the variance of the models
will be reduced when averaging with a resulting increase in
recognition performance.

P =
1

n

n∑
i=1

softmax(i) (1)

where softmax(i) is the softmax score vector of the i-th
model.

Weighted Averaging: The weighted averaging method re-
sembles the unweighted averaging methods, with the one
difference that the predictions from the individual candidates
are weighted as seen in Equation 2. The weighted ensemble
scheme is illustrated in Fig. 4.

P =
1

n

n∑
i=1

αisoftmax(i) (2)

where softmax(i) is the softmax score vector, and αi the
weight of the i-th model respectively.

The weight αi can be determined in several different ways,
including a grid search over all possible values. In this work,
αi is determined based on the individual candidate models
performance on the validation set. Hence models with a high
accuracy will have a large weight when averaging the softmax
probabilities. To have weights which sum to 1 the weighted
mean of the accuracy is used, which is calculated as seen in
Equation 3.

αi =
Ai

k∑
j=1

Aj

(3)

where Ai is the accuracy on the validation set for model i,
and k is the number of models in the ensemble.



Majority Voting: Majority voting can be used when the
number of models in an ensemble is > 2. The aggregated
prediction is created by counting the votes of all the predicted
labels from the individual models and picking the one with
the highest number of votes. This method is less sensitive to
predictions from single models than the unweighted averaging
method. In practice, majority voting is implemented by taking
the mode of the top-1 predictions of all models. If the mode
does not exist, i.e. all models predicted something different,
the prediction of the strongest model is used.

Model 3

Model 2

Model 1

Ensemble Model

Input

Prediction

w3

w2

w1

Fig. 4: Illustration of the weighted ensemble approach, where
the weights w1,w2 and w3 are used to weight each models
contribution in the aggregated prediction.

IV. EXPERIMENTAL RESULTS

We perform all our experiments using the Caffe deep
learning framework [Jia et al., 2014], and use random crop-
ping and horizontal flipping of the training images for data
augmentation. During training and inference, we subtract the
mean RGB and depth image from the input images, to center
the data.

A. RGB-D Object Dataset

We use the Washington RGB-D object dataset
[Lai et al., 2011] for training and evaluation of the proposed
models and ensembles. This dataset contains 207,920 RGB-D
images of common household objects, all captured in a
controlled environment using a spinning table and a Prime-
Sense prototype RGB-D camera, similar to the Microsoft
Kinect V1 camera. The RGB and depth information are
stored in separate files, where the depth images files contain
the depth in millimeters, stored in a single-channel image
in the uint16 format, and the RGB information is stored in
three-channel uint8 RGB images. The images are recorded
continuously at 20 Hz and organized into 51 classes, which
contains images of three to 10 different instances of objects
of the same class, making a total of 300 distinct objects.
There are several hundred images of each instance captured
under three different viewpoint angles, namely 30◦, 45◦. and
60◦. In combination with the dataset, the authors also present
a method for subsampling the dataset, and 10 pre-defined
training and test splits for cross-validation, which is adopted in
this work, and nearly all SoTA works using this dataset. The
dataset is subsampled by taking every fifth frame, resulting
in 41,877 RGB-D images for training and evaluation. For

each split, one random object instance from each class is
left out from the training set and used for testing. Training
is performed on images of the remaining (300 − 51) 249
instances. This results in roughly 35,000 training images and
7,000 testing images in each split. At test time, the classifier
has to assign the correct label to a previously unseen object
instance from each of the 51 classes.

B. Ensembles

We form two ensembles, A and B, out of the three candidate
models, using a weighted average of the individual model’s
softmax probabilities. Experiments with unweighted averaging
have also been performed, but this resulted in ≈ 0.1% lower
recognition performance for both ensembles. Ensemble A
consists of the α and β candidates, which are combined using
the weights 0.57 and 0.43 respectively, found empirically using
a validation set. Ensemble B consists of all three ensemble
candidates. γ is however only included in the aggregated
prediction for classes within its field of expertise. Here, we use
the weights 0.17, 0.13 and 0.7 for alpha, beta and gamma
respectively. The best increase in the recognition performance
is achieved when using ensemble B, which results in an
accuracy of 94.2%±0.7, 0.7% higher compared to the baseline
model alone. The performance of ensemble A is slightly lower
than ensemble B, namely with an accuracy of 93.7% ± 1.1.
Table 1 shows the performance of all the proposed RGB-D
object recognition models in comparison to SoTA works.
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Fig. 5: Visualization of the improvement of the per-class recall
made on average over all ten splits, when using ensemble
B compared to the baseline model. Green bars show the
improvement in recall, and red bars show classes where the
ensemble performs worse than the baseline model.

V. DISCUSSION AND FUTURE WORK

While the use of ensemble learning improves the recognition
performance, there are still classes within the dataset which
the proposed models often misclassifies. Examples of class
instances which are often confused can be seen in Fig. 6.
In this work, only a single expert model has been used in
combination with generalist models to improve the recogni-
tion accuracy. One could train and include additional expert
models, each trained to be experts in their own part of the



Table 1: Comparison of the recognition performance of the baseline and ensemble models proposed in this work to SoTA
works. Red and blue indicates best and second best performance respectively.

Method RGB Depth RGB-D
Nonlinear SVM [Lai et al., 2011] 74.5 ± 3.1 64.7 ± 2.2 83.9 ± 3.5
CNN-RNN [Socher et al., 2012] 80.8 ± 4.2 78.9 ± 3.8 86.8 ± 3.3
FusionNet [Eitel et al., 2015] 84.1 ± 2.7 83.8 ± 2.7 91.3 ± 1.4
CNN+Fisher [Li et al., 2015] 90.8 ± 1.6 81.8 ± 2.4 93.8 ± 0.9
DepthNet [Carlucci et al., 2016] 88.4 ± 1.8 83.8 ± 2.0 92.2 ± 1.31

CIMDL [Wang et al., 2016] 87.3 ± 1.6 84.2 ± 1.7 92.4 ± 1.8
DCNN-GPC [Sun et al., 2017] 88.4 ± 2.1 80.3 ± 2.7 91.8 ± 1.1
STEM-CaRFs [Asif et al., 2017] 88.8 ± 2.0 80.8 ± 2.1 92.2 ± 1.3
Baseline Model [Aakerberg et al., 2017] 89.5 ± 1.9 84.5 ± 2.9 93.5 ± 1.1
This work - Ensemble A - - 93.7 ± 1.1
This work - Ensemble B - - 94.2 ± 0.7

dataset, and include these in the ensemble to possibly improve
the performance even further.

(a) (b) (c) (d) (e)

Fig. 6: Examples of typical misclassifications. The first row
shows images of the actual class. (a) ’Pitcher’→ ’Coffe
mug’, (b) ’Potato’→ ’Tomato’, (c) ’Pear’→ ’Apple’, (d)
’Mushroom’→ ’Garlic’, (e) ’Peach’→ ’Sponge’.

VI. CONCLUSIONS

In this work, we have shown that forming an ensemble
by combining the softmax probabilities of different com-
plementary CNN based RGB-D object recognition models,
with weighted averaging to create an aggregated prediction,
increases the recognition performance compared to using a
single baseline model. Our best performing ensemble has an
accuracy of 94.2% on the Washington RGB-D Object Dataset,
which to the best of the author’s knowledge, is the highest
accuracy ever reported on this dataset in the literature.
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