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A Hybrid 3D Path Planning Method for UAVs

Daniel Ortiz-Arroyo1

Abstract— This paper presents a hybrid method for path
planning in 3D spaces. We propose an improvement to a near-
optimal 2D off-line algorithm and a flexible normalized on-line
fuzzy controller to find shortest paths. Our method, targeted to
low altitude domains, is simple and efficient. Our preliminary
results obtained by simulation show the effectiveness of our
method.

I. INTRODUCTION

UAVs (unmanned aerial vehicles) have become increas-
ingly important in civil applications. Some of these applica-
tions are in aerial photography, agriculture, remote sensing,
good transportation, surveillance and environmental moni-
toring, visual inspection in energy production, search and
rescue operations etc. UAVs’ aim is to perform complicated
tasks autonomously in an efficient and safely way, protecting
human lives and producing economic benefits, as UAVs
collect data that can be used to improve the decision making
of governments and companies.

Designing UAVs is a multidisciplinary task involving
mechanical engineering, aeronautics, artificial intelligence,
electronics and control systems. Additionally, is likely that
UAV design must address regulatory issues that will have
an impact on its operation. For instance, authorities will
likely enforce strict limitations on size, speed, weight and
payload, specially in populated areas. Other regulations may
be limiting flying within restricted areas and/or at certain
altitude ranges.

In this paper we discuss the problem of path planning
in UAV’s mission control. Planning is an area of Artificial
Inteligence (AI) in which the set of actions U =

⋃
x∈X U(x)

performed by an agent (robot or UAV) changes the state x of
agent’s world. In planning, a state transition function defined
as:

x′ = f(x, u)

describes the actions performed by an agent. In this
equation, action u changes the current state of the world
x into state x′. The set XG ⊂ X is the set of goal states
G among the whole universe set X of states. One important
type of planning is path planning. In path planning, the state
of an agent is its current position. A path planning algorithm
implements the state transition function that finds the set of
positions within the state space that an agent must follow to
move from a source location to a target destination. Time is
a variable not considered in path planning but in trajectory
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planning. Path planning is one of the main components in
the navigation system of UAVs.

Path planning may be done off-line or on-line. In the off-
line approach, a path is calculated before the UAV takes
off, using geographical information such as maps and the
topography of an area or region. This technique works
well in static environments. On-line planners are capable
of calculating in real-time a path according to the data
registered by its sensors. This type of planner is used when
the environment is dynamic. Hybrid planners may change an
off-line path at run-time, adapting the path when unforeseen
objects are detected.

Path planning is in essence an optimization problem, in
which the optimality of a path is judged according to one or
more criteria. For instance, finding the shortest path from a
source to a target destination or reducing fuel consumption.
Path planning in 2D is normally used in robotic applications
and computer games. UAVs use 3D path planning algorithms.
A standard approach in path planning, is to discretize a
continuous space, representing it as a visibility graph or as
a grid graph in 2D or 3D.

A path in a discretized grid graph is the sequence of
nodes N = {n1, n2, .., nm}, traversed by an autonomous
vehicle along the edges E of two consecutive nodes E(N) =
{(ni, ni+1), i = 1, ..,m−1}. A path in the visibility graph is
the sequence of traversed nodes that are visible in straight-
line. The main advantage of using graph representations
is that these methods have shown to produce near-optimal
solutions [6],[13] at the cost of requiring large amounts of
memory to represent the whole solution space.

A robot moving towards its target destination in a 2D grid,
may choose to move not only along the edges connecting
two nodes but in the direction of any of the 8 neighboring
nodes located at angles of n · π/4 degrees, where n = 0..7.
However, in continuous environments, choosing among this
limited number of angles may produce suboptimal solutions
and non realistic paths. One possible solution to this problem
is to apply path smoothing as a postprocessing step, once the
target node has been found. However, in certain cases this
may be difficult to do, it does not guarantee to find near
optimal solutions, and is expensive computationally.Another
solution is to use algorithms known as any-angle. In these
approaches, paths may not go directly to a node in the grid
but they may cross edges connecting two neighboring nodes
at an arbitrary angle. Finally, more efficient probabilistic
graphs may be created to represent state space.

Path planning in 3D spaces is more difficult than in 2D,
because algorithms should check for 26 or more lines-of-



sight (in the case of any-angle approaches), to find the
optimal path.

This paper presents a hybrid graph-based method for
path planning in 3D static environments that are partially
known. We propose to use an improvement to a near-optimal
2D algorithm together with a specialized normalized fuzzy
logic based controller to fly in the 3rd dimension. Given
that the 2D algorithm is in control most of the time, our
algorithm could be called an algorithm in 2.5D. The use of
fuzzy logic allows our system to function in partially known
environments. Our aim is to create a simple but still effective
method for path planning. The paper is organized as follows.
Section II presents a brief overview of the current state of art
in path planning algorithms. Section III describes in detail
the method. Section IV presents the results of our method for
several test cases. Finally Section V concludes and describes
future work.

II. PREVIOUS RELATED WORK

An extensive number of approaches for path planning
have been proposed in the literature during the last three
decades. In this section we present a brief summary of the
methods more closely related to the method presented in
this paper.One class of path planning algorithms employs
classical optimization techniques such as genetic algorithms,
particle swarm optimization or other multicriteria optimiza-
tion methods. Other methods employ other techniques from
computational intelligence such as neural networks or fuzzy
logic.

The main advantages of fuzzy logic in path planning
are 1) it allows UAVs to operate in environments that
are partially known, 2) it is computationally efficient and
relatively easy to implement 3) UAV movement may be
adapted by incorporating new rules. Some of the approaches
based on fuzzy logic employ fuzzy controllers [15], [1] for
path planning. Other fuzzy logic-based methods are capable
of doing not only path planning but completely controlling
UAV’s movement in 3D spaces [2].

Another class of algorithms have been proposed based
on the idea of representing the path planning problem as
potential fields of attracting and repulsing forces. A vehicle
should follow the path of minimum field energy [3].

Voronoi diagrams divide a 2D region as a collection of
concave or convex polygons that are used in path searching
[3]. Voronoi diagrams have been combined with potential
fields, in which repulsive forces are assigned to obstacles
[4]. Other geometrical-based approaches like [5], find paths
in 3D on convex polyhedron using B-spline curves [3] to
model paths.

Linear programming approaches describe path optimiza-
tion and collision avoidance as a list of linear constraints.
In the Mixed Integer Linear Programming (MILP) method
[3][14], integer and continuous variables express the optimal
path problem in a linearized form, using an indirect branch-
and-bound optimization method. All previous approaches
have produced very good results but have one or more

of the following problems: do not produce near-optimal
solutions, may suffer from local minima and/or have high
computational costs and may not work in partially known
environments.

Probabilistic algorithms such as roadmap planners (PRMs)
[16] and rapid exploring random trees (RRT) [17] are another
important class of path planning algorithms. PRM consists
of two stages. In the learning stage, random locations are
generated from an uniform distribution, and those that lie in
the collision-free paths are retained. Then, a local planner
finds feasible paths between pairs of nodes that are in close
proximity and connects them with edges. In the query phase,
the start and destination nodes are entered and connected to
two nearby nodes in the graph. Afterward, the roadmap is
searched to find the shortest path. RRT grows a random tree
simultaneously from the start and the target locations, to find
a feasible path that connects both.

Probabilistic based algorithms have been successful not
only in path planning for AUVs but also in point-to-point
motion in robots with many degrees of freedom in static
environments [16]. These probabilistic algorithms are very
efficient but they do not guarantee to find near-optimal paths.
More recently probabilistic algorithms such as PRM* and
RRT* were proposed in [18]. PRM* is similar to PMR
but connections in the random graph are attempted only
with nodes that are within a fixed radius r distance from
each other. RRT* relies on RRG, an algorithm that builds a
random tree similarly as RRT does, but that when connecting
a new node, it attempts to connect all other nodes that are
within a ball of radius r. These algorithms are efficient
and guarantee an almost-sure convergence to an optimal
solution. However, one issue with these algorithms is that the
quality of the solution depends on the number of iterations
performed.

Other non-probabilistic path-planning algorithms, dis-
cretize and represent the state space as graphs. Graphs are
either grids of interconnected nodes or visibility graphs,
where each node represents a location in space and the edges
represent a visible connection between them [3]. Within the
grid graph algorithms, those based on A* [6] are amongst
the most used. A* is a simple heuristic algorithm for path
planning in 2D discrete spaces. A* is optimal under certain
conditions, as was proved in [6]. A* employs two functions
g(s) and h(s), to guide the path search. g(s) represents the
cost of the path from the source source node to a node s,
and h(s) represents the heuristic estimated cost from node
s to the destination node. At each step, A* chooses for
expansion the node s that has the lowest total value of
f(s) = g(s) + h(s).

However, A* produces suboptimal solutions and paths
that are non realistic. A* with path smoothing and Linear
Programming techniques have been applied in trajectory
planning [14].

In the last years, a variety of algorithms inspired by A*
have been proposed. D* (dynamic A*) [7] is an extension



to A* that works efficiently in dynamic environments, where
there is need for re-planning. Re-planning can be done in A*
but is very inefficient, since we need to recalculate a whole
new path from scratch. Conversely, D* updates only the cost
of the changing nodes, but using mostly the same path.

D* Lite algorithm [8] is based on the same principles
of D* and A*. However, D* Lite is more efficient and
produces better results than D*. The reason for this is that
D* Lite recalculates the distances from the starting node to
the current node, but only if they have changed because of
new obstacles or if they have not been calculated before.

The Theta* algorithm [9] is an example of any-angle
algorithm inspired by A*. Theta* evaluates the paths from
the current s node to a neighboring node s′. Additionally,
Theta* evaluates paths from the start node to the parent of s
and from parent of s to s′ in straight line i.e. it checks if there
is a line-of sight from the parent node of s to s′. The Theta*
algorithm checks each successor node s′ of the current node
s that is being expanded, to see whether s′ and the parent of s
are not being blocked by an obstacle. If they are not blocked,
it sets the parent of s to be the parent of s′ and assigns g(s′)
accordingly [9]. This is one key difference between Theta*
and A*: Theta* allows the parent of a node to be any node,
whereas in A* the parent must be a predecessor node. Basic
Theta* is a simplified version of Theta* that is very similar
to A* but considers lines of sight and not only adjacent nodes
as A* does. Unfortunately, Theta* may be even slower than
A* with path smoothing because it needs to perform a large
number of line-of-sight calculations.

Incremental Phi* [19] is an incremental version of Basic
Theta* that improves Basic Theta* by about one order of
magnitude.

Lazy Theta* [10] is a variant of Theta* that performs less
line-of-sight calculations compared to Theta*, but at the cost
of finding slightly larger paths than Theta*.

The Field D* algorithm [11] is an any-angle algorithm
capable of expanding a path through any point in an adjacent
grid edge. Field D* uses a linear interpolation to approximate
the value of the function g(se) (the value of function g(s)
in the point of intersection with the edge e) as a linear
combination expressed by:

g(se) = y × g(s2) + (1− y)g(s1) (1)

where y is the unit distance from s1 to se (i.e. to the
intersection point in the edge)[11].

Block A* [12] is an algorithm that is similar to A* but
instead of looking at a single node for expansion, it analyzes
a block of nodes. For this reason Block A* is fast but
its results are slightly worst than Theta*. ANYA [13] is
an optimal path finding algorithm that employs intervals.
However no experimental results have been published so far.

Algorithms like D* Lite or Lazy Theta* can recompute
a new path very quickly. For this reason these algorithms
can be used to find an alternative path in dynamic en-
vironments when unforeseen obstacles are detected. Most

previous algorithms have been designed for path planning
in 2D spaces but algorithms such as Field D* and Lazy
Theta* have been extended to 3D spaces [11][10], at the
cost of being more expensive computationally and requiring
large amounts of memory to discretize 3D spaces. These
algorithms are near-optimal but do not work well in partially
known environments.

III. DESCRIPTION OF THE METHOD

The method we propose in this paper aims at finding the
shortest path from a source location to a target destination
in 3D. The environment may contain multiple obstacles
and UAVs have certain restrictions such as flying at certain
maximum/minimum altitudes. The type of domain and envi-
ronment we are targeting is civil commercial applications in
modern cities. Our method assumes that the environment is
static but that it may be partially known in one dimension.
However, given that our method is very efficient and it can
recalculate a new path very quickly, it may be also used in
dynamic environments with certain adaptations.

The main motivation of our approach is to explore the
synergy between near-optimal algorithms in 2D and fuzzy
logic, with the goal of taking advantage of the best features
of both. Any-angle algorithms produce near-optimal solutions
in 2D spaces, but when applied to 3D spaces they may
be expensive computationally and/or require large amounts
of memory [10]. Additionally, any-angle algorithms do not
work well in partially known environments. Contrarily, fuzzy
logic-based methods for path planning work well in partially
known environments, but in general they do not guarantee
to obtain near-optimal solutions. To the knowledge of the
authors no similar approach to the one presented in this paper
has been proposed in the literature.

Our method does not intend to fully control UAV’s move-
ments. This decoupling between path planning and UAV
control, allows it to be potentially used with any kind of
control system and type of UAV.

Figure 1 shows the main blocks of our planning system.
The system consists of a decision making component that
keeps control of the rest of the system. Path planning is
performed off-line using topographical data in 3D about the
flying area. The topographic data stored in a database (TDB),
should include information about potential obstacles for the
UAV, such as buildings, monuments or towers.

Potential obstacles are classified by the classification com-
ponent in our system, as semi or full obstacles depending on
their dimensions. An object is classified as semi-obstacle if
its height is above the minimum altitude that the UAV is
allowed to reach but below the maximal allowed altitude.
An object is classified as full-obstacle if its height is above
the maximum altitude that the UAV is allowed to reach. An
object classified as semi-obstacle may be flown over by a
UAV, but objects classified as full-obstacles should be always
flown around.

Fig. 2 shows these two situations.



Fig. 1. Block Diagram of the Planning System

Fig. 2. UAV’s path flying over and around buildings

Our path planning algorithm called BF Lazy Theta* is
based on the near-optimal 2D off-line path planning algo-
rithm Lazy Theta*.

The path calculated by BF Lazy Theta* algorithm con-
sists of the discrete ordered set of positions sp(s, d) =
{p0, p1, ..., pN−1}, where pi = (x, y) and s = p0 and
d = pN−1 are the source and target nodes in the graph.

If a semi-obstacle is found on the path, the decision
making system will send commands to the fuzzy controller so
that it calculates the path in the 3rd dimension (z), using real
time information captured by its sensors and data from the
topographical database (TDB). Hence, the path calculation
on the (z) axis, is on-line.

The output of the whole planning system will produce
a sequence of {x, y, z} (latitude, longitude, altitude) values
that could be feed into the control system of a UAV. The
control system will adjust pitch, speed, and angle to reach

Fig. 3. BF Lazy Theta* and Fuzzy Controller Paths

each of these specific locations within the path.
In our method, UAV’s altitude will either increase to fly

over a semi-obstacle, or it will be kept constant to fly around
full-obstacles 1. In our simulations the UAV always moves
forward. These simplifications reduce the number of paths
that must be analyzed and simplifies the interaction between
the fuzzy controller and the BF Lazy Theta* algorithm
module. However, in domains like transportation and parcel
delivery these simplifying assumptions are mostly valid.

Our planning system makes the UAV fly at constant
altitude most of the time, following the path determined
by BF Lazy Theta* algorithm. Our method makes the UAV
ascend only when it is strictly necessary to fly over a semi-
obstacle. At this time the fuzzy controller and the BF Lazy
Theta* algorithms will run in parallel and synchronize to
generate the {x, y} and {z} values at same time. These
values are sent to the UAV flight control system.

The original Lazy Theta* algorithm is the base of our
method. The algorithm is described in detail in [10]. In this
section we will provide a brief description of it and describe
our proposed improvement.

Lazy Theta* is based on the A* algorithm, and as A*
does, it employs two cost functions g(s) and h(s) to guide
the search for the optimal path. What is different in Lazy
Theta*, is the way the algorithm searches for candidate paths
and how these cost functions are updated.

The parts of the Lazy Theta* algorithm that are different
from A* are shown in Algorithm 1.

When searching for a path at node s, Lazy Theta* assumes
optimistically that the neighbor node s′ and the parent(s)
node have line-of-sight. If the assumption is correct, Lazy
Theta* does not need to change the value of g(s). However,
if the assumption is wrong, Lazy Theta* updates g(s) and
changes the parent of s′ using Path1 in line 2 of Algorithm
1. The list of parent(si) nodes will be used to recover the
path, once the algorithm finds the target destination. The
parent node is updated considering the path from the starting
node to each expanded visible neighbor s′′ of s′ and from s′′

to s′ in straight line and choosing the shortest path among

1Landing or taking off plans are not considered in this paper, but
quadcopters capable of doing vertical take off and landing can be used
with our method



Algorithm 1 Lazy Theta*
1: procedure SETVERTEX(s)
2: if NOT lineofsight(parent(s), s) then . Path 1
3: parent(s) :=

argmins′∈nghbrvis(s)∩closed(g(s′)+c(s′,s));

4: g(s) := mins′∈nghbrvis(s)∩closed(g(s′)+c(s′,s));

5: end if
6: end procedure
7: procedure COMPUTECOSTS(s, s′)
8: if g(parent(s)) + c(parent(s), s′) < g(s′) then . Path 2
9: parent(s′) := parent(s);

10: g(s′) = g(parent(s) + c(parent(s), s′);
11: end if
12: end procedure

them. The closed(g(s′)+c(s′, s)) list contains all nodes that
have been already expanded.

We have improved the results obtained by the near-optimal
Lazy Theta* algorithm in BF Lazy Theta*. This new version
searches simultaneously at two potentially different paths 1)
the path from source to destination (forward) and 2) the path
from destination to source (backward).

The goal of running in parallel the two searches is to
increase the likelihood of finding other lines-of-sight not
explored by Lazy Theta* that could result in a shorter path.
This is somewhat similar to what Theta* does by exploring
more lines-of-sight compared to Lazy Theta* and is the
reason why Theta* provides slightly better results than Lazy
Theta*, but at the cost of longer execution times. In our
system the two searches take almost identical time and since
there is no dependency between the two searches, they can
be executed in parallel. Hence, BF Lazy Theta* algorithm is
as fast a Lazy Theta* and as discussed in Section IV slightly
improves Lazy Theta* results.

The BF Lazy Theta* algorithm performs the following
path evaluation, where each path consists of a sequence of
positions p(i) = {x, y}:

sp(s, d) =

{
fp(s, d) if len(fp(s, d)) ≤ len(bp(d, s))
bp(d, s) if len(bp(s, d)) < len(fp(d, s))

(2)
where sp(s, d) is the selected path from a source point s

to a destination d; fp(s, d) is the forward path from source
point s to a destination d, and bp(d, s) is the backward
path from source point d to a destination s. Our algorithm
compares the lengths len(fp(s, d)) and len(bp(d, s)) of the
two paths. If backward path is the shortest, BF lazy theta*
will reorder all the N positions within a path bp(d, s) in the
following way:

p(i) = p(N − i) for i = 0..N (3)

where p(i) is the position i within a path consisting of N
positions. The length of path f(p, s) (or b(p, s)) is calculated
using:

len(f(p, s)) =

N−2∑
i=0

de(p(i), p(i+ 1)) (4)

Fig. 4. Fuzzy Controller Measures

where de(p(i), p(i+1)) is the euclidean distance calculated
from position i to i+ 1.

During flight, the fuzzy controller will determine UAV’s
altitude using an altimeter or a similar device. The distance
from its current position in straight-line to the next semi-
obstacle in its path is obtained from a distance sensor
and the highest point of an object (such as a building) is
obtained from TBD. We also assume that the straight-line
distance sensor will be kept always in horizontal position
independently of UAV’s movements. We have chosen to have
a single sensor to determine how effective our method might
be when having the minimum amount of equipment. More
sensors, tv cameras or other sophisticated pattern recognition
techniques may be also used but at the cost of adding more
complexity to the system.

Using the data from the sensor and the TDB we calculate:

h = |ht − ca| (5)

where h is the distance to the highest point of an object
measured from current UAV’s altitude ca, and ht is the total
height of an object.

Figure 4 illustrates these measures.
To fly over regular semi-obstacles, we may consider em-

ploying a simple linear interpolation function such as the one
shown in Fig. 5 obtained from:

θ = tan−1
(
h+ t

d

)
(6)

ni = tan(θ) · di (7)

where θ is the angle shown in Fig. 4 ; h is the distance
to the highest point of an obstacle from the current UAV’s
altitude; t is a minimum threshold distance. UAV’s altitude
at each step i is incremented using Eq. (7) as the UAV moves
toward the obstacle in steps of size di, and where d =

∑
di is

the distance where the UAV will start ascending. This value



Fig. 5. Simple linear path

Fig. 6. Normalized Fuzzy controller

will depend on UAV’s capabilities, but d should be made as
short as possible to optimize path’s length.

The simple linear function in Eq. (7) may work in ideal
conditions, where all objects are regular and the data re-
garding the topography of an area is complete and precise.
In practical applications this may be difficult to achieve.
Contrarily, a fuzzy logic based approach does not rely on
having precise or complete data. The cost of using a fuzzy
controller is that, due to the non-linear functions produced by
the fuzzy controller the path may be slightly larger than the
one produced by the linear interpolation, this is illustrated in
Fig. 12.

In this paper we propose a special normalized fuzzy
controller. In this controller, both inputs and outputs have
been normalized within the range [0, 1]. These normalized
range of values allow us to redefine the behavior of the
controller according to the current position of the UAV.
In our planning system, UAV’s altitude is determined by
a Mandami-type fuzzy controller. Input data from sensors
is normalized, fuzzified and the output, representing the
application of the rules in the knowledge base on the input
data, is defuzzified and normalized before being used to
generate the path.

Figure 6 shows the Mandami-type fuzzy controller that
includes the normalization stages, the inference stage, the
knowledge base and the fuzzification and defuzzification
stages.

The inputs to the fuzzy controller are the linguistic vari-
ables DistanceFromObject and HighestPointObject; Altitude
is the output of the fuzzy controller. Close, Far, Keep,
Increase are linguistic terms represented as fuzzy sets using
triangular and trapezoidal membership functions.

Figure 7 shows the surface representing how the altitude

Fig. 7. Surface View

of the UAV increases as it approaches an object from below
and how when it reaches certain distance above the highest
point, the altitude will remain constant. This is illustrated by
the areas in the figure where the altitude variable has a value
of 0.

The following knowledge base, is used in our fuzzy
controller:

If (DistanceFromObject is Close) and (HighestPointObject
is Close) then (Altitude is Increase)
If (DistanceFromObject is Close) and (HighestPointObject
is Far) then (Altitude is Increase)
If (DistanceFromObject is Far) and (HighestPointObject is
Far) then (Altitude is Keep)
If (DistanceFromObject is Far) and (HighestPointObject is
Close) then (Altitude is Keep)
If (HighestPointObject is Close) then (Altitude is Increase)
If (HighestPointObject is Far) then (Altitude is Increase)

The rules in the knowledge base state that UAV’s altitude
will be gradually increased, as the UAV approaches a semi-
obstacle. At some point in time, UAV’s altitude will be far
(above) from the highest point in the obstacle. When this
happens, one of following two situations may occur: 1) the
UAV may be measuring an infinite distance if there is no
obstacle directly in front of it or 2) it will measure the
distance to another obstacle that may be in front of the
first object. In any of these 2 cases UAV’s altitude will
remain essentially constant and the UAV will be flying in
straight line in the direction determined by the Lazy Theta*
algorithm. Figure 8 illustrates this situation.

Figures 9,10,11 show the membership functions of each
of the linguistic terms used in the rule base of our method.
We used triangular and trapezoidal forms as they are compu-
tationally less expensive to calculate, but still produce good
results. As the figures show the values used to describe the
triangular and trapezoidal membership functions have been
normalized.



Fig. 8. UAV flying above the highest point of an object

Fig. 9. Membership Functions for input variable DistanceFromObject

Fig. 10. Membership Functions for input variable HighestPointObject

Fig. 11. Membership Functions for output variable Altitude

Fig. 12. Path calculated by the fuzzy controller vs. linear interpolation

The defuzzified output value of the fuzzy controller pro-
duced by the rules in the knowledge base is called Altitude.
The output of the fuzzy controller shown in Fig. 11 and
represented as au, has been normalized in the range [0, 1]
using:

an = au/0.552 (8)

UAV altitude is updated using the following equation:

ai = ai−1 + f(d, h)× ani (9)

where ai is the updated altitude calculated from the current
altitude ai−1; ani the normalized altitude value produced by
the fuzzy controller in the range [0, 1], and f(d, h) a function.
During flight, the z = ani altitude value is constantly updated
by the fuzzy controller as the UAV approaches an obstacle.
The sequence of values for ani will generate new values for
ai as indicated by Eq. (9).

The function f(d, h) is defined as:

f(d, h) = g(d)× h (10)

where the values of function g(d) will depend on the
distance d measured from the UAV to the obstacle in front of
it and h is defined in Eq.(5). The normalized inputs and the
output in the fuzzy controller, allows us to redefine the values
of the linguistic terms close, far, keep, increase used in the
knowledge base in different situations and with different
obstacle objects, to change the path accordingly. This is
done by defining one or more functions g(d) in Eq. 10. For
instance, if two semi-obstacles that are in front of each other
have a short separation, the altitude should be increased at
a faster rate compared to the case where the separation is
larger. This is illustrated in Fig. 16. In practice g(d) should
be tailored to the specific obstacles in the environment and
it will also depend on other factors such as UAV’s current
speed and size.

Fig. 12 shows simulation results of the path produced by
the fuzzy controller as it approaches an obstacle compared
to the linear interpolation shown in Fig. 5.



Fig. 13. Simulation of UAVs approaching and flying over buildings of
different heights

Fig. 14. Simulation of UAVs approaching and flying over a semi-obstacle
at different altitudes

It must be remarked that being the normalized fuzzy
controller independent of 2D planner, it can be used with
any other algorithm.

IV. EXPERIMENTAL RESULTS

In this section we present some simulation results on the
approach presented in this paper. We implemented the sim-
ulation environment shown in Fig. 1, consisting of modules
written in Matlab and in Java.

Figure 13 shows, how the fuzzy controller changes UAV’s
altitude as it is approaching buildings of 30, 40, 60 and 80
mts. height.

Figure 14 shows a simulation of the path followed by
an UAV that flies at different initial altitudes. The fuzzy
controller in this case calculates different paths depending
on the initial altitude of the UAV, to allow it fly over a semi-
obstacle of 80 mts. height.

Figure 15 shows the path followed by an UAV when flying
over several semi-obstacles of different heights that are far
apart from each other.

Figure 16 shows the path followed by an UAV when flying
over several semi-obstacles of different heights that very
close to each other.

We tested the BF Lazy Theta* algorithm together with
the fuzzy controller, using randomly generated maps con-
sisting of cubes representing buildings of different widths,
lengths and heights. Our tests were performed on a simulator

Fig. 15. Simulation of UAV flying over several semi-obstacles

Fig. 16. Simulation of UAV flying over two close obstacles

depicting a static environment with a single UAV. In our
experiments we used randomly generated scaled maps with
multiple obstacles of different dimensions and heights. The
maps show full-obstacles as black squares, semi-obstacles are
represented as gray squares, and the white areas are obstacle-
free.

Figures 17,18,19,20,21 show the results of applying BF
Lazy Theta* algorithm. In all these figures, the source
position is shown on the bottom-left figures and the target
destination on the top-right. The calculated forward path is
shown in blue and the backward path in green.The total
path lengths obtained were measured by calculating the
Euclidian distance of the whole sequence of positions. Figure
17 shows the simulation results of BF Lazy Theta* where the
forward path in blue is actually larger (7638.35 mts) than
the backward path in green (7614.56 mts). BF Lazy Theta*
shows an improvement of 0.3%.

Figure 18 shows a case where the forward path in blue
is shorter (7281.07 mts.) than the backward path in green
(7338.98 mts.).

Figure 19 shows an example where the forward path in
blue has essentially the same length as the backward path in
green (7529.8 mts.).

Figure 20 exemplify a case where the forward path in
blue is very different in length (7409.4 mts.) compared to
the backward path in green (7333.98 mts.). In this case the
percentage of improvement we get from BF Lazy Theta*
is 3.6%. This is a significant improvement given that Lazy



Fig. 17. BF Lazy Theta* path calculation example 1

Fig. 18. BF Lazy Theta* path calculation example 2

Fig. 19. BF Lazy Theta* path calculation example 3

Fig. 20. BF Lazy Theta* path calculation example 4

Fig. 21. BF Lazy Theta* path calculation example 5

Theta* is near-optimal.

Figure 21 shows a case similar to the previous example,
where the forward path in blue is very different in shape
to the green backward path but their lengths are similar
(7539.02 mts. and 7531.4 mts.). The improvement shown
by BF Lazy Theta* is 0.1%

We executed the BF Lazy Theta* algorithm on a sample of
500 randomly generated maps. Our results show an average
of 0.3% of improvement with a variance of 0.3. This indi-
cates that the improvements achieved by BF Lazy Theta* are
rather modest and that results vary widely depending on the
number, size and location of the obstacles in the path. This
is expected since Lazy Theta* is a near-optimal algorithm.
However, in certain cases as is illustrated in Fig. 20, we can
get significant improvements with BF Lazy Theta*. For this
reason and given that the cost of implementing and running
the algorithm is low, it is always better to use BF Lazy
Theta*.



V. CONCLUSIONS

We have presented a hybrid path planning system for
UAVs that employs a near-optimal algorithm in 2D. Our
preliminary results on a simulation system, show that the
hybrid planning system is capable of finding near opti-
mal shortest paths on randomly generated maps. A fuzzy
controller working simultaneously with the Lazy Theta*
algorithms finds the best path to overcome obstacles by
changing UAV’s altitude on-line using data from sensors and
topographical databases.

The advantage of our approach is that it is simple, fast
and easily adaptable. Two contributions of this research work
are the use of a flexible normalized fuzzy controller whose
behavior can be changed at run time to adapt a path to
different situations and an improvement on the Lazy Theta*
algorithm that we call BF Lazy Theta*-

The approach we have described, assumes that the only
source of partially known information may be due to the
height and/or shape of obstacles. This is handled by the
normalized fuzzy controller. However, there may be other
sources of imprecise or unknown information, such as the
exact width or depth of an obstacle. One solution to this
problem is to include a second fuzzy controllerwith an extra
sensor, similar to the one we have described. However, in this
case the decision making system should be changed to enable
the second fuzzy controller, correcting the path produced by
the BF Lazy Theta* using in real-time. Another option, is
to represent obstacles, at the 2D discretization stage, with a
larger number of nodes than those stated in the obstacle data
stored in the TDB. This will take into account the uncertainty
in the measures.

In a future work we plan to test our system with more
realistic geographic information to asses the performance of
the method in more complex environments. We will also test
our method in a dynamic environment, where new obstacles
may appear at random locations or where other UAVs may
be flying in the same area.

Our simulation assumed that the current UAV position
can be determined exactly and that sensors provide accurate
information, but in real situations this may be difficult to
achieve. We are exploring the use of probabilistic bayesian
filters that allow us to determine the current UAV position
using maps and on-line sensor information.

Another improvement is to change BF Lazy Theta* to
merge the forward and backward paths in an optimal way,
splitting the paths in segments, and selecting those segments
that overlap in both paths or that will provide the shortest
path within a segment.

Additionally, given that the cost of making an UAV to
ascend is relatively high (in terms of more fuel and/or energy
consumption) the path planning method may be improved
by evaluating if the shortest path is obtained by flying over
an obstacle or it may be better to fly around it. This will
depend on the current UAV’s altitude and the dimensions of
the obstacle in the area. Finally, the rule base and the mem-

bership functions will be optimized using machine learning
to improve the results produced by the Fuzzy controller when
flying over more complex obstacles that those considered in
this paper.
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