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Abstract

This work investigates efficient topology optimization

for finite-life high-cycle fatigue damage using a density

approach and analytical gradients. To restrict the minimum

mass problem to withstand a prescribed finite accumulated

damage, constraints are formulated using Palmgren-

Miner’s linear damage hypothesis, S-N curves, and the

Sines fatigue criterion. Utilizing aggregation functions

and the accumulative nature of Palmgren-Miner’s rule, an

adjoint formulation is applied where the amount of adjoint

problems that must be solved is independent of the amount

of cycles in the load spectrum. Consequently, large load

histories can be included directly in the optimization with

minimal additional computational costs. The method is

currently limited to proportional loading conditions and

linear elastic material behavior and a quasi-static structural

analysis, but can be applied to various equivalent stress-

based fatigue criteria. Optimized designs are presented for

benchmark examples and compared to stress optimized

designs for static loads.

Keywords Topology optimization; Fatigue constraints;

Adjoint method; P-norm

1 Introduction

In topology optimization the goal is to find an optimal ma-

terial distribution within a prescribed design domain. Typ-

ically, the design domain is discretized using the finite ele-

ment method, where each finite element is assigned a dis-

crete value of 0 or 1 corresponding to void or solid material,

respectively. However, such discrete programming prob-

lems with a large number of design variables are difficult to

solve. Thus, the material distribution is often formulated in

terms of a continuous function spanning from 0 to 1. As a

result, more effective mathematical programming methods

can be applied.

The continuous topology formulation presents a new

problem, i.e. how to determine the structural response for

intermediate densities. To address this, several methods
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have been applied [1–4]. In this work, the Solid Isotropic

Material with Penalization (SIMP) method is used. The ba-

sic idea in SIMP is to penalize the stiffness for intermedi-

ate densities in such a manner, that the intermediate den-

sities give a very low stiffness compared to the mass. The

SIMP method is easy to implement in a finite element pro-

gram [5, 6], and for certain relationships between the Pois-

son’s ratio and the penalization power, the SIMP method

presents real microstructural based models [7].

Topology optimization has been applied to a variety of

fields, but most work has been done on minimizing the

compliance under overall volume constraints. A stiffness

optimal design provides much insight into the design as it

presents optimal load paths. However, stiffness optimal de-

signs often require major design alterations to fit more com-

mon design driving criteria such as stress or fatigue. Con-

sequently, it can be very beneficial to introduce stress or

fatigue criteria in the topology optimization formulation.

Stress-constrained structural optimization is an old re-

search field. Some of the earliest work was done on sin-

gle load truss design [8] and multi load truss design [9].

Sved and Ginos found that the global optimum to their

three-bar truss design was a two-bar solution. However,

the global optimum was unreachable by a gradient-based

method because the stress constraint prevented the third bar

from vanishing. This phenomenon, which also applies to

topology optimization, is normally referred to as singular

optima. These singular optima have been studied, and it

has been shown that the singular optima belong to degen-

erate subspaces that are unreachable by standard non-linear

programming techniques [10].

The issue with singular optima is normally addressed

by relaxation techniques, where an alternative optimization

problem is solved. Generally speaking, two types of relax-

ation techniques exist, where many variations thereof have

been proposed. The two types of relaxation techniques are

(i) the ε-relaxation technique [11], and (ii) the qp-approach

[12]. In this work, the qp-based relaxed stress method as

formulated by [13] is used. The basic idea is to expand the

design space while also making intermediate densities yield

very high stresses.

In stress-constrained topology optimization, it is com-

mon practice to evaluate the stress in at least one point

in each finite element. Consequently, the number of con-
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straints is either equal to or higher than the number of de-

sign variables. For this reason, the benefit of using an

adjoint formulation disappears, and as a consequence, the

computational cost of the design sensitivity analysis is high.

The two most common methods of dealing with the large

number of constraints are active set strategies [14, 15] and

constraint aggregation. In an active set strategy, a scheme is

introduced to only include the most important constraints in

the optimization. In constraint aggregation, several (or all)

constraints are grouped together into an approximation of

the constraints. Several different aggregation functions ex-

ist, e.g. the Kreisselmeier-Steinhauser function [16–20] and

the P-norm function [13, 21]. Using aggregation functions

is effective, but the local control is lost, and the optimization

problem becomes increasingly non-linear. Furthermore, the

aggregation functions are only approximations of the real

constraint functions. Note that aggregation functions and

active set strategies can be combined effectively. Recently,

a method which addresses both the singular optima and the

large number of stress constraints simultaneously has been

proposed [22].

While structural optimization with stress constraints is an

old field of research, fatigue constrained optimization is a

relatively new and unexplored area. This can partly be ex-

plained by the high computational cost when having large

load series. In an optimization setting this is both difficult to

solve and computationally expensive. Furthermore, fatigue

constrained optimization is a highly non-linear problem,

and in a topology setting also suffers from the issues caused

by vanishing constraints. However, the fact remains that fa-

tigue is one of the most common failure modes in many en-

gineering applications. Consequently, fatigue optimization

is a steadily growing research field, where much interesting

work has been done on shape optimization [23–25].

Fatigue constrained topology optimization has been ad-

dressed in a variety of ways. [26] addressed the dynamical

nature of the loading conditions in their topology optimiza-

tion by applying equivalent static loads [27,28]. The contri-

bution by [29] incorporated dynamic fatigue and static fail-

ure criteria under constant and proportional loading. [30]

utilized a modified Goodman failure criterion based on the

Sines method to provide infinite-life design using topology

optimization.

[31] applied fatigue constraints in their optimization

where they decouple the fatigue analysis and topology op-

timization. A critical allowable fatigue stress is determined

prior to the optimization by a design independent fatigue

analysis, and then the minimum mass topology optimiza-

tion is constrained by this allowable critical stress. The

critical stress is determined using a predefined stress cy-

cle history, Palmgren-Miner’s accumulation rule and Haigh

diagrams. By decoupling the fatigue analysis, the finite-

life fatigue optimization can be solved as a static stress-

constrained optimization. Thus, they optimize for a max

principal stress constraint while also including a von Mises

yield stress constraint. In [32] the idea of including the en-

tire fatigue analysis directly in the optimization is given, but

it was never realized.

In this work, a method that includes the quasi-static fa-

tigue modeling directly in the topology optimization is ap-

plied. The approach is limited to proportional loading con-

ditions and linear elastic material behavior. The fatigue is

modeled using the Sines method which includes both am-

plitude and mean stress contributions. Additionally, the

Sines method takes into account all stress components di-

rectly in the fatigue calculation. However, Sines method can

easily be replaced with other multiaxial equivalent stress-

based fatigue criteria in the approach. The amplitude and

mean stress values used for the chosen fatigue criteria are

determined using traditional rainflow-counting, i.e. the fa-

tigue analysis thus follows standard practice for fatigue as-

sessment and introduces no additional simplifications in the

analysis. By including Palmgren-Miner’s accumulation rule

directly in the optimization constraint, no additional adjoint

equations in the sensitivity analysis need to be solved for

additional loads. A linear log-log S-N relationship is ap-

plied using Basquin’s equation. However, the method is not

limited to linear S-N curves. The method can be applied to

3D problems with the above assumptions. Lastly, it should

be mentioned that the patent application by [33] describes

some of the elements that are also presented in this paper.

The layout of the paper is as follows. In section 2 the

analysis in the topology setting is presented, i.e. the mate-

rial interpolation, the filtering techniques, and the applied P-

norm function. In section 3 the fatigue analysis is presented.

This includes the accumulation rule, the rainflow-counting,

the S-N approximation, the fatigue criterion, and the adap-

tive constraint scaling scheme applied to the aggregation

function. In section 4 the design sensitivity is presented for

both stress-constrained optimization and the proposed for-

mulation of fatigue-constrained optimization. More details

on the design sensitivity analysis of the fatigue constraint is

given in the appendix, where it can be seen, that implement-

ing the fatigue constraint does not require much more effort

than implementing a typical stress constraint. In section 5

the stress and fatigue optimization problems are presented,

and benchmark examples are evaluated with different load-

ing conditions in section 6. In section 7 the computational

stability is discussed. Section 8 gives conclusive remarks

on the method and presented results.

2 Structural setup

The aim of the optimization is to reduce overall mass by

finding a (local) optimal material distribution that satisfies

finite-life fatigue constraints. For sake of comparison, we

also solve the minimization of mass constrained by a static

von Mises stress criterion.

2.1 Material interpolation

The design domain is modeled by linear elastic finite ele-

ment theory using four-node bilinear rectangular plane el-

ements. Following the classical density-based approach

[2, 3], each finite element e is assigned a density vari-

able xe. This density variable directly influences each ele-

ments Young’s modulus of elasticity Ee. To calculate the

Young’s modulus for all possible densities the modified

SIMP method is applied. The modified SIMP interpolates

the modulus of elasticity by:
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Ee (x̃e (x)) =Emin + x̃e(x)p (E0 − Emin) , (1)

∀e, x ∈ [0; 1]

Here E0 is the Young’s modulus of the material, and Emin ≪
E0 is a lower bound on the modulus, representing the mate-

rial stiffness of a void region. In this work Emin = E0 · 10−6.

p is a penalization factor set to p = 3 following common

practice. x̃e is the filtered design variable described in sec-

tion 2.2. The non-zero lower bound on the Young’s mod-

ulus of elasticity is introduced to avoid a singular stiffness

matrix. In this work linear elastic and isotropic material be-

havior is assumed.

2.2 Density filtering

Density filtering is applied to the design variables [34, 35]

to avoid the so-called checkerboard patterns [36–38], which

present an artificial high stiffness of the model. The density

filter alters the design variables by including a weighted av-

erage of the densities of neighboring elements. The density

filter for a given element e alters the density by:

x̃e =

∑

j∈Ne
ω

(

x j

)

x j

∑

j∈Ne
ω

(

x j

) (2)

Here the set Ne includes the neighboring elements within a

user-specified filter radius r relative to the center of element

e. ω is a linearly decaying weight factor given by:

ω
(

x j

)

= 1 −

∥

∥

∥x j − xe

∥

∥

∥

r
(3)

Here x j and xe are vectors containing the coordinates of the

centroid of element j and e, respectively. The filtered den-

sities x̃ are henceforth referred to as physical variables as

they enter directly into the physical model of the problem.

In this framework, it means that the physical variables are

used to compute the stiffness, to determine the overall mass

of the structure, and to interpolate the stresses.

2.3 Finite element analysis

The structures are subjected to a time-varying load assumed

independent of design. Due to the linear elastic modeling

assumptions of the quasi-static analysis, the structural re-

sponse is evaluated for a reference load P̂ and then the struc-

tural response for all remaining time-steps can be found by

linear superposition. The vector of global reference dis-

placements û caused by the reference load vector P̂ is found

by solving the equilibrium state equation:

K (x̃ (x)) û = P̂ (4)

Here K is the interpolated global stiffness matrix. In this

framework, all elements are of equal size and material type,

thus only one pre-computed reference element stiffness ma-

trix K̂ using a constitutive matrix with Young’s modulus of

unity needs to be calculated. Thus the global stiffness ma-

trix can be constructed efficiently using the reference ele-

ment stiffness matrix which is interpolated using the modi-

fied SIMP method:

K (x̃ (x)) =

ne
∑

e=1

Ee (x̃e (x)) K̂ (5)

For linear elastic conditions without pre-stress, the refer-

ence element stress σ̂e caused by the reference load can be

found by:

σ̂e = x̃e(x)q EBûe (6)

Here E is the constitutive matrix for full material density, B

is the strain-displacement matrix and the exponent q < 1 is

introduced to address the singularity phenomena by relax-

ing the design space. As with the reference element stiffness

matrix, the constitutive matrix and the strain-displacement

matrix can be pre-computed just once. In this work, the el-

ement stresses are evaluated at the superconvergent center

point of each element.

The relaxed von Mises stress σ̄e for element e caused by

the reference load can be written as:

σ̄e =

√

σ̂2
ex
+ σ̂2

ey
− σ̂ex

σ̂ey
+ 3τ̂2

e (7)

Here σ̂ex
and σ̂ey

are the relaxed normal stress components

in element e in the x- and y-direction, respectively. Like-

wise, τ̂e is the relaxed shear stress.

Due to the local nature of the stresses, each element con-

stitutes a stress constraint in the optimization. For a fine

discretization of the design domain this results in a very

large number of constraints which may prove very compu-

tational demanding. For this reason, reducing the amount

of constraints can be very beneficial. In the present work

the P-norm function has been applied, where all constraints

are grouped into a global constraint. The stress constraint

gσ is thus given by:

gσ = σ̄PN (x̃ (x)) =















ne
∑

e=1

(σ̄e (x̃e (x)))P















1
P

≤ σy (8)

Here the P-norm factor P should be a number P > 1 and σy

is the material yield strength. The larger the P-norm factor,

the closer the approximation will be to the highest value of

all element stresses, henceforth noted σ̄max. On the other

hand, a low number will present a very conservative esti-

mate of the stresses. Having only one global P-norm func-

tion to represent the entire design domain can be a crude

approximation, and it has previously been shown that better

designs may be obtained by increasing the amount of ag-

gregated global constraints in a given design domain. In the

present work, the number of P-norm functions can easily

be increased to achieve better approximations of the local

constraints. However, this has not been a focus area in this

work, and we instead refer to the published literature on the

subject (e.g. [18, 39, 40]).

2.4 Objective function

The objective is to reduce overall mass. In this work the

objective function f (x) has been normalized to unity and is

given by:

f (x) =
1

ne

ne
∑

e=1

x̃e (x) (9)

While most real industrial components have much more

complex cost functions, the above cost function serves the

purpose to find the lightest design only. Thus, the applied

cost function is not representative of the production cost of

a design.
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3 Fatigue failure

Structures subjected to cyclic loading are prone to fail due

to fatigue. To estimate the lifetime of a structure can be a

complicated process. The designer must estimate the load-

ing conditions, obtain material parameters based on tests,

calculate the fractions of damage caused by each load cy-

cle using an appropriate fatigue damage criterion, and sum

up all the fractions of damage to estimate the accumulated

damage. While fatigue analysis is not the main focus area

of this article, we will briefly discuss these concepts as they

have been applied in this framework. In this work, the

fatigue damage is calculated using the multiaxial, stress-

based Sines criterion, where the amplitude and mean stress

values are found using traditional rainflow-counting. The

damage is accumulated using Palmgren-Miner’s rule, where

the estimated cycles to failure have been calculated using a

linear log-log S-N curve.

3.1 Rainflow-counting method

Assuming that the designer either knows or can estimate

the stress spectrum for the entire lifetime, this spectrum can

be reduced into stress reversals, also referred to as stress

cycles. These cycles, along with their respective mean val-

ues, can be directly applied to Sines method to estimate the

damage.

Various methods for determining the stress cycles ex-

ist, but the most popular method is the rainflow-counting

method. In rainflow-counting, the full stress history is first

reduced to peaks and valleys, and secondly half and full

stress cycles are identified from these peaks and valleys.

Due to the proportional loading condition, this can be done

directly on the applied time-varying load. The concept is

demonstrated in a small example for a sinusoidal load with

increasing amplitude in Fig. 1. From the rainflow-counting

on this example, nRF = 5 different cycles are identified. The

amount of reversals ni, the amplitude scaling factor cai
, and

the mean scaling factor cmi
are obtained for all stress cycles

i = 1, . . . , nRF . Note that the amplitude scaling factor is al-

ways positive in sign, while the mean scaling factor can be

negative for compressive mean stress. The amplitude and

mean stress vector for element e and cycle i can be deter-

mined by:

σea,i
= cai
σ̂e, ∀e, i (10)

σem,i
= cmi

σ̂e, ∀e, i

The subscript a refers to amplitudes and the subscript m

refers to mean. In a similar manner, the amplitude and mean

element displacements can be determined. Note that the

amplitude and mean stresses have not been binned in this

work. In practical applications, this is often the case, since it

reduces the computational costs of the analysis by limiting

the amount of different cycles nRF to a predefined number.

3.2 Fatigue damage by Sines method

[41] studied experimental data for combined bending and

torsional loading of metals. He proposed that the alternat-

ing octahedral shear stress and the hydrostatic mean stress

can be used as a multiaxial fatigue criterion for proportional

loading of metals. In terms of alternating stress compo-

nents, the criterion in a 2D plane stress and finite-life regime

can be expressed as [42]:
√

(

σeax,i
− σeay,i

)2
+ σ2

eax,i
+ σ2

eay,i
+ 6τ2

ea,i
+ (11)

β(σemx,i
+ σemy,i

) =
√

2σ̃ei

Here σ̃ei
is an equivalent uniaxial stress for element e and

stress cycle i, and β is a material parameter. In absence of

test data β = 0.5 is recommended [42], which is also the

applied value in this work. Note that the damaging effects

of a mean tensile stress in one direction can be reduced by

a mean compressive stress in the other direction. It is as-

sumed that a negative equivalent uniaxial stress state does

not contribute to the overall fatigue damage. This common

assumption makes the Sines criterion non-differentiable,

but no special technique is applied to circumvent this.

The equivalent uniaxial stress σ̃ei
can be related to an

estimated amount of cycles to failure Nei
for that specific

stress state using Basquin’s equation. Basquin’s equation

represents a log-log straight line S-N relationship. Ex-

pressed in stress reversals, the S-N curve is given by:

σ̃ei
= σ

′

f (2Nei)
b, ∀e, i (12)

Here σ
′

f
is the fatigue strength coefficient and b is the fa-

tigue strength exponent, corresponding to the slope of the

log-log S-N curve. This material-specific equation adds

a very large non-linearity to the analysis. As previously

mentioned, more complicated S-N curves can be applied.

However, special care must be taken with materials with

endurance limits. The sensitivities of damage for stress am-

plitudes below the endurance limit will be zero. This will

hinder the optimizer in removing material in low damage

regions. One way to overcome this issue is by introducing

a very small slope on the endurance limit.

3.3 Damage accumulation

When the estimated amount of cycles to failure for a given

alternating stress state is found, it is possible to apply

Palmgren-Miner’s linear damage hypothesis to accumulate

the damage for the entire load spectrum. The accumulated

fatigue damage in element e, De, is found by collecting all

the fractions of damage Dei
caused by each load cycle i:

De = cD

nRF
∑

i=1

Dei
= cD

nRF
∑

i=1

ni

Nei

≤ η, ∀e (13)

The upper limit describing when fatigue failure occurs is set

to η = 1. cD is a scaling parameter making the load history

representative of the entire lifetime, thus cD ≥ 1. Applying

the P-norm method, a global fatigue constraint gD is found:

gD =















ne
∑

e=1

(De)P















1
P

≤ η (14)

Because of the highly nonlinear behavior of the S-N curve

shown in (12), a logarithmic function with a base number

of 10 has been applied to the constraint equation. This ma-

nipulation of numbers can improve convergence. For ease

of notation, this is not included in the sensitivity analysis.
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Figure 1: Rainflow-counting method. (a) Loading history in solid line and static reference load in dashed line. (b) Extrema

found from history. (c) Cycles extracted from extrema, yielding scaling factors for amplitude ca and mean cm.

3.4 Adaptive constraint scaling method

A high P-norm factor is desirable to approximate the max-

imum function value, but it makes the optimization prob-

lem increasingly non-linear and thus even more difficult to

solve. [13] proposed an adaptive constraint scaling scheme

to scale the approximations towards the true local stress

level. Using this method, one can achieve good designs

using lower P-norm values, which in turn makes the op-

timization problem much easier to solve. For the global

stress constrained problem it can be described by:

σ̄(I)
max ≈ c(I)σ̄

(I)

PN
(15)

Here gσ = σ̄PN is replaced by the scaled approximation

σ̄
(I)
max at each iteration (I). The approximation is determined

using the adaptive constraint scaling factor c(I). For more

details we refer to [13]. In Fig. 2 a pseudo algorithm for

the implementation of the scheme is given, demonstrated

on stress constraints. In order to include the influence of

the adaptive constraint scaling scheme correctly in the de-

sign sensitivity analysis, the scaling factor c(I) must at least

be once continuously differentiable. However, the scaling

factor is assumed design independent in this work. The

influence of this becomes less during the optimization as

the scaling factor goes towards a constant near optimum, as

pointed out in [13]. Note that the same adaptive constraint

scaling scheme is used in the fatigue constrained optimiza-

tion.

4 Design Sensitivity Analysis

In this section, the design sensitivity of the density filter,

the cost function, the von Mises constraint, and the fatigue

constraint is presented. As the stress constraint sensitivity

is not an innovation of this work, it will only be stated and

not derived. In the appendix, more details on the analyti-

cal sensitivity analysis of the fatigue constraint are given,

where it can be seen that the sensitivity of the fatigue con-

straint is very similar to that of the stress constraint. Conse-

quently, it does not require much additional work to imple-

ment. Throughout this paper, numerator-layout notation is

used.

if Iteration I ≤ 2 then

c(I)
=
σ̄

(I)
max

σ̄
(I)
PN

α(I)
= 1

else

if oscillation then

α(I)
= max

(

0.5, α(I−1) · 0.8
)

else

α(I)
= min

(

1, α(I−1) · 1.2
)

end if

c(I)
= α(I) σ̄

(I−1)
max

σ̄
(I−1)
PN

+

(

1 − α(I)
)

c(I−1)

end if

Figure 2: Pseudo code detailing the application of the adap-

tive constraint scaling scheme by [13]. The same scheme is

applied in the fatigue optimization.

4.1 Design sensitivity of density filter

Using the chain rule of differentiation, the sensitivity of a

function of the design variables, e.g. the cost function f ,

with respect to a change in a design variable xe is:

d f

dxe

=

∑

j∈Ne

d f

dx̃ j

dx̃ j

dxe

(16)

Here the derivative of the physical design variable is given

by:

dx̃ j

dxe

=
ω (xe)

∑

k∈N j
ω (xk)

(17)

Note that this sensitivity is independent of the density and

can thus be pre-computed to increase computational effi-

ciency of the optimization. Note that a similar chain rule as

shown in (16) is also applied to the constraint functions.

4.2 Cost function sensitivity

The cost function defined in (9) is an explicit function of the

physical densities. Differentiating with respect to a physical

design variable x̃ j the sensitivity is given by:

d f

dx̃ j

=
1

ne

(18)
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4.3 Stress constraint sensitivity

Since only a single global stress constraint is applied, and

there are many design variables, the adjoint method can ef-

fectively be used to determine the design sensitivity of the

aggregated von Mises stress constraint function. The sensi-

tivity is obtained as:

dgσ

dx̃ j

=
∂gσ

∂x̃ j

− λT dK

dx̃ j

û, ∀ j (19)

Here the adjoint vector λ is found by solving the following

adjoint equation:

Kλ =
∂gσ

∂û

T

(20)

4.4 Fatigue constraint sensitivity

The fatigue constraint defined in (14) is an implicit func-

tion. The sensitivity is found using the adjoint method. It

has previously been shown that using the adjoint method for

multiple load cases can be effective [43, 44]. In the adjoint

method an augmented constraint function ǧD is constructed

by subtracting a zero-term from the original constraint func-

tion gD. Thus, the augmented fatigue constraint ǧD can be

written as:

ǧD = gD−
nRF
∑

i=1

(

λa
T
i

(

Kuai
− Pai

)

+ λm
T
i

(

Kumi
− Pmi

)

)

(21)

Here λai
and λmi

are the adjoint vectors corresponding to the

amplitude and mean equilibrium. Utilizing the assumption

that the loads are design independent, the sensitivity with

respect to a physical design variable x̃ j is given by:

dǧD

dx̃ j

=
∂gD

∂x̃ j

−
nRF
∑

i=1

(

λa
T
i

dK

dx̃ j

uai
+ λm

T
i

dK

dx̃ j

umi

)

+

nRF
∑

i=1

((

∂gD

∂uai

− λa
T
i K

)

duai

dx̃ j

)

(22)

+

nRF
∑

i=1

((

∂gD

∂umi

− λm
T
i K

)

dumi

dx̃ j

)

, ∀ j

The computationally costly part of this equation is deter-

mining the Lagrange multipliers. Thus, it is desirable to

eliminate the need for solving the adjoint equation for each

stress cycle i.

Recalling the amplitude displacement uai
and mean dis-

placement umi
can be found by scaling of the displacement

û caused by the reference load, they can be found by:

uai = caiû, ∀i (23)

umi = cmiû, ∀i

Consequently, part of (22) can be rewritten:

nRF
∑

i=1

(

λa
T
i

dK

dx̃ j

uai
+ λm

T
i

dK

dx̃ j

umi

)

= (24)

nRF
∑

i=1

(

caiλa
T
i + cmi

λm
T
i

) dK

dx̃ j

û

Thus, if the sum of all scaled Lagrange multipliers can be

found efficiently, the sensitivity can be found efficiently. For

ease of notation, this sum is defined as Λ:

Λ =

nRF
∑

i=1

(

caiλai
+ cmi

λmi

)

(25)

The derivative of the reference displacement is found by

differentiating the equilibrium state equation defined in (4):

K
dû

dx̃ j

= − dK

dx̃ j

û (26)

The derivatives of the amplitude and mean displacement

can be found by utilizing scaling of the reference displace-

ment. Consequently, they can be written as:

duai

dx̃ j

= − cai
K−1 dK

dx̃ j

û (27)

dumi

dx̃ j

= − cmi
K−1 dK

dx̃ j

û

Using these equations, the adjoint problem can be altered.

Thus (22) can be written as:

dǧD

dx̃ j

=
∂gD

∂x̃ j

− ΛT dK

dx̃ j

û +

nRF
∑

i=1

[

cai

∂gD

∂uai

− cai
λa

T
i K (28)

+ cmi

∂gD

∂umi

− cmi
λm

T
i K

] (

−K−1 dK

dx̃ j

û

)

The computational costly part of this equation is
(

−K−1 dK
dx̃ j

û

)

. In fact, this is the computational costly part

of the design sensitivity when using the direct differentia-

tion method. Thus,Λ is selected to eliminate the expression

within the square brackets, i.e.:

KΛ =

nRF
∑

i=1

(

cai

∂gD

∂uai

T

+ cmi

∂gD

∂umi

T )

(29)

By this equation, the computational costs no longer scale

poorly with the amount of load cycles. The derivative of

the fatigue constraint is then obtained by (28) which has

been reduced using the Lagrange multiplier Λ:

dǧD

dx̃ j

=
∂gD

∂x̃ j

− ΛT dK

dx̃ j

û (30)

With this formulation, very large load series can be ap-

plied without a significant increase to the computational de-

mand. A more detailed description of the analytical sensi-

tivity analysis can be found in the appendix.

Numerous fatigue criteria exist. Therefore it is advanta-

geous to have a generic method which is not too specific

for a certain fatigue criterion. Thus, it is important to stress

that this sensitivity analysis can be applied to many different

equivalent stress-based criteria. For other methods, differ-

ent difficulties may be introduced. For instance, in critical

plane methods the location of the critical plane and its sen-

sitivities must be found.

As the adjoint vector only needs to be solved once per

constraint per iteration, a semi-analytical approach can also

be applied efficiently. Using semi-analytical approaches,
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different fatigue criteria can be applied with very little im-

plementation effort. Additionally, the amount of partial

derivatives that must be calculated is directly dependent on

the amount of stress cycles nRF . Thus the computational ef-

fort can be further reduced by combining cycles into bins.

5 Problem definition

Two different optimization problems are solved in this

framework. Minimization of mass with P1 a global von

Mises static stress constraint, and P2 with a global fatigue

constraint using a time-varying load. Written as optimiza-

tion problems, they are

P1



















min
x∈X

f (x)

s.t.
gσ(x)

σy
≤ 1

P2



















min
x∈X

f (x)

s.t.
gD(x)

η
≤ 1

Here X = {x ∈ Re| 0 ≤ xe ≤ 1, e = 1, . . . , ne}.
The optimization problems are solved using the Method

of Moving Asymptotes (MMA) by [45]. Using the notation

in the 2007 MATLAB implementation of MMA by Svan-

berg, the optimization problems that are solved can be writ-

ten as [46]:

min
x∈X,y≥0,z≥0

f0 (x) + a0z +

nl
∑

l=1

(

clyl +
1

2
dly

2
l

)

s.t. fl (x) − alz − yl ≤ 0, l = 1, . . . , nl

Here nl = 1 is the number of general constraints. The MMA

optimization problem is mentioned such that all applied pa-

rameters are clearly defined. All parameters not defined in

this paper are left to the default values. Following parame-

ters have been chosen:

a0 = 1

al = 0, ∀l

cl = 1000, ∀l

dl = 1, ∀l

To address the highly non-linear behavior of the optimiza-

tion problem, the increase and decrease factors for the

asymptotes have been reduced to 1.05 and 0.65, respec-

tively. All examples are generated from an initial design

where xe = 0.5,∀e, and all examples use a filter radius r of

1.5 times the element length.

As the two optimization problems behave differently,

some optimization settings differ. The outer move limit ML

is specified in each example. In the stress optimization, the

stress penalization factor is set to q = 0.50, whereas a con-

tinuation scheme is applied for the fatigue optimization. In

the continuation scheme, an initial value q = 0.75 is used,

and this value is decreased by 0.01 every third iteration until

q = 0.50. While this change in penalization is quite small,

it has been observed to work well. The stiffness penaliza-

tion factor p = 3 remains unchanged in both optimization

formulations.

1.00 m

0.40 m

0.60 m

t

P
^

P
^ 0.50 m

0.50 m

0.40 m

0.16 m 0.24 m

0.24 m

0.10 m

0.20 m

0.10 m

^
P

1.00 m

0.24 m 0.24 m 0.24 m 0.24 m

Figure 3: The L plate, the double-L plate and the cantilever

plate.

The optimization problems are given a convergence cri-

terion stating that if the relative change in design ∆x(I)
=

∥

∥

∥x(I) − x(I−1)
∥

∥

∥ is below a set threshold ∆xmin, the opti-

mization is stopped. For the stress optimizations ∆xmin =

0.150% is used, and for the fatigue optimizations ∆xmin =

0.075% is used as the fatigue optimizations converge

slower. Note that this convergence criterion does not guar-

antee feasibility.

6 Examples

Three different examples are solved and common for all

is that the shapes give rise to stress concentrations. The

first example is an L plate which is used to demonstrate a

loading condition where a fatigue design similar to a von

Mises stress constrained design is achieved. The second

and third examples, a double-L plate and a cantilever plate

with holes, are used to demonstrate designs that differ from

a stress-optimized design. The three different structures are

depicted on Fig. 3. All three plates have a thickness of

t = 0.02m, and all examples make use of the default ran-

dom number generator in MATLAB to determine the loads.

More specifically, this is the Mersenne Twister pseudoran-

dom number generator with a seed of 0. In all the results

shown, the density plots are with the physical density vari-

ables while the stress and fatigue plots are with penalized

values. For sake of comparison stress plots are also shown

for the fatigue optimized designs subjected to the reference

load. Likewise, fatigue plots are shown for the stress opti-

mized designs subjected to the fatigue loading. Addition-

ally, for each design the maximum normalized von Mises

stress and the maximum fatigue damage are presented. The

material applied is AISI 1020 HR steel. The material val-

ues, which are taken from [42], are presented in Table 1.
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Table 1: Material properties of AISI 1020 HR.

σ
′

f
= 1, 384 MPa E0 = 203 GPa b = −0.156

ν = 0.30 σy = 262 MPa

6.1 Example I: L plate

A standard test benchmark example in stress constrained

topology optimization is the L plate. The L plate suffers

from high stress concentrations at the boundaries. However,

the largest stress for a dense design is at the sharp corner. A

stress or stress-based fatigue optimized design should avoid

this stress concentration. Conventional stiffness optimized

design will not avoid this stress concentration, and the L-

bracket therefore constitutes a good example of a design

where a stiffness optimal design will require large design

alterations to suit a stress or fatigue constraint.

Two different optimizations are carried out. P1 subject to

P̂ = 50 kN and P2 subject to k = 1, 000 random loads de-

fined by Pk = rand(P̂,−P̂),∀k. It is assumed that the struc-

ture is subjected to the loading spectrum cD = 750 times. cD

is tailored to give a fatigue optimized design with a similar

volume fraction as the stress optimized design.

The design domain is discretized with ne = 6, 400 ele-

ments. The applied loads are distributed onto three elements

consistently along the vertical edge to lessen the stress con-

centration at the loaded region. These three elements are

excluded from the optimization and set to have a density of

1. Both optimizations have a P-norm factor of P = 8.

Since the loading in P2 is fully reversed, the two opti-

mized designs resemble each other to a large extent. Due

to the increase in non-linearity of the fatigue constraint,

the stress constrained topology is obtained in fewer opti-

mization iterations. While the fatigue optimized design is

slightly heavier than the stress optimized design, the high-

est von Mises stress is also slightly lower than the material

yield limit. The results are shown on Fig. 4 and in Table 2.

Both designs are nearly fully stressed. The fatigue op-

timized design also manages to have a large portion of the

design fully damaged. However, fewer elements are dam-

aged as compared to the number of fully stressed elements,

which shows the large non-linearity and local behavior of

this type of constraint.

Even though the stresses are almost equal in both de-

signs, the slightly higher stresses in the stress optimized

design causes the structure to fail due to fatigue damage.

This clearly shows how sensitive fatigue damage is to very

small variations in stresses.

6.2 Example II: Double-L plate

In this second example, a symmetric double-L plate

clamped at each end is investigated. This design space re-

sembles the L plate to a large extent, and the optimizations

should attempt to avoid the stress concentrations at the two

sharp edges.

The static reference load applied in P1 is P̂ = 75 kN,

distributed onto six elements at the vertical edge. In the fa-

tigue optimization P2 the load spectrum contains k = 1, 000

Table 2: Optimization settings and results for example I

Optimization Settings

P1 P2

ML = 20% ML = 5%

∆xmin = 0.15% ∆xmin = 0.075%

ne = 6, 400

P = 8

Optimization Results

P1 P2

f = 0.2412 f = 0.2449

Iter = 330 Iter = 477

max(σ̄e/σy) = 1.0003 max(σ̄e/σy) = 0.9479

max(De) = 1.4319 max(De) = 1.0057

loads, and is defined by Pk = rand(P̂,−P̂/2),∀k. The dam-

age is scaled with cD = 10, 000.

In this problem, the design domain is discretized using a

fine discretization of ne = 23, 040 and the aggregation func-

tion is assigned a high P-norm value of P = 12. The larger

P value in this example is set to avoid poor local minima

where only elements near the boundaries are fully stressed.

The results are shown on Fig. 5 and in Table 3.

The von Mises constrained design produces a symmet-

ric design that tries to avoid the stress concentrations at the

edges. The stress optimized design fails to withstand the fa-

tigue load at many elements, and the highest fatigue damage

is more than eight times too high.

The fatigue constrained design is asymmetric. This is

due to the difference in mean stress effects caused by the

loading condition which is not fully reversed. In the upper

part of the design, similar trends to the stress constrained

design can be seen. Again, many elements are fully dam-

aged. The fatigue optimized design successfully strength-

ens the regions where the stress optimized design fails. As

expected, a large number of these elements have a relative

low von Mises stress value for the reference load. The fa-

tigue damage is sustained at a similar volume fraction as the

stress optimized design, but with higher von Mises stresses

for the reference load. The optimizer allows high stresses

in low damage regions to fully damage the structure. These

regions can easily be identified by the damage plot for the

stress optimized design or by the stress plot in the fatigue

optimized design.

6.3 Example III: Cantilever plate

In this example, two holes are introduced in a cantilever

plate to give stress concentrations in the initial design. The

domain is discretized using ne = 15, 360 elements. The ref-

erence load is P̂ = 40 kN and is consistently distributed onto

six elements. In the fatigue optimization, k = 1, 000 loads

are defined by Pk = rand(P̂,−2P̂/5),∀k. This loading is as-

sumed to occur cD = 10, 000 times. With this loading con-

dition, the fatigue constrained design will not be symmetric

as regions subjected to high tensile stresses will dominate

the design. The applied loading condition primarily gives
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P1: Stress constrained optimization

P2: Fatigue constrained optimization
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Figure 4: Optimization results of the L plate example. The stress values are normalized with respect to the yield stress

σy = 262 MPa, and the damage values are normalized with respect to the fatigue limit η = 1. Note that the normalized

damage plot contains real function values, and all values above the allowable limit are assigned the same color code. Also

note that the iteration history for fatigue is using the log10 scale.

Table 3: Optimization settings and results for example II

Optimization Settings

P1 P2

ML = 10% ML = 5%

∆xmin = 0.15% ∆xmin = 0.075%

ne = 23, 040

P = 12

Optimization Results

P1 P2

f = 0.2073 f = 0.2070

Iter = 262 Iter = 682

max(σ̄e/σy) = 0.9998 max(σ̄e/σy) = 1.1768

max(De) = 8.0851 max(De) = 0.9991

compressive mean stresses in the lower part of the structure.

As negative Sines equivalent stresses do not contribute to

the overall damage, less damage is caused in the lower part

of the structure. This trend is seen on Fig. 6, where it is clear

that the top part of the beam, which is primarily subjected

to tension, is thicker than the lower part of the beam. In

other words, the fatigue optimized design is strengthened

in regions where the stress optimized design has too high

fatigue damage. The fatigue optimization also manages to

remove an almost undamaged bar near the clamped bound-

ary. The optimization settings and results are listed in Table

4.

7 Discussion

The fatigue constrained topology optimization is a difficult

problem to solve. This is clear from the degree of infeasi-

bility during optimization, and also from the amount of it-

erations required before convergence. In general, a sudden

and large increase in the adaptive constraint scaling factor

c(I) often causes problems. This rapid increase is caused

by a poor representation by the P-norm function, caused by
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P1: Stress constrained optimization
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P2: Fatigue constrained optimization
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Figure 5: Optimization results of the double-L plate example. The stress values are normalized with respect to the yield

stress σy = 262 MPa, and the damage values are normalized with respect to the fatigue limit η = 1. Note that the

normalized damage plot contains real function values, and all values above the allowable limit are assigned the same color

code. Also note that the iteration history for fatigue is using the log10 scale.

Table 4: Optimization settings and results for example III

Optimization Settings

P1 P2

ML = 15% ML = 5%

∆xmin = 0.15% ∆xmin = 0.075%

ne = 15, 360

P = 12

Optimization Results

P1 P2

f = 0.2432 f = 0.2542

Iter = 246 Iter = 620

max(σ̄e/σy) = 0.9989 max(σ̄e/σy) = 1.1469

max(De) = 5.4933 max(De) = 0.9998

large jumps in constraint function values. Thus, increasing

the P-norm factor can be beneficial, but since the problem

is already very non-linear, it can make the optimization un-

stable. A similarly ambivalent issue is the mesh resolution.

A very fine mesh better captures the stress field and thus

the fatigue damage, but increasing the number of finite ele-

ments in a P-norm function also lessens the accuracy of the

P-norm.

It is advisable to start the fatigue optimization infeasi-

ble, as the damage behaves so non-linearly that an element

with almost no damage can become very infeasible with

very small design changes. This can cause problems if a de-

sign is far from failure and is allowed to have large design

changes. However, if the move limit and optimizer settings

are set to enforce small design changes, the optimization is

quite stable. Lastly it must be noted that it can be difficult

to obtain a completely black and white design, as can be

observed in particular in example III.

All of the above observations may be problem specific,

and very dependent on which fatigue criterion and S-N

curve that is applied. During the verification of the imple-

mentation of the method, it was observed that finite differ-

ence approximations yield accurate sensitivities. As a re-

sult, a semi-analytical approach can be used effectively.

It must be stressed that dynamic effects are not included

in the quasi-static analysis. Furthermore, some parame-

ters that are well-known to influence fatigue are neglected.

To name a few of these parameters, they could be sur-
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P1: Stress constrained optimization
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P2: Fatigue constrained optimization
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Figure 6: Optimization results of the cantilever plate example. The stress values are normalized with respect to the yield

stress σy = 262 MPa, and the damage values are normalized with respect to the fatigue limit η = 1. Note that the

normalized damage plot contains real function values, and all values above the allowable limit are assigned the same color

code. Also note that the iteration history for fatigue is using the log10 scale.

face treatments, temperature and environmental effects etc.

Some of these effects can be included through appropriate

S-N curves, while others cannot. Thus, it is important to

have a profound knowledge of the optimization problem at

hand and only use the presented method for preliminary de-

sign. For a detailed description of factors that can affect

the fatigue properties and thus influence the optimization,

see [31].

8 Conclusion

A general gradient-based method for finite-life fatigue opti-

mization that includes the entire high-cycle fatigue analysis

directly in the optimization has been presented. It is very

effective for problems where rainflow-counting can be per-

formed on the loading conditions, as only one adjoint vector

per constraint equation has to be solved for every reference

load vector. The method is not limited to 2D applications,

and is generic in the sense that many different equivalent

stress-based fatigue criteria can be applied. The method ap-

plies to linear finite element modeling with linear elastic

material behavior.

The optimization problem is highly non-linear and more

difficult to solve than classical stress-based optimization.

An example was given, where a fatigue optimized design

and a stress optimized design yielded similar results. This
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is caused by the applied loading and the similarity in the

Sines damage criterion and the von Mises stress criterion.

Two examples where the fatigue optimized designs are dif-

ferent from stress optimized designs were also presented.

The proposed method does not require much more im-

plementation work than typical stress-based topology opti-

mization, and is of such a powerful preliminary-design tool

for engineering problems driven by fatigue.
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Appendix

In the following the partial derivatives in the sensitivity

analysis of the fatigue constraint is written using the chain

rule of differentiation. The independence or linear depen-

dence on the load scaling factors is indicated.

The partial derivative of the fatigue constraint with re-

spect to a physical design variable x̃ j can be written as:

∂gD

∂x̃ j

=
∂gD

∂D j

nRF
∑

i=1

(

∂D ji

∂N ji

∂N ji

∂σ̃ ji

(

cai

(

∂σ̃ j

∂σ̂ jx

∂σ̂ jx

∂x̃ j

+ (31)

∂σ̃ j

∂σ̂ jy

∂σ̂ jy

∂x̃ j

+
∂σ̃ j

∂τ̂ j

∂τ̂ j

∂x̃ j

)

+

cmi

(

∂σ̃ j

∂σ̂ jmx

∂σ̂ jx

∂x̃ j

+
∂σ̃ j

∂σ̂ jmy

∂σ̂ jy

∂x̃ j

)))

In this equation, the Sines stress differentiated with respect

to the stress components and the stress components differ-

entiated with respect to the physical design variables do not

need to be calculated directly for each stress cycle i. Conse-

quently, only the computational inexpensive partial deriva-

tives ∂D ji
/∂N ji

and ∂N ji
/∂σ̃ ji

need to be calculated for ev-

ery load cycle.

The partial derivative of the aggregated constraint func-

tion with respect to the accumulated damage is given by:

∂gD

∂D j

=















ne
∑

e=1

DP
e















1
P
−1

· DP−1
j (32)

The partial derivative of the damage with respect to the es-

timated amount of cycles to failure is:

∂D ji

∂N ji

= −cD

n ji

N j
2
i

(33)

The partial derivative of the estimated cycles to failure with

respect to the Sines equivalent stress is:

∂N ji

∂σ̃ ji

=
1

2



























(

σ̃ ji

σ
′
f

)

σ̃ ji



























1
b

(34)

The partial derivatives of the Sines equivalent stress are

found by:

∂σ̃ j

∂σ̂ jx

=
1

4

(

4σ̂ jx
− 2σ̂ jy

) √
2

√

(

σ̂ jx
− σ̂ jy

)2
+ σ̂2

jx
+ σ̂2

jy
+ 6τ̂2

j

(35)

∂σ̃ j

∂σ̂ jy

=
1

4

(

4σ̂ jy − 2σ̂ jx

) √
2

√

(

σ̂ jx
− σ̂ jy

)2
+ σ̂2

jx
+ σ̂2

jy
+ 6τ̂2j

(36)

∂σ̃ j

∂τ̂ j

=
3τ̂ j

√
2

√

(

σ̂ jx
− σ̂ jy

)2
+ σ̂2

jx
+ σ̂2

jy
+ 6τ̂2

j

(37)

∂σ̃ j

∂σ̂ jmx

=
∂σ̃ j

∂σ̂ jmy

=
1

2
β
√

2 (38)

Note that these values are unscaled and it is therefore not

necessary to calculate these derivatives for each cycle i.

Similarly, the stress components differentiated with respect

to the physical design variables can be calculated indepen-

dently of the cycles, i.e. without the scaling factors:

∂σ̂ j

∂x̃ j

=





























∂σ̂ jx

∂x̃ j

∂σ̂ jy

∂x̃ j

∂τ̂ j

∂x̃ j





























= qx̃ j(x)q−1E j B jû j (39)

Likewise, the partial derivative of the constraint function

with respect to the amplitude and mean displacement, that

are required to solve the adjoint problem can be found by:

∂gD

∂u ja

=
∂gD

∂D j

nRF
∑

i=1

(

cai

∂D ji

∂σ̃ ji

(

∂σ̃ j

∂σ̂ jx

∂σ̂ jx

∂û j

+ (40)

∂σ̃ j

∂σ̂ jy

∂σ̂ jy

∂û j

+
∂σ̃ j

∂τ̂ j

∂τ̂ j

∂û j

))

∂gD

∂u jm

=
∂gD

∂D j

nRF
∑

i=1

(

cmi

∂D ji

∂σ̃ ji

(

∂σ̃ j

∂σ̂ jmx

∂σ̂ jx

∂û j

+ (41)

∂σ̃ j

∂σ̂ jmy

∂σ̂ jy

∂û j

))

Here the partial derivatives of the amplitude and mean stress

components with respect to the reference displacements are

constant in each iteration and calculated by:

∂σ̂ j

∂û j

=





























∂σ̂ j x

∂û j

∂σ̂ jy

∂û j

∂τ̂ j

∂û j





























= x̃ j(x)qE jB j, ∀ j (42)

Note that the constitutive matrix and strain-displacement

matrix are constant and equal for all elements in this work.

As can be seen from the above equations, the additional

computational costs as compared with stress constraints

are the analysis and derivatives of Basquin’s equation and

Palmgren-Miner’s equation, assuming that the computa-

tional cost of the Sines equivalent stress criterion is similar

to a stress criterion. Furthermore, the equations that must

be evaluated for each cycle i are either computational inex-

pensive or can be found by linear scaling. Consequently,

the sensitivity analysis for fatigue constraints can be done

very efficiently.
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failed clutch fork using topology and shape optimi-

sation by the response surface method,” Materials &

Design, vol. 31, no. 6, pp. 3008–3014, 2010.

[26] K. Sherif, W. Witteveen, K. Puchner, and H. Irschik,

“Efficient Topology Optimization of Large Dynamic

Finite Element Systems Using Fatigue,” AIAA Jour-

nal, vol. 48, no. 8, pp. 1339–1347, 2010.

[27] G. J. Park and B. S. Kang, “Validation of a Struc-

tural Optimization Algorithm Transforming Dynamic

Loads into Equivalent Static Loads,” Journal of Opti-

mization Theory and Applications, vol. 118, no. 1, pp.

191–200, 2003.

13



[28] Y.-I. Kim and G.-J. Park, “Nonlinear dynamic re-

sponse structural optimization using equivalent static

loads,” Computer Methods in Applied Mechanics and

Engineering, vol. 199, no. 9, pp. 660–676, 2010.

[29] S. H. Jeong, D.-H. Choi, and G. H. Yoon, “Fatigue

and static failure considerations using a topology op-

timization method,” Applied Mathematical Modelling,

vol. 39, no. 3, pp. 1137–1162, 2015.

[30] M. Collet, M. Bruggi, and P. Duysinx, “Topology op-

timization for minimum weight with compliance and

simplified nominal stress constraints for fatigue resis-

tance,” Structural and Multidisciplinary Optimization,

vol. 55, no. 3, pp. 839–855, 2017.

[31] E. Holmberg, B. Torstenfelt, and A. Klarbring, “Fa-

tigue constrained topology optimization,” Structural

and Multidisciplinary Optimization, vol. 50, no. 2, pp.

207–219, 2014.

[32] E. Holmberg, “Stress and fatigue constrained topology

optimization,” Licentiate thesis No. 1571, Linköping

University, 2013.

[33] J. Norato, C. Le, and C. Ha, “Fatigue-based topology

optimization method and tool,” US Patent Application

No. 13/692,268, 2012.

[34] B. Bourdin, “Filters in topology optimization,” Inter-

national Journal for Numerical Methods in Engineer-

ing, vol. 50, no. 9, pp. 2143–2158, mar 2001.

[35] T. E. Bruns and D. A. Tortorelli, “Topology opti-

mization of non-linear elastic structures and compliant

mechanisms,” Computer Methods in Applied Mechan-

ics and Engineering, vol. 190, no. 26, pp. 3443–3459,

2001.

[36] A. Dı́az and O. Sigmund, “Checkerboard patterns in

layout optimization,” Structural optimization, vol. 10,

no. 1, pp. 40–45, 1995.

[37] C. S. Jog and R. B. Haber, “Stability of finite el-

ement models for distributed-parameter optimization

and topology design,” Computer Methods in Applied

Mechanics and Engineering, vol. 130, no. 3, pp. 203–

226, 1996.

[38] O. Sigmund and J. Petersson, “Numerical instabili-

ties in topology optimization: A survey on procedures

dealing with checkerboards, mesh-dependencies and

local minima,” Structural optimization, vol. 16, no. 1,

pp. 68–75, 1998.

[39] J. Parı́s, F. Navarrina, I. Colominas, and M. Casteleiro,

“Block aggregation of stress constraints in topology

optimization of structures,” Advances in Engineering

Software, vol. 41, no. 3, pp. 433–441, 2010.

[40] E. Holmberg, B. Torstenfelt, and A. Klarbring, “Stress

constrained topology optimization,” Structural and

Multidisciplinary Optimization, vol. 48, no. 1, pp. 33–

47, 2013.

[41] G. Sines, “Behavior of Metals Under Complex Static

and Alternating Stresses,” Metal Fatigue, pp. 145–

169, 1959.

[42] R. I. Stephens, A. Fatemi, R. R. Stephens, and H. O.

Fuchs, Metal Fatigue in Engineering, 2nd ed., ser. A

Wiley-Interscience publication. John Wiley & Sons,

2000.

[43] M. A. Akgün, R. T. Haftka, K. C. Wu, J. L. Walsh, and

J. H. Garcelon, “Efficient structural optimization for

multiple load cases using adjoint sensitivities,” AIAA

Journal, vol. 39, no. 3, pp. 511–516, 2001.

[44] J. Oest, R. Sørensen, L. C. T. Overgaard, and E. Lund,

“Structural optimization with fatigue and ultimate

limit constraints of jacket structures for large offshore

wind turbines,” Structural and Multidisciplinary Op-

timization, vol. 55, no. 3, pp. 779–793, 2017.

[45] K. Svanberg, “The method of moving asymptotes—a

new method for structural optimization,” Interna-

tional Journal for Numerical Methods in Engineering,

vol. 24, no. 2, pp. 359–373, 1987.

[46] ——, “MMA and GCMMA - version September

2007,” KTH, Stockholm, Sweden, Tech. Rep., 2007.

14


	Introduction
	Structural setup
	Material interpolation
	Density filtering
	Finite element analysis
	Objective function

	Fatigue failure
	Rainflow-counting method
	Fatigue damage by Sines method
	Damage accumulation
	Adaptive constraint scaling method

	Design Sensitivity Analysis
	Design sensitivity of density filter
	Cost function sensitivity
	Stress constraint sensitivity
	Fatigue constraint sensitivity

	Problem definition
	Examples
	Example I: L plate
	Example II: Double-L plate
	Example III: Cantilever plate

	Discussion
	Conclusion

